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Abstract

In this paper, we designed another one-parameter distribution using a

mixture of exponential and gamma distributions. This new distribution

is unique among other members of the Lindley class because the qunatile

function has a closed-functional form hence lending itself to analytical

study. This distribution is named Fav-Jerry after the names of the authors.

The statistical properties and point estimation using some non-Bayesian

methods were studied. We deploy tow real datasets to demonstrate the

usefulness of the new model. The real data applications using data sets

on mortality rate and failure rate in a particular airplane showed that the

proposed model fits well compared to its competitors, therefore, the Fav-Jerry

distribution is superior to Two parameter Chris-Jerry(TPCJ), Chris-Jerry,

Exponentiated Inverted Exponential distribution, and Weibull distributions

and then parametric plots showing the histogram, CDF, survival and TTT

plots gotten from both data sets are displayed.

Received: May 4, 2024; Accepted: June 10, 2024; Published: June 11, 2024

2020 Mathematics Subject Classification: 62E15.

Keywords and phrases: estimations, real-life data, Monte-Carlo simulation, Lindley class of
distributions, plots, Fav-Jerry distribution, goodness fit, Bayesian estimation.
*Corresponding author Copyright c© 2024 Authors



794 Divine-Favour N. Ekemezie and Okechukwu J. Obulezi

1 Introduction

Lindley [9] introduced a one parameter distribution using mixing proportion θ
θ+1

of two components of exponential distribution with scale parameter θ and gamma

with shape parameter 2 and scale parameter θ. Within the last two decades and

inevitably beyond, researchers have piqued interest in getting more effective and

elastic modelling path for probability distributions that will defy the constant use

of the standard probability distributions. In this fashion as Lindley distribution,

Shanker and Shukla [20] created the Ishita distribution having merged the

exponential distribution with θ as its scale parameter and gamma distribution

with (3, θ) as its shape and scale parameters respectively, and with a mixing

proportion of θ3

θ3+2
. The Akash distribution which was postulated by Rama [15]

is a one parameter distribution gotten from the combination of the exponential

distribution with θ as its scale parameter and gamma distribution having its

shape and scale parameters as 3, and θ respectively. Its mixing proportion is
θ2

θ2+2
. Shanker [17] proposed the Komal distribution, a convex combination of

exponential (θ) and gamma (2, θ) with mixing proportions θ(θ+1)
θ2+θ+1

and 1
θ2+θ+1

.

Odom and Ijomah [12] created the Odoma distribution from three components

of exponential, gamma and gamma distributions, having a scale parameter of

θ and then gamma distributions having the shape parameters of (3, 5). The

mixing proportions used in this distribution are θ5

θ5+θ3+6
and θ3

θ5+θ3+1
. Shukla [7]

derived the one parameter Pranav distribution that consists of the exponential

and gamma distributions both having a scale parameter of θ and the gamma

distribution having a shape parameter of 4. The mixing proportions used in this

distribution are θ4

θ4+6
and 6

θ4+6
. Shanker [21] developed the Rani distribution

having merged the exponential distribution with θ as its scale parameter and

gamma distribution with (5, θ) as its shape and scale parameters respectively, then

its mixing proportion is θ5

θ5+24
, the Sujatha distribution was designed by Shanker

[22] and it consists of the exponential and gamma distributions both having a

scale parameter of θ and the gamma distribution having the shape parameter

of 2. The mixing proportions used in this distribution are θ
θ+1 and 1

θ+1 . The
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Doje distribution studied by Oramulu et al. [14], a single parameter distribution

from the two-components mixture of exponential with scale parameter θ and

gamma with shape parameter 7 and scale parameter θ has a mixing proportion,
θ6

θ6+720
. Shanker [18] created the Rama distribution having merged the exponential

distribution with θ as its scale parameter and gamma distribution with (3, θ) as

its shape and scale parameters respectively, then its mixing proportion is θ3

θ3+6
.

The Aradhana distribution which was postulated by Shanker [16], a one parameter

distribution gotten from the combination of the exponential distribution with θ as

its scale parameter and gamma distribution having its shape and scale parameters

as 2, and θ respectively. Its mixing proportion is 1
θ+1 . Shanker [19] introduced

the Shanker distribution having merged the exponential distribution with θ as

its scale parameter and gamma distribution with 2, and θ as its shape and scale

parameters respectively, then its mixing proportion is θ2

θ2+1
. Mbegbu and Echebiri

[11] derived the one parameter Juchez distribution that consists the exponential

and gamma distributions both having a scale parameter of θ and the gamma

distribution having a shape parameter of 2 and another gamma distribution with

shape parameter 4. The mixing proportions used in this distribution are θ3

θ3+θ2+6
,

θ2

θ3+θ2+6
and 6

θ3+θ2+6
. The Ram Awadh distribution, credit to Shukla [8] consists

the exponential and gamma distributions both having a scale parameter of θ

and the gamma distribution having the shape parameter of 6 and corresponding

scale parameter θ. The mixing proportions used in this distribution are θ6

θ6+120

and 120
θ6+120

. The design of Remkan distribution was studied by Uwaeme and

Akpan [26] it consists of the exponential and gamma distributions both having a

scale parameter of θ and the gamma distribution having the shape parameter of 3

and corresponding scale parameter θ and another gamma distribution with shape

parameter and scale as (4, θ) respectively. The mixing proportions used in this

distribution are θ
θ+2θ+6 , 2θ

θ+2θ+6 and 6
θ+2θ+6 . The design of Copoun distribution

was studied by Uwaeme et al. [25] it consists of the exponential distribution

having θ as its scale parameter and gamma distribution with shape parameter and

scale as (4, θ) respectively. The mixing proportions used in this distribution are
θ

(φ+θ) and θ
(θ+θ) and then there is the introduction of the Chris-Jerry distribution

by Onyekwere and Obulezi [13] through the combination of the exponential and
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gamma distributions both having a scale parameter θ and the gamma distribution

having the shape parameter of 3. Its mixing proportion is θ
θ+2 all these and lots

more are probability distributions that were coined from the discovery of the

Lindley approach.

Now, the motivation for this work is to generate probability model with a

better goodness of fit to data and provide some kind of simplistic and docile

mathematical resolve. It is notable that the proposition in this article has a

quantile function with a closed functional form. This lends this distribution to

many analytical tasks while providing flexibility in application compared to some

popular models in the Lindley class. In the end, this distribution can be extended

to more complex mathematical structures to accommodate data emanating from

the complex global activities.

In this paper, we introduced a one-parameter distribution with a probability

distribution function (pdf) given as

g(t;ψ) =
ψ

ψ2 + 2

(
2 + ψ3t

)
e−ψt; t > 0, ψ > 0. (1)

We refer the distribution as Fav-Jerry (FJ) distribution, devised from the names

of the authors. The pdf was obtained by combining the exponential and gamma

distributions. The exponential distribution has a scale parameter ψ, gamma

distribution with its shape parameter as 2, and scale parameter as ψ. The

formulation is g(t;ψ) = p exp(t, ψ) + (1 − p)gamma(t, 2, ψ), where p = 2
ψ2+2

is

the mixing proportion. The corresponding cumulative distribution function (cdf)

to eq. 1 is

G(t;ψ) = 1−
{

1 +
ψ3t

ψ2 + 2

}
e−ψt. (2)

Theorem 1 (Quantile Function). Let T ∼ Fav-Jerry(ψ), inverting the cdf in eq. 2

for G(t;ψ) = q we obtain

xq = − 1

ψ
− 2

ψ3
− 1

ψ
W

−(ψ2 + 2)(1− q)e−
ψ2+2

ψ2

ψ2

 ; provided q ∈ (0, 1) (3)
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where W (.) is the Lambert W function due to Corless et al. [4].

Proof. Let q = G(t;ψ), then it easily follows that (ψ2 + 2)(1 − q) = (ψ2 + 2 +

ψ3t)e−ψt. Assign Z(t) = −(ψ2 + 2 + ψ3t), this yields −ψt = Z(t)+ψ2+2
ψ2 so that

− (ψ2+2)(1−q)e
−ψ

2+2

ψ2

ψ2 = Z(t)
ψ2 e

Z(t)

ψ2 . Taking Lambert W function, the rest is trivial.

The survival and failure rate functions are obtained from eq. 1 and 2 as

s(t;ψ) = 1−G(t;ψ) =

(
1 +

ψ3t

ψ2 + 2

)
e−ψt, (4)

and

h(t;ψ) =
g(t;ψ)

s(t;ψ)
=

ψ(2 + ψ3t)

ψ2 + 2 + ψ3t
, (5)

respectively.

(a) pdf of Fav-Jerry (ψ) (b) cdf of Fav-Jerry (ψ)

Figure 1: visualization of the Fav-Jerry (ψ).
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Figure 2: Visualization of the Fav-Jerry distribution.

(a) 3D pdf of Fav-Jerry (ψ) (b) 3D hazard function of Fav-Jerry (ψ)

Figure 3: 3D pdf and hazard function.

Theorem 2 (Moment Generating and Characteristic Functions). There are

basically two reasons for moment generating function. First, the MGF of X gives

us all moments of X. That is why it is called the moment generating function

(MGF). Second, the MGF (if it exists) uniquely determines the distribution. That

is, if two random variables have the same MGF, then they must have the same

distribution. Thus, if you find the MGF of a random variable, you have indeed
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determined its distribution.

Mx(t) = E(etx) =

∫ ∞
0

etx
ψ

ψ2 + 2

(
2 + ψ3x

)
e−ψxdt

=
ψ

ψ2 + 2

[
2

∫ ∞
0

e−(ψ−t)xdt+ ψ3

∫ ∞
0

te−(ψ−t)xdt

]
=

ψ

ψ2 + 2

[
2Γ(1)

(ψ − t)
+

ψ3

(ψ − t)2

]
Mx(t) =

ψ

ψ2 + 2

[
2

(ψ − t)
+

ψ3

(ψ − t)2

]
.

(6)

Similarly, the characteristic function does always exists.

Mx(t) = E(eitx) =

∫ ∞
0

eitx
ψ

ψ2 + 2

(
2 + ψ3x

)
e−ψxdt

=
ψ

ψ2 + 2

[
2

∫ ∞
0

e−(ψ−it)xdt+ ψ3

∫ ∞
0

ite−(ψ−it)xdt

]
=

ψ

ψ2 + 2

[
2Γ(1)

(ψ − it)
+

ψ3

(ψ − it)2

]
Mx(t) =

ψ

ψ2 + 2

[
2

(ψ − it)
+

ψ3

(ψ − it)2

]
.

(7)

Theorem 3 (sth crude Moment). Let T ∼ Fav-Jerry (ψ), the sth crude moment

is given as

µ
′
s =

ψs! [2 + ψ(s+ 2)(s+ 1)]

(ψ2 + 2)ψs+1
; for s = 1, 2, · · · (8)

Proof. The sth crude moment of a random variable T with a pdf

g(t;ψ), is mathematically defined thus, µ
′
s = E(T ) =

∞∫
0

tsg(t;ψ)dt =

ψ
ψ2+2

{
2
∞∫
0

tse−ψtdt+ ψ3
∞∫
0

ts+2e−ψtdt

}
. The remainder easily follows.

Corollary 3.1 (The Mean). Let X ∼ Fab-Jerry (ψ),with s = 1, the mean goes

thus;

µ
′
1 =

ψ1 [2 + ψ(3)(2)]

(ψ2 + 2)ψ2
. (9)

Earthline J. Math. Sci. Vol. 14 No. 4 (2024), 793-816
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Theorem 4 (The shape of Fav-Jerry (ψ)). Suppose T ∼ Fav-Jerry (ψ), ∃ a

unique number t0 which makes the distribution uni-modal. This t0 accounts for

the shape of the distribution, and it is given as

t0 =
ψ2 − 2

ψ3
; where ψ ≥

√
2. (10)

Proof. The maximum point occurs when g
′′
(t) = 0, so we differentiate the pdf in

eq. 1 and equate the result to zero. This gives t0 = ψ2−2
ψ3 . Since t0 ≥ 0, we set

the numerator to zero to obtain the value of ψ, which defines t0, and the rest is

trivial.

(a) Mean of Fav-Jerry (ψ) (b) Variance of Fav-Jerry (ψ)

Figure 4: Measure of Central tendency and dispersion plots.

Theorem 5 (Shannon Entropy). Let T (t) be a signal produced from a g(t;ψ), the

average rate at which information is sourced Shannon [23] is defined thus

H(T ) = −
n∑
i=1

g(ti;ψ) log (g(ti;ψ))

= − ψ

ψ2 + 2

n∑
i=1

(2 + ψ3ti)e
−ψti

{
logψ − log (ψ2 + 2) + log (2 + ψ3ti)− ψti

}
.

(11)
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(a) Skewness of Fav-Jerry (ψ) (b) Kurtosis of Fav-Jerry (ψ)

Figure 5: Measure of Asymmetry and Peakedness plots.

Proof. The proof of Theorem 5 easily follows from substituting the pdf of the

Fav-Jerry (ψ) distribution into −
n∑
i=1

g(ti;ψ) log (g(ti;ψ)).

(a) m(x) of UL Fav-Jerry (ψ) (b) Rény entropy of Fav-Jerry (ψ)

Figure 6: Measure of additional life and Information Loss plots.
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2 Non-Bayesian Point Estimation

This section studies the various non-Bayesian estimation methods namely the

maximum likelihood, the ordinary least squares, the weighted ordinary least

squares, the maximum product spacing, the Cramér von Mises, Anderspn-Darling,

right-tailed Anderson-Darling and the percentile estimation procedures.

2.1 Maximum Likelihood Estimation

For T1, T2, · · · , Tn samples of size n with joint pdf g(ti;ψ), the likelihood function

of the parameter ψ can be expressed as

L(ti;ψ) =
ψn

(ψ2 + 2)n
e
−ψ

n∑
i=1

ti
n∏
i=1

(2 + ψ3ti). (12)

Set ξ = ln {L(ti;ψ)}, then the log-likelihood of ψ is

ξ = n lnψ − n ln (ψ2 + 2)− ψ
n∑
i=1

ti +
n∑
i=1

ln (2 + ψ3ti). (13)

The first total derivative yields the maximum likelihood estimate ψ̂ of the

parameter ψ given as

dξ

dψ
=
n

ψ
− 2nψ

ψ2 + 2
−

n∑
i=1

ti + 3ψ3
n∑
i=1

ti
2 + ψ3ti

. (14)
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2.2 Maximum Product Spacing (MPS)

Employing the method introduced by [2], the derivative of the MPS of Fav-Jerry

(ψ) distribution is obtained by maximizing the function

i(ψ) =
1

n+ 1

n+1∑
i=1

ln g(ψ). (15)

The estimator ψ̂ for ψ is derived by finding the solution to the non-linear equation

below
∂

∂ψ
i(ψ) =

1

n+ 2

n+1∑
i=1

1

g(τ)
(ε (ti:n|ψ)− ε (ti:n|ψ)) = 0,

where

ε (ti:n|ψ) =
te−ψt

[(
ψ2 + 2

)2 − ψ2
(
4− 2ψt− ψ3t

)]
(ψ2 + 2)2

. (16)

This obtained by differentiating the cdf of Fav-Jerry (ψ) with respect to ψ. MPS

aids in Bayesian inference and numerical analysis to reduce the correlation between

parameters and enhance the accuracy of parameter estimates and convergence of

numerical algorithms.

2.3 Ordinary Least Squares (OLS)

Given that

E (Gt:n|ψ) =
i

n+ 1
and V (Gt:n|ψ) =

i (n− i+ 1)

(n+ 1)2 (n+ 2)
. (17)

[24] proposed that the least squares estimate of ψ̂OLS of τ is obtained by

minimizing the function

T (ψ) =
n∑
i=1

(
G (ti:n|ψ)− i

n+ 1

)2

differentiating partially yields

n∑
i=1

(
G (ti:n|ψ)− i

n+ 1

)
ε (ti:n|ψ) = 0. (18)

Earthline J. Math. Sci. Vol. 14 No. 4 (2024), 793-816
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2.4 Weighted Least Squares (WLS)

Similarly, the weighted least squares estimate ψ̂WLS for Fav-Jerry (ψ) distribution

parameter ψ is achieved by minimizing the function ω(ψ) with respect to ψ

ω(ψ) = arg min
(ψ)

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

[
G(ti:n|ψ)− i

n+ 1

]2
. (19)

Resolving partially, we obtain the following non-linear equation

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

[
G(ti:n|ψ)− i

n+ 1

]
ε(ti:n|ψ) = 0, (20)

where ε(ti:n|ψ) is as defined in equation (23)

2.5 Cramér-von-Mises Estimation (CVM)

The method for Cramér-von-Mises estimates of ψ̂CVME, of the Fav-Jerry (ψ)

distribution parameter ψ, is defined as

C(ψ) = arg min
(ψ)

{
1

12n
+

n∑
i=1

[
G(ti:n|ψ)− 2i− 1

2n

]2}
. (21)

The estimates are obtained by solving the following non-linear equations

n∑
i=1

(
G(ti:n|ψ)− 2i− 1

2n

)
ε(ti:n|ψ) = 0.

2.6 Anderson-Darling Estimation (AD)

The Anderson-Darling estimate ψ̂ for Fav-Jerry (ψ) distribution with parameter

ψ is obtained by minimizing the function ϑ(ψ) with respect to ψ

ϑ(ψ) = arg min
(ψ)

n∑
i=1

(2i− 1)
{

lnG(ti:n|ψ) + ln
[
1−G(tn+1−i:n|ψ)

]}
. (22)
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The estimates are obtained by solving the following sets of non-linear equations

n∑
i=1

(2i− 1)

[
ε(ti:n|ψ)

G(ti:n|ψ)
− ε(tn+1−i:n|ψ)

1−G(tn+1−i:n|ψ)

]
= 0, (23)

where ε(t.|ψ) is as defined in Equation (23).

2.7 Right-Tailed Anderson-Darling Estimation (RTAD)

The Right-Tailed Anderson-Darling estimates ψ̂RTAD of the Fav-Jerry (ψ)

distribution parameter ψ obtained by minimizing the function Q(ψ) with respect

to ψ

Q(ψ) = arg min
(ψ)

{
n

2
−2

n∑
i=1

G(ti:n|ψ)− 1

n

n∑
i=1

(2i−1) ln
[
1−G(tn+1−i:n|ψ)

]}
. (24)

The estimates can be obtained by solving the following set of non-linear equations

−2
n∑
i=1

ε(ti:n|ψ)

G(ti:n|ψ)
+

1

n

n∑
i=1

(2i− 1)

[
ε(tn+1−i:n|ψ)

1−G(tn+1−i:n|ψ)

]
= 0, (25)

where ε(t.|ψ) is as defined in (23). Anderson-Darling right tailed method is best

when the dataset is censored or truncated.

3 Bayesian Point Estimation

This section focuses on the Bayesian estimation of the unknown parameters in

the Fav-Jerry (FJ) distribution. Various loss functions, including squared error,

LINEX, and generalized entropy loss functions, can be employed for Bayesian

parameter estimation. Specifically, we consider gamma prior for the parameter ψ

with probability density function (pdf) as follows:

π(ψ) =
βα

Γ(α)
ψα−1e−βψ. (26)

Earthline J. Math. Sci. Vol. 14 No. 4 (2024), 793-816
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The posterior distribution is proportional to the product the likelihood function

of the pdf L(ψ | t1, t2, · · · , tn) and the prior π(ψ). That is, π(ψ) ∝ L(ψ |
t1, t2, · · · ..., tn)π(ψ). Substituting, this gives

π (ψ | t1, t2, · · · , tn) ∝

[
n∏
i=1

ψ

ψ2 + 2

(
2 + ψ3t

)
e−ψt

]
βα

Γ(α)
ψα−1e−βψ.

Simplifying, we get:

π (ψ | t1, t2, · · · , tn) ∝ βα

Γα
ψn+α−1e−ψ(

∑n
i=1 ti+β).

n∏
i=1

2 + ψ3t

ψ2 + 2
.

The normalize posterior distribution is obtained by integrating the unnormalized

posterior over all possible values of ψ. Thus∫ ∞
0

βα

Γα
ψn+α−1e−ψ(

∑n
i=1 xi+β)

n∏
i=1

2 + ψ3t

ψ2 + 2
dψ.

Let Φ =
n∏
i=1

1
ψ2+2

, simplifying, we get

π (ψ|x1, x2, · · · , xn) ∝ ψn+α−1e−ψ(
∑n

i=1 xi+β)Φβα.
n∏
i=1

(
2 + ψ3t

)
.

The role of the shape parameter ψ of the prior is to influence the shape of the

posterior distribution while β, the rate parameter is added to the sum of the

observations
∑n

i=1 xi, to influence the rate parameter of the exponential part of

the posterior.

Given any function, such as l(φ) under the squared error loss (SEL) function, the

Bayes estimator is given by

φ̂BESEL = E [l(φ)|x] =

∫
φ
l(φ)π(φ|x)dφ. (27)

SEL impacts underestimation and overestimation equally because it has an

asymmetric loss function. In many real situations, both underestimation and

http://www.earthlinepublishers.com
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overestimation can have serious implications. A proposed LINEX loss can be

made in certain instances as an alternative to the SE loss given by

(
l(φ), l̂(φ)

)
= e{l̂(φ)−l(φ)} − v

(
l̂(φ)− l(φ)

)
− 1,

where v 6= 0 is a shape parameter. Here v > 1 suggests that an overestimation

is more serious than an underestimation, and vice versa for v < 0. Further v

approaching zero replicates the SE loss function itself. One may refer to Varian

[27] and Doostparast et al. [5] for more details in this regard. The BE of l(φ)

under this loss can be derived as

φ̂BELINEX = E
[
e{−vl(φ)}|x

]
= −1

v
log

[∫
φ

e{−vl(φ)}π(φ|x)dφ

]
. (28)

Additionally, we take into account the general entropy loss (GEL) function

suggested by Calabria and Pulcini [1], which is defined as follows.

(
l(φ), l̂(φ)

)
=

(
l̂(φ)

l(φ)

)ψ
− ψψ log

(
l̂(φ)

l(φ)

)
− 1,

where the shape parameter ψ 6= 0 denotes a departure from symmetry. It views

overestimation as more significant than underestimating when ψ > 0 and the

opposite is true when ψ < 0. The Bayes estimator with regard to the GE loss

function is given

φ̂BEGEL =
[
E
(

(l(φ))−ψ |x
)]−1/ψ

=

[∫
φ

(l(φ))−ψ π(φ|x)dφ

]−1/ψ
. (29)

The estimations produced by (27), (28), and (29) can be seen to not be able to be

transformed into closed-form expressions. We then use the Markov chain Monte

Carlo (MCMC) approach to generate posterior samples and arrive at suitable

BEs.

Earthline J. Math. Sci. Vol. 14 No. 4 (2024), 793-816
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4 Numerical Analysis

In this section, the performance of the Fav-Jerry (ψ) distribution is illustrated

using two life data sets. The first set of information is a description of the infant

mortality rate per 1,000 live births for a few chosen nations in 2021, as reported

by a https://data.worldbank.org/indicator/SP.DYN.IMRT.IN This real data set

is presented as

56 10 22 3 69 6 7 11 4 4 19 13 7 27

12 3 4 11 84 27 25 6 35 14 11 12 6

Here, we compare the goodness of fit of the Fav-Jerry (ψ) distribution

with the two-parameter Chris-Jerry (TPCJ) distribution by Chinedu et al. [3],

Chris-Jerry (CJ) distribution by Onyekwere and Obulezi [13], Exponentiated

Inverse Exponential (EIE) by [6], and Weibull distribution as shown in Table 1.

The fitness metrics considered are the Negative log-likelihood (NLL), the Akaike

information criterion (AIC), the corrected AIC (CAIC), the Bayesian information

criterion (BIC), the Hannan-Quinn information criterion (HQIC), Anderson

Darling (AD) and Cramér-von-Mises (CVM) statistics. The model with the lowest

values of these metrics is chosen as the best performer.

Table 1: The Fitness Metrics and Performance Statistics for the Models using

World Infant Mortality Rate per 1000 Live Birth Data

Dist LL AIC CAIC BIC HQIC W A K-S p-value scale shape

Fav-Jerry -106.24 214.47 214.63 215.77 214.86 0.12 0.80 0.16 0.6008 0.053 -

TPCJ -106.16 216.31 216.81 218.90 217.08 0.11 0.75 0.16 0.5345 399.51 0.06

Chris-Jerry -112.39 226.77 226.93 228.07 227.16 0.17 1.10 0.28 0.0260 0.15 -

EIE -103.88 211.76 212.26 214.36 212.54 0.08 0.50 0.17 0.4187 0.42 6.66

Weibull -106.11 231.36 231.86 233.95 232.13 0.13 0.82 0.32 0.0084 0.90 8.90

From the above estimations using the several method estimation approach,

it is concluded that the best estimation method for estimating the parameter in

Fav-Jerry distribution is WLSE. The reson for this choie is because WLSE has

http://www.earthlinepublishers.com
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Table 2: Estimating the parameter of Fav-Jerry distribution with different

methods using the first data set

Methods Estimate Std. Error

MLE 0.01561 0.00317

MPS 0.014664 0.00299

LSE 0.015854 0.00885

WLSE 0.01551 0.00075

CVM 0.015964 0.008806

ADE 0.015537 0.003524

RTADE 0.01524 0.00446

Bayes 0.01852 0.00294

the least standard error value.

The second application is on the failure rate of air-condition system of an

airplane studied by Linhart and Zucchini [10]. The data are as follows

3 5 5 13 14 15 22 22 23 30 36 39

44 46 50 72 79 88 97 102 139 188 197 210

Table 3: The Fitness Metrics and Performance Statistics for the Models using the

data which indicate the failure times (in hour) of air-conditioning system of an

airplane

Dist LL AIC CAIC BIC HQIC W A K-S p-value scale shape

Fav-Jerry −123.86 249.72 249.90 250.89 250.03 0.02 0.23 0.0835 0.9961 0.02 −
TPCJ −123.73 251.46 252.03 253.82 252.09 0.02 0.22 0.0808 0.9900 0.02 239.17

Chris-Jerry −132.94 267.87 268.05 269.05 268.18 0.04 0.33 0.2757 0.05 0.0054 −
EIE −123.4 250.79 251.36 251.14 251.41 0.02 0.18 0.09 0.9880 0.02 5.03

Weibull −123.85 288.20 288.77 290.56 288.82 0.02 0.19 0.54 1.25e−06 0.36 9.69

From the above estimations using the several method estimation approach,

it is concluded that the best estimation method for estimating the parameter in

Earthline J. Math. Sci. Vol. 14 No. 4 (2024), 793-816
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Table 4: Estimating the parameter of Fav-Jerry distribution with different

methods using the second data set

Methods Estimate Std. Error

MLE 0.05324 0.01027

MPS 0.049513 0.00958

LSE 0.057119 0.02792

WLSE 0.0529 0.00206

CVM 0.057211 0.027721

ADE 0054555 0.011792

RTADE 0.05564 0.01586

Bayes 0.06285 0.00976

Fav-Jerry distribution using the second data set is also WLSE. The reson for this

choie is because WLSE has the least standard error value.

http://www.earthlinepublishers.com
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Figure 7: Histogram, CDF, Survival and TTT plots of Fav-Jerry using the Infant

Mortality Data.
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Figure 8: Histogram, CDF, Survival and TTT plots of Fav-Jerry using the Data

on failure rate of Air Conditioning of an Airplane.

5 Conclusion

A novel distribution named ”Fav-Jerry distribution” was created in this paper.

Several mathematical properties such as moment, quantile function, the shape

http://www.earthlinepublishers.com
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the distribution takes, shanon entropy, including its mean, variance, kurtosis,

skewness,(graphs included). Going further into this work, the writers discussed

the maximum likelihood function. Using LL, AIC, BIC, K-S statistic, the test for

the goodness of fit was conducted. From two data sets used to rum the analysis,

it shows that the Fav-Jerry distribution performed better than Pranav, Shanker,

Odoma, Rani, Rama, Juchez, Copoun, Ram Awadh distributions. Next off is

the Bayesian point estimate which looks into the the various loss function of the

distribution, which includes the squared error, LINEX and genererlized entropy

loss function. The writers also used the Markov chain Monte Carlo (MCMC)

approach to generate posterior samples and arrive at suitable BEs. Towards

the conclusion of this work, the writer got the estimation of the parameter of

this distribution using different methods from the data sets and they came to a

conclusion that WLSE is the best approach to be taken for the distribution. The

parametric plots containing the histogram, CDF, survival and TTT plots gotten

from both data sets are displayed which show good fits to the two data sets.
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