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Abstract

Given that the conjugate gradient method (CGM) is computationally efficient
and user-friendly, it is often used to address large-scale, unconstrained
minimization issues. Numerous researchers have created new conjugate
gradient (CG) update parameters by modifying the initial set, also
referred to as classical CGMs. This has resulted in the development
of several hybrid approaches. This work’s major goal is to create a
new family of techniques that can be used to create even more new
methods. Consequently, Hestenes-Stiefel’s update parameter and a new
family involving Polak-Ribiere-Polyak and Liu-Storey CGMs are considered.
By changing the parameters of this CGM family, a novel approach
that possesses sufficient descent characteristics is obtained. A numerical
experiment including many unconstrained minimization problems (UMP)
is carried out to assess the novel method’s efficacy compared to existing
approaches. The result reveals that the new CG approach performs better
than the current ones.
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1 Introduction

The goal of an optimization problem is to maximize or minimize a real-valued
function by carefully selecting input values from a permitted set and figuring out
the function’s value. The amount of computational time and computer memory
required to solve an optimization issue can be used to quantify the effort involved.
The CGM is a widely used iterative strategy for solving optimization problems,
particularly those involving large scale data, because of its high numerical
efficiency. It was first introduced by Hestenes and Stielel [1] as a technique for
handling linear systems of equations.

The early CGMs are referred to as classical CGMs. They are created by the
traditional method and serve as the foundation for other CGMs that are built
in literature [2, 3]. To reduce the quadratic function, the traditional conjugate
gradient algorithm (CGA) was developed based on the following:

f(z) =
1

2
zTAz − bT z. (1)

It was thought to be computationally costly to apply the CGM for quadratic
function minimization to non-quadratic situations because it necessitated the
computation of the Hessian matrix at each iteration. Because of variations in their
update parameters, numerous CGMs have emerged since Fletcher and Reeves [4]
published the first nonlinear CGA. Authors in [1, 4–9] have created some of the
earliest sets of classical CG update parameters:

βHS
v =

gTv yv−1

dTv−1yv−1
, (2)

βFR
v =

‖gv‖2

‖gv−1‖2
, (3)

βPRP
v =

gTv yv−1

‖gv−1‖2
, (4)

βCD
v =

‖gv‖2

−dTv−1gv−1
, (5)
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βLSv =
gTv yv−1

−dTv−1gv−1
, (6)

and

βDY
v =

‖gv‖2

dTv−1yv−1
. (7)

The Hestenes-Stiefel, Fletcher-Reeves, Polak-Ribiere-Polyak, conjugate descent,
Liu-Storey, and Dai-Yuan techniques are represented by the letters HS, FR, PRP,
CD, LS, and DY in the above.

The UMP is typically resolved by a nonlinear CGM:

minf(x), x ∈ Rn, (8)

where f : Rn → R is given as a non-linear and continuously differentiable function
and g = ∇f is the gradient. Starting from an initial guess x0, a non-linear CGM
produces iteratively, a series of points given by:

xv+1 = xv + ϑvdv, v ≥ 0, (9)

where ϑv denotes the step-length. The search direction, dv is gotten by:

dv =

−gv if v = 0,

−gv + βvdv−1 if v ≥ 1,
(10)

where βv is the CG parameter, which is a scalar.

Selecting the right step size ϑv is essential for any CGM. This is true because
the selection of the step size, which greatly influences the rate of convergence of any
CGM, determines whether a line search method is successful. A careful selection of
the line search strategy is necessary to establish a descent direction [10]. For most
line search algorithms, the search direction dv must be descent, i.e., the direction
for which dTv gv < 0, to guarantee that the function f may be suitably reduced in
this direction.

Generally speaking, the line search techniques used to calculate ϑv can be
precise or imprecise. According to the precise search method, ϑv is defined as:

ϑv = argmin{f(xv + ϑdv);ϑ ≥ 0}, (11)
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where ϑ is the value of ϑ ≥ 0 that minimizes f along dv. By solving the differential
equation:

f ′(xv + ϑdv) = 0, (12)

the precise value of ϑv is found. This approach is expensive based on the function
and gradient evaluation. The shortcomings of the exact line search led to the
development of the inexact search method, which computes ϑv numerically by
guaranteeing a low-cost, acceptable reduction in the value of the goal function.
One of the most popular imprecise search methods is the Strong Wolfe (SW) line
search, which is characterized by:

f(xv)− f(xv + ϑvdv) ≥ −ωϑvgTv dv, (13)

and
|g(xv + ϑvdv)

Tdv| ≤ γ|gTv dv|, (14)

where 0 ≤ ω ≤ γ ≤ 1.

The rest of this article is organized as follows: Section 2 reviews the techniques
that are currently in use. Section 3 introduces the new parameterized CGM and
its algorithm. The analysis of the updated CGM is provided in Section 4. Tables
and graphs containing the numerical data are shown and explained in Section 5
while Section 6 contains the conclusion.

2 Review of Existing Methods

In order to improve performance, avoid jamming, and boost convergence, a hybrid
CGM is a particular combination of many CGMs [11, 12]. A hybrid CGA was
created to utilize and include the enticing features of the traditional CGMs. Hybrid
approaches are critical for solving unconstrained optimization problems on a large
scale because of their involvement in achieving enhanced computation performance
and preserving the strong global convergence properties of the various methods
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[13]. This idea makes it possible to switch up the implementation process by using
different methods. Two categories of hybrid CGM approaches can be distinguished:
mixed methods and methods that combine multiple methods by adding parameters
[14], resulting in multiple CGM families. As an example, a family of CGMs with
one parameter, suggested by Dai and Yuan [15], is provided by:

βv =
‖gv‖2

αv ‖gv−1‖2 + (1− αv)dTv−1yv−1
, (15)

where αv ∈ (0, 1) is the parameter equation. In this one-parameter family of
CGMs, αv = 1 is the same with the FR approach and αv = 0 is equivalent to the
DY approach. A two-parameter family of CGMs was proposed by Nazareth [16]
and given by:

βv =
ρv ‖gv‖2 + (1− ρv)gTv yv−1

ηv ‖gv−1‖2 + (1− ηv)dTv−1yv−1
, (16)

where ρv, ηv ∈ [0, 1]. The PRP, FR, HS, and DY update parameters are included in
this two-parameter family. The six conventional CGMs were incorporated into the
three-parameter family by Dai-Yuan in [17], building on the work of Nazareth [16]
by adding one more parameter. The following defines the updated parameter that
results:

βv =
λv ‖gv‖2 + (1− λv)gTv yv−1

(1− σv − ξv) ‖gv−1‖2 + σvdTv−1yv−1 − ξvdTv gv
, (17)

where σv, λv ∈ [0, 1] and ξv ∈ [0, 1− σv].

Djordevic [11, 18] suggested new CG update parameters using a convex
combination of both LS and CD techniques as well as HS and FR techniques,
yielding the following form:

βhybv = (1− ςv)βLSv + ςvβ
CD
v ,

and

βhybv = (1− ςv)βHS
v + ςvβ

FR
v ,

where ςv is the hybrid parameter.
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According to [13, 19–26], hybrid CGMs have recently been suggested. The
novel hybrid CGM, built by convex combination, satisfies the necessary descent
condition, according to the author in [19]. This is the formula that yields the new
update parameter:

βhybv = (1− ζv)βLSv + ζvβ
FR
v .

In [13], The author developed a generic approach using linear combination, which
led to the creation of a novel hybrid method in the form of:

βNM
v =

gTv sv−1

gTv−1yv−1
. (18)

The authors in [23] introduced a new parameter ψv by a convex combination of
RMIL and MMWU [27,28] update parameters. The new βv definition is provided
by:

βHA
v = (1− ψv)β

RMIL
v + ψvβ

MMWU
v , (19)

where

βRMIL
v =

gTv+1yv

‖dv‖2
,

βMMWU
v =

‖gv+1‖2

‖dv‖2
,

and

ψv =

(
sTv gv+1 − yTv gv+1

)
‖dv‖2 +

(
gTv+1yv

) (
yTv dv

)(
gTv+1yv

)
(yTv dv)

.

Much recent research in the development of hybrid CGMs and their
characterization have been given in [29–31].

In this study, a novel parameterized CGM is proposed by utilizing a linear
combination of some of the current CGMs. This work is unique in that it does
not impose restrictions on the values of the parameters, which permits both the
recovery of the current methods and the creation of new ones.
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3 The New CGM

This section initially proposes a novel family of CGMs that may be among the
first sets of CGMs with comparable numerators. The developers of these current
traditional techniques are [1,5,6,8]. The update parameter that results is provided
by:

βNF“(1)
v =

νgTv yv−1

λ1dTv−1yv−1 + λ2 ‖gv−1‖2 + λ3dTv−1gv−1
. (20)

Using yv−1 = gv−gv−1 in the numerator of (20), a more general update parameter
of the form:

βNF (2)
v =

ν1 ‖gv‖2 + ν2g
T
v gv−1

ζ1dTv−1yv−1 + ζ2 ‖gv−1‖2 + ζ3dTv−1gv−1
, (21)

is presented, where the parameters νi, ζj , i = 1, 2, j = 1, 2, 3 ∈ R,
dv−1, gv, gv−1, yv−1, are vectors and T represents transpose.

Definition 3.1. [32] Given a vector space V containing elements r1, · · · , rn and
scalars κ1, · · · , κn over a field K, then the span of a set S of vectors in V can be
defined as the set of all finite linear combination of elements of S, i.e.,

Span(S) =

{
k∑

i=1

κiri|K ∈ N, ri ∈ S, κi ∈ K

}
.

Therefore V = Span{r1, r2, · · · , rn}, and V is said to be spanned by r1, r2, · · · , rn.

3.1 Formula for existing and new CGMs

Let A and B be the set of the numerator and denominator terms of (21) i.e.,

A = {a1, a2, · · · , an} ,

B = {b1, b2, · · · , bn} ,
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where the numerator and denominator terms ai, i = 1, · · · , n and bi, i = 1, · · · , n
are respectively ‖gv‖2 , gTv gv−1, dTv−1yv−1, ‖gv−1‖

2 , and dTv−1gv−1. By Definition
3.1,

Span(A) =

{
n∑

i=1

νiai, νi ∈ R, ai ∈ A

}
,

and

Span(B) =

{
n∑

i=1

ζibi, ζi ∈ R, bi ∈ B

}
.

Let the set of both existing and new methods be denoted by M , then:

M =

{
p

q
|p ∈ Span(A), q ∈ Span(B)

}
. (22)

By using the formula (22), the existing methods i.e. the HS, PRP and LS methods
can be recovered and new methods can also be generated from (21) as follows:

By letting ν1 = 1, ν2 = −1, ζ1 = 1, others zero, method HS is recovered.
By making ν1 = 1, ν2 = −1, ζ2 = 1, others zero, method PRP is recovered.
By making ν1 = 1, ν2 = −1, ζ3 = −1, others zero, method LS is recovered.

Therefore for ease of analysis and implementation, a new method is generated
from (21) by letting ν2 = 1, ζ2 = 1, others zero, resulting in the following method:

βNGM
v =

gTv gv−1

‖gv−1‖2
, (23)

where NGM refers to new gradient method. The following algorithm describes the
newly generated CGM.

NGM Algorithm

Step 1: Given that xv ∈ Rn, v = 0, ε ≥ 0, set dv = −gv, stop if ‖gv‖ ≤ ε.
Step 2: Determine the stepsize ϑv by SW inexact line search given by (13) and
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(14).
Step 3: Let xv be determined by (9), gv = g(xv), stop if ‖gv‖ ≤ ε.
Step 4: Calculate βv by (23) and produce dv by (10).
Step 5: Make v := v + 1, and go back to step 2.

4 Analysis of the NGM Method

The following lemmas will be useful in carrying out the sufficient descent analysis
of βNGM

v .

Lemma 4.1. For the Conjugate Gradient Method, the following holds:

gTv dv−1 = 0. (24)

Proof. This can be found in Chong and Zak [33].

Lemma 4.2. The NGM update parameter satisfies the sufficient descent criterion,
i.e.,

gTv dv ≤ −$ ‖gv‖
2 , 0 < $ ≤ 1. (25)

Proof. By (10) and (23),

gTv dv = −gTv gv + βNGM
v

(
gTv dv−1

)
,

= −‖gv‖2 +
gTv gv−1

‖gv−1‖2
(
gTv dv−1

)
.

Expressing the second term on the right hand side (RHS) in the form of
Cauchy-Schwartz inequality kT l ≤ 1

2(‖k‖
2 + ‖l‖2) by letting k = 1√

3
gv, and

l =
√
3gv−1(gTv dv−1)
‖gv−1‖2

, we have:
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gTv gv−1

‖gv−1‖2
(
gTv dv−1

)
≤ 1

2

∥∥∥∥ 1√
3
gv

∥∥∥∥2 +
∥∥∥∥∥
√
3gv−1

(
gTv dv−1

)
‖gv−1‖2

∥∥∥∥∥
2
 ,

≤ 1

2

[
1

3
‖gv‖2 +

3(gTv dv−1)
2

‖gv−1‖4

]
.

By Lemma (4.1), the second term in the above vanishes and therefore,

gTv gv−1

‖gv−1‖2
(
gTv dv−1

)
≤ 1

6
‖gv‖2 ,

and

gTv dv = −‖gv‖2 +
gTv gv−1

‖gv−1‖2 ”
(
gTv dv−1

)
,

≤ −‖gv‖2 +
1

6
‖gv‖2 ,

≤ −5

6
‖gv‖2 .

Thus, the NGM method satisfies (25) with $ = 5
6 .

5 Numerical Results and Discussion

The NGM algorithm’s results on a series of test problems are presented in this
section. Using the same test problems that were chosen from Bongartz et al. [34]
and Andrei [35], this algorithm’s reliability was evaluated in comparison to the
NM method [13] and the HA method [23].

In total, 80 computations were performed by solving twenty (20) unconstrained
test functions with dimensions ranging from 500 to 10, 000. The computation
was performed using the SW line search, and the CGA codes were written using
MATLAB software on a computer running Windows 10 Pro with a 2.16 GHz
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processor, 4 GB of RAM, and a CGA code generator. A failure (F) was identified
if the condition ‖gv‖ ≤ 10−6 was not satisfied after 2000 iterations.

Table 2 shows in detail the numerical results for the test functions (TF)
specified in Table 1, which include the dimensions of the solved problems
(DIM), iteration counts (ITER), and the computer processing time (CPUT).
The solved test functions and their sources are shown in Table 1. Figures 1
and 2, correspondingly, display the performance outcomes. Dolan and More’s
performance profile was used to evaluate these [36]. The NGM approach performs
better than the NM and HA methods, as evidenced by the fact that it was able to
solve 84% of the test problems successfully. On the other hand, only roughly 35%

of the test problems could be resolved with the HA approach, while 56% could be
resolved with the NM approach.

Figure 1: Comparing the NGM, NM and HA methods with respect to number of
iterations.

Figure 2: Comparing the NGM, NM and HA methods in terms of Computational
time.
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Table 1: Solved test functions together with their origins
S/N TF Origins
1 “Extended Block Diagonal BD1 Andrei (2008)
2 Power Andrei (2008)
3 Arwhead Bongartz et al. (1995)
4 Diagonal 5 Andrei (2008)
5 Qf1 Andrei (2008)
6 Qf2 Andrei (2008)
7 Chebyquad Andrei (2008)
8 Diagonal 4 Andrei (2008)
9 Staircase1 Andrei (2008)
10 Staircase2 Andrei (2008)
11 Extended Beale Andrei (2008)
12 Extended Freudenstein and Roth Andrei (2008)
13 MODF COSINE Bongartz et al. (1995)
14 MODF SINE Bongartz et al. (1995)
15 MDF EXPLIN 1 Bongartz et al. (1995)
16 RMODF COSINE Bongartz et al. (1995)
17 RMDF GENHUMPS Bongartz et al. (1995)
18 Ext MCCORMCK Bongartz et al. (1995)
19 Extended Three Exponential Terms Andrei (2008)
20 Extended Quadratic Penalty QP2 Andrei (2008)"
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Table 2: ITER and CPUT outputs for NGM, HA and NM methods
CPUT ITER

TF DIM “NGM NM HA NGM NM HA
1 500 0.741 0.098 F 37 17 F

1000 0.743 0.101 F 37 17 F
5000 0.78 0.264 F 37 17 F
10000 1.035 0.417 F 37 17 F

2 500 1.189 0.211 0.91 27 26 51
1000 F F F F F F
5000 F F F F F F
10000 F F F F F F

3 500 10.152 8.31 F 493 1751 F
1000 11.627 F F 550 F F
5000 F F F F F F
10000 F F F F F F

4 500 0.306 0.213 F 8 15 F
1000 0.159 0.114 F 8 15 F
5000 0.229 0.726 F 8 27 F
10000 0.253 6.489 F 8 133 F

5 500 30.029 F F 658 F F
1000 47.192 F F 1307 F F
5000 43.164 F F 1495 F F
10000 F F F F F F

6 500 F F F F F F
1000 F F F F F F
5000 F F F F F F
10000 F F F F F F

7 500 0.063 0.208 0.984 24 17 431
1000 0.078 0.31 1.794 36 20 829
5000 0.271 0.234 F 84 9 F
10000 0.565 0.28 F 118 7 F

8 500 0.102 0.211 1.13 20 41 93
1000 0.124 0.267 F 20 42 F
5000 0.347 0.921 9.244 20 44 160
10000 0.67 1.329 F 21 45 F
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Table 2 cont’d

CPUT ITER
TF DIM NGM NM HA NGM NM HA
9 500 0.017 0.042 0.046 1 1 1

1000 0.019 0.029 0.036 1 1 1
5000 0.022 0.043 0.028 1 1 1
10000 0.024 0.028 0.052 1 1 1

10 500 0.158 2.854 16.257 33 634 1301
1000 0.193 3.661 21.75 34 613 1326
5000 0.371 0.312 2.087 30 23 46
10000 F F F F F F

11 500 4.6 9.398 F 420 1034 F
1000 6.214 19.33 F 429 1052 F
5000 27.751 76.547 153.255 403 1118 379
10000 58.233 147.846 F 442 1145 F

12 500 5.912 F F 723 F F
1000 13.94 F F 961 F F
5000 49.332 F F 961 F F
10000 78.846 F F 916 F F

13 500 0.107 F 0.374 19 F 131
1000 0.065 F 0.377 18 F 137
5000 0.142 F 1.011 18 F 154
10000 0.449 F 2.326 36 F 168

14 500 0.047 4.86 0.221 5 1757 47
1000 0.02 0.064 0.235 3 2 39
5000 0.023 0.029 0.042 1 1 1
10000 0.031 0.035 0.043 1 1 1

15 500 0.041 0.081 0.538 11 11 96
1000 0.041 0.126 0.542 11 11 101
5000 0.11 0.585 2.142 11 18 107
10000 0.099 3.191 4.251 11 30 111

16 500 0.089 0.113 F 22 29 F
1000 0.069 0.247 F 22 57 F
5000 0.2 F F 25 F F
10000 0.283 F F 25 F F

17 500 0.126 0.18 F 32 16 F
1000 F 0.259 1.359 F 17 74
5000 F 1.284 F F 18 F
10000 0.714 F F 21 F F

18 500 0.097 0.13 0.466 28 28 42
1000 0.095 0.153 1.699 25 29 108
5000 0.544 F F 44 F F
10000 2.848 F F 96 F F

19 500 0.187 0.241 F 40 41 F
1000 0.345 F F 53 F F
5000 9.848 F F 271 F F
10000 42.96 F F 510 F F

20 500 2.739 F F 467 F F
1000 8.995 F F 604 F F
5000 20.052 F F 444 F F
10000 66.502 F F 724 F F"
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6 Conclusion

This paper presents a new family of parameterized CGMs that was created by
linearly combining three traditional CGMs that already existed and had similar
numerators. By changing the values of the parameters in the new family,
this strategy has the potential to generate an infinite number of new methods.
Consequently, it was demonstrated that a newly selected CGM had the appropriate
descent property. Numerical comparisons between the new method and three
current CGMs demonstrate that the new method performs better in terms of
computation time and iteration numbers. This is indicated by the potential for
the new family to produce a CGM that performs better than any of the current
CGMs. Thus, more research into the new enhanced family of CG Methods is
required. Future studies will concentrate on the new method’s global convergence.
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