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Abstract

Survival analysis has become integral to clinical studies, especially in

emerging diseases and terminal ailments. This study focused on improving

the popular Cox PH model. The new method developed is a parametric

type, incorporating the hazard rate of the exponential distribution. It was

noted that though the functional form of the Cox PH model was altered,

the assumptions were upheld. Additionally, the new model parameters were

estimated using the same maximum partial likelihood as the Cox model.

Data on the survival times of 137 patients who underwent bone marrow

transplants were deployed, and the proposed parametric Cox PH model

proved superior to the Cox PH model.

1 Introduction

Many articles have explored the clinical characteristics of surviving patients from

diseases such as leukaemia. Modelling the longitudinal (data that is collected
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through a series of repeated observations of the same subjects over some extended

time frame) and event-time outcomes separately, for example, using linear mixed

models [1] or Cox regression models [2] can therefore be inefficient, and can lead

to biased effect size estimates if the two outcome processes are correlated [3].

Research into joint modelling of longitudinal and time-to-event data has received

considerable attention during the past two decades [3–7]. The motivation behind

this an active field of research has stemmed from three broad scientific objectives:

1. Improving inference for a repeated measurement outcome subject to an

informative dropout mechanism that is not of direct interest [8].

2. Improving inference for a time-to-event outcome, whilst taking account

of an intermittently and error-prone measured endogenous time-dependent

variable [7].

3. Studying the relationship between the two correlated processes [5].

The Cox proportional hazards (PH) model, often called the Cox regression

model, is a statistical technique for analyzing survival data. It’s named after the

statistician Sir David Cox, who developed it in 1972. The Cox PH model allows

us to assess the relationship between the survival time of subjects and predictor

variables (covariates) while assuming that the hazard (risk of event occurrence)

for any individual is proportional to the hazard for any other individual.

This model is commonly used in medical research, epidemiology, and other

fields where survival analysis is important. It’s especially valuable when studying

the effects of various factors on the time until an event occurs, such as death,

relapse of a disease, or failure of a mechanical system.

The Cox PH model estimates the hazard function as a product of a baseline

hazard function and an exponential function of the covariates. This allows for

assessing how the hazard changes as predictor variables change while maintaining

the assumption of proportional hazards.
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The Cox PH model is a powerful tool for analyzing survival data. It provides

insights into the factors that influence the time until an event of interest occurs

while accommodating the assumption of proportional hazards.

Unlike parametric methods, Coxâs method does not require some particular

probability distribution to represent survival times. Thatâs why we call it

a semi-parametric model, which makes Coxâs method more robust. Another

advantage of using Coxâs method is that itâs relatively easy to incorporate

time-dependent covariates. We use the maximum likelihood method to estimate

the regression parameter in the parametric model. In contrast, we use the

method of maximum partial likelihood to estimate the parameters in Coxâs

model. Whatâs remarkable about partial likelihood is that you can estimate

the coefficients without specifying the baseline hazard function h0(t).

Cox Proportional Hazard also known as Cox PH model for survival analysis

has come a long way in the literature with some studies both in application and

software implementation being remarkable such as [9, 10], [2, 11], [12, 13], [14],

[15, 16]. The survival time of a particular event is called the time-to-event, [17].

The time of death and time to develop a disease are examples of survival data.

Statistical methods for survival analysis have been applied to many vital fields of

research. Generally, survival analysis uses data to predict survival probability and

identify risk and/or prognostic factors related to subjectsâ survival and disease

progression. An essential aspect of survival data is not usually fully observed in

all subjects under study, leading to different censored data types. Subjects in a

study are usually assumed to be selected randomly (interred the study randomly)

in the sense of simple random sample (SRS) [18].

The Cox PH model is the most commonly used survival data analysis

technique that simultaneously allows one to include and to assess the effect

of multiple covariates [19]. These model covariates can include the variables

of specific research interest (treatment groups) and potential confounders for

which the researcher wants to control (demographic and other clinical factors).

Multiple strategies for covariate selection have been described, and the aim of
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the studyâmost often to determine the effect of a covariate while controlling for

confounding versus prediction of survival using a set of predictor variablesâshould

be considered in choosing a strategy [14,20,21].

Cox PH regression does not directly model survival probabilities or times but

the hazard function. Herein, it is assumed that all patients have a common

baseline hazard function that only depends on time. Each subjectâs hazard

function is a multiple of this common baseline hazard, and the individual

multiplicator is a constant determined by a time-independent function of a

patientâs covariate values [2]. This implies that the ratio of the hazard rates

between different patients (the HR) is assumed to be constant over timeâin other

words, the effect of a covariate is assumed to be the same at all time points. This

is the PH assumption of the Cox PH model, [22], which is discussed in more detail

below.

Under this assumption, exponentiated regression coefficients for each covariate

can be interpreted as the HR for a 1-unit change in the respective covariate value.

This is akin to interpreting exponentiated regression coefficients as odds ratios in

logistic regression [14].

While the Cox PH model estimates regression coefficients without making

assumptions about the shape of the hazard function, it is possible to work

backwards and use the parameter estimates to estimate the adjusted hazard or

survival function. This allows the plotting of adjusted curves for different groups,

which are very similar to Kaplan-Meier curves, but instead show or predict the

probability of survival in each group while keeping the other covariates fixed

at their mean values [23]. Survival proportions can also be predicted for each

arbitrary combination of covariate values [19]. The Cox PH model is very popular

among clinical researchers for numerous reasons. It does not need the researcher

to specify the function of the baseline hazard. Provided proportional hazard

assumptions are met, the results are robust. With results from the Cox PH

model, the coefficients obtained can be used to model and predict the expected

survival of patients with specific values of covariates included in the model. To
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understand this, we will return to the example dataset of 228 stage III lung cancer

patients who underwent surgery. We would like to understand the association of

patient sex and age at surgery with all-cause mortality. For this purpose, we will

fit a Cox PH, including these two covariates in the model.

The Cox PH model is a widely used regression model in survival analysis

to investigate the relationship between subjects’ survival time and predictor

variables.

The Cox PH model assumes that the hazard function for any individual at any

time is the product of an underlying baseline hazard function and an exponential

function of the predictor variables. Mathematically, it can be represented as:

h(t|X) = h0(t)× exp (β1X1 + β2X2 + · · ·+ βpXp), (1)

where h(t|X) is the hazard function at time t given the predictor variablesX. h0(t)

is the baseline hazard function representing the hazard when all predictor variables

are zero. β1, β2, · · · , βp are the regression coefficients associated with the predictor

variables. In the Cox PH model, the baseline hazard function h0(t) is unspecified

and is absorbed into the estimation process, allowing for the comparison of hazard

rates between different groups while remaining agnostic about the shape of the

baseline hazard function.

So, while a distribution’s hazard function is not directly used in the Cox PH

model, the model is based on the proportional hazards assumption, which involves

the hazard function. This gap in functional form motivates this research.

This study aims to develop a new Cox PH model by incorporating the hazard

function of the exponential distribution, altering the classical proportional hazard

function structure but not violating the assumptions of the Cox PH model. It is,

therefore, motivated by the need

1. To utilize the hazard function of the exponential distribution in designing a

parametric Cox PH structure.
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2. To estimate the parametric Cox PH structure parameters using the classical

maximum likelihood estimation.

3. To deploy the parametric Cox PH structure in modelling time to event data.

4. To Compare the parametric Cox PH structure with the classical Cox PH

regression model using the survival data.

2 Material and Methods

We begin this chapter by considering the assumptions and conditions for

implementing the Cox PH model.

1. Independence of survival times between distinct individuals in the sample,

2. A multiplicative relationship between the predictors and the hazard (as

opposed to a linear one as was the case with multiple linear regression

analysis, discussed in more detail below).

3. A constant hazard ratio over time.

4. There is no intercept in the PH model because an intercept can ve absorbed

into the baseline h0(t).

5. The PH assumption states that h(t | xi) = h0(t) exp

(
p∑
j=1

xijβj

)
, where

h0(t) ≥ 0 is an unspecified function known as the baseline hazard function.

It is a hazard function for an individual with features xi1 = · · · = xip = 0.

6. The name PH arises from the fact that the hazard function for an individual

with feature vector xi is some unknown function h0(t) times the factor

exp

(
p∑
j=1

xijβj

)
. The quantity exp

(
p∑
j=1

xijβj

)
is called the relative risk

for the feature vector xi = (xi1, · · · , xip), relative to that for the feature

vector xi = (0, · · · , 0).

http://www.earthlinepublishers.com
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7. There are no tied failure times. In the case of ties, the exact form of

the partial likelihood is more complicated, and a number of computational

approximations must be used.

Parametric models assume a specific distribution of the survival times.

Advantages of a parametric model include a higher efficiency (i.e., greater power),

[19], which can be particularly useful with smaller sample sizes. Furthermore,

various parametric techniques can model survival times when the PH assumption

is unmet.

However, it can be quite challenging to identify the most appropriate data

distribution, and parametric models have the drawback of providing misleading

inferences if the distributional assumptions are unmet. In contrast, the

semi-parametric Cox model is a safe and proven method without specifying a

specific data distribution,36, which is why this model is most common in analyzing

survival data. For a more detailed discussion on parametric models, we refer to

previously published literature on the topic [19,24].

The exponential distribution is one classical distribution popular in the

literature for modelling lifetime data sets. The hazard function of the exponential

distribution is expressed as

h0(t) = λ; (2)

where λ > 0 is the rate or scale parameter independent of the component’s time

to failure in the life testing experiment. In the construction of an improved Cox

PH model, we assume the baseline hazard function h0(t) in eq. 1 is the hazard

function of the exponential distribution represented in eq. 2 and assume it is so

when at least one predictor X is different from zero. That is, βi 6= 0 for at least

one i.

Theorem 1 (Parametric Cox PH model). Let Xi be predictor variables

(covariates) for survival data with coefficients βi, i = 1, 2, · · · , p. Define the

baseline hazard function h0(t) of the Cox PH model as the hazard function of the

exponential distribution that is h0(t) = λ; an improved Cox PH model can be
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constructed as

hI(t|X) = λ× exp (β1X1 + β2X2 + · · ·+ βpXp) (3)

where h0(t) = λ is the baseline hazard function provided not all the predictors are

zeros.

Proof. The proof of theorem 1 easily follows from substituting eq. 2 into eq. 1

Corollary 1.1 (Parameter Estimation using Partial Least Squares). Cox’s

derivation of an estimator of β can be loosely described as follows. Let t1, t2, · · · , tk
represent the unique ordered failure times in the sample of n subjects; assume for

now that there are no tied failure times (tied censoring times are allowed) so that

k = n. Consider the individuals at risk of failing an instant before failure time ti.

This set of individuals is called the risk set at time ti, and we use Ri to denote

this risk set. Ri is the set of subjects j such that the subject had not failed or been

censored by time ti; the risk set Ri includes subjects with failure/censoring time

Yj ≥ ti. The conditional probability that individual i is the one that failed at ti,

given that the subjects in the set Ri are at risk of failing and given further that

exactly one failure occurs at ti, is

Prob {subject i fails at ti | Ri and one failure at ti} =
Prob (subject i fails at ti | Ri)

Prob (one failure at ti | Ri)
(4)

Though the functional form of the baseline hazard function is known, we

cannot simply plug hI(t|X) into the likelihood and then estimate λ, and β =

(β1, β2, · · · , βp)T by maximum likelihood.

We use the same ”sequential in time” logic to estimate the parameters and

derive the Kaplan-Meier survival curve and the log-rank test. Then, the total
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hazard at failure times yi for the at-risk observations is

∑
i′ :y

i
′≥yi

λ exp

 p∑
j=1

xi′jβj

 (5)

Therefore, the probability that the ith observation is the one to fail at time yi (as

opposed to one of the other observations in the risk set is)

λ exp
(∑p

j=1 xijβj

)
∑

i′ :y
i
′≥yi λ exp

(∑p
j=1 xi′jβj

) (6)

The partial likelihood is simply the product of these probabilities over all of the

uncensored observations

PL(β) =
∏
i:δi=1

λ exp
(∑p

j=1 xijβj

)
∑

i′ :y
i
′≥yi λ exp

(∑p
j=1 xi′jβj

) (7)

Critically, the partial likelihood is valid regardless of the time value of h0(t),

making the model flexible and robust. Eq. 7 does not support analytical

manipulation; therefore, any numerical iterations will produce estimates of the

parameters. Eq. 6 can be used to obtain the relative risk function at each failure

time. Suppose the failures occurred at time t = 7, 10 and 12; the relative risk (RR)

can be derived by substituting the time component in eq. 6.

RR7(β) =
λ exp

(∑p
j=1 x7jβj

)
∑

i′ :y
i
′≥yi λ exp

(∑p
j=1 xi′jβj

) , (8)

RR10(β) =
λ exp

(∑p
j=1 x10jβj

)
∑

i′ :y
i
′≥yi λ exp

(∑p
j=1 xi′jβj

) , (9)
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and

RR12(β) =
λ exp

(∑p
j=1 x12jβj

)
∑

i′ :y
i
′≥yi λ exp

(∑p
j=1 xi′jβj

) (10)

In this sense, the partial likelihood will be expressed as PL(β) = RR7(β) ×
RR10(β) × RR12(β). To estimate the parameters here, we simply maximize

the partial likelihood with respect to the parameters. As is the case for logistic

regression, no closed-form solution is available, so iterative algorithms are

required.

In addition to estimating the parameters, we can obtain other model outputs

like those in least squares regression and logistic regression. For example, we can

obtain the p-values corresponding to particular null hypotheses (e.g., H0 : betaj =

0) and estimate the standard errors and confidence intervals associated with the

coefficients.

Suppose that we have just a single predictor (p = 1) with xi ∈ {0, 1}. We

can consider taking two possible approaches to test whether there is a difference

between the survival times of the observation in the two groups.

1. Fit an improved Cox PH model and let the null hypothesis H0 : β = 0 (since

p = 1, β is a scalar).

2. Perform a log-rank test to compare the two groups.

Now, when taking the first approach, there are a number of possible ways to test

H0. One way is known as a score test. In the case of a single binary covariate,

the score test for H0 : β = 0 in the Cox PH model is exactly equal to the log-rank

test.

The area-under-the-curve (AUC) is an appealing method for assessing a fitted

Cox model on a test set. In this method, for each observation, we calculate the

estimated risk score, ŷi = β̂1xi1 + · · ·+ β̂pxip, for i = 1, · · · , n using the estimated

Cox model coefficients. The Harrel’s concordance index or (C-index) computes

http://www.earthlinepublishers.com
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the proportion of observation pairs for which ζ̂
′
i > ζ̂i and yi > yi′ , so that

C =

∑
i,i′ :yi>yi′

I
(
ζ̂
′
i > ζ̂i

)
δi′∑

i,i′ :yi>yi′
δi′

(11)

This is the proportion of pairs for which the model correctly predicts the relative

survival time among all pairs for which this can be determined.

Analogous to comparing groups of continuous data using a t-test or analysis

of variance, the survival curves for 2 or more different groups (e.g., treatments or

prognostic factors) can also be compared with hypothesis testing. Most commonly,

the log-rank test is applied, which tests the null hypothesis that there is no

difference in the probability of an event at any time point [25].

When reporting a log-rank P value comparing Kaplan-Meier curves, the entire

distribution is being tested, not a particular time, such as 5-year survival. The

log-rank test is based on the same assumptions as the Kaplan-Meier survival curve

and makes no explicit assumptions about the distribution of the survival curves.

However, when the survival curves of different groups crossâindicating that 1

group has a more favourable survival in a certain time interval and less favourable

survival in another time intervalâthe power to detect such differences is very

low [25]. Moreover, the log-rank test cannot adjust for other covariates that

might affect survival time. While it can determine whether observed differences

are significant, it cannot estimate the difference between groups [19]. Other

techniques, described below, can be used to address these issues.

To perform this analysis, a survival dataset with survival times and covariates

will be required. Typically, survival datasets include information on the time to

event (survival time), the event indicator (whether the event occurred or not),

and covariates (predictor variables).

Earthline J. Math. Sci. Vol. 14 No. 4 (2024), 747-771
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3 Application

This section deploys the proposed parametric Cox PH model to data on 137 Bone

Marrow Transplant Patients. The data has been studied by [26] and [27].

g —Disease group

1. ALL

2. AML low-risk

3. AML high-risk

T1 —Time (in days) to death or on study time

T2 —Disease-Free survival time (time to relapse, death or end of study)

δ1 —Death indicator

1 —Dead [0] —Alive

δ2 —Relapse indicator

1 —Relapsed [0] —Disease-Free

δ3 —Disease-Free survival indicator

1 —Dead or relapsed [0] —Alive disease-free

TA —Time (in days) to acute graft-versus-host disease

δA —Acute graft-versus-host disease indicator

1 —Developed acute graft-versus-host disease

0 —Never developed acute graft-versus-host disease

TC —Time (in days) to chronic graft-versus-host disease

δC —Chronic graft-versus-host disease indicator

http://www.earthlinepublishers.com
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1 —Developed Chronic graft-versus-host disease

0 —Never developed Chronic graft-versus-host disease

TP —Time (in days) to return of platelets to normal levels

δP —Platelet recovery indicator

1 —Platelets returned to normal levels

0 —Platelets never returned to normal levels

Z1 —Patient age in years

Z2 —Donor age in years

Z3 —Patient sex

1 —Male [0] —Female

Z4 —Donor Sex

1 —Male [0] —Female

Z5 —Patient CMV status

1 —CMV positive [0] —CMV negative

Z6 —Donor CMV status

1 —CMV positive [0] —CMV negative

Z7 —Waiting time to transplant in days

Z8 —FAB

1 —FAB Grade 4 Or 5 and AML [0] —Otherwise

Z9 —Hospital

1 —The Ohio State University [2] —Alfred

Earthline J. Math. Sci. Vol. 14 No. 4 (2024), 747-771
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3 —St. Vincent [2] —Hahnemann

Z10 —MTX used as a graft-versus-host-prophylactic

1 —Yes [0] —No

The results in Tables 1 and 2 reveal that the parametric Cox PH model has

a higher concordance ratio of 0.9810 while the classical Cox PH model has o.7810

concordance ratio. In both model scenarios, the variable Disease-Free survival

indicator did not produce any value. The mean square error of the parametric

Cox PH is lower than that of the classical Cox PH model. More covariates are

significant in the parametric Cox PH model than in the classical Cox PH model.

This tells that the proposed parametric Cox PH model improves the classical Cox

PH model. The confidence interval for both models is seemingly the same.

Kaplan-Meier curves in Figure 1 visually represent survival data over time,

showing the proportion of subjects surviving. Disease group 2 has a higher survival

probability at most time points. The disease group 2 has a steady-state death

rate within the interval of 2300 to 4000 days (median survival time is 2300), while

groups 1 and 2 showed constant death rates from 1300 days (median survival

time is 1300) till the termination of the study. The censored data points were

many in group 2 before the steady-state death occurred and fewer after, while

there were many after the constant death rate in group 3. This is indicated by

the small vertical ticks and shows that the patient left the study or was lost to

follow-up before experiencing the event. The small table below the plot shows

the number of subjects still at risk at various times. This shows that about 137

patients contributed to the survival estimates at the commencement of the study,

54 on the 1000th day, 14 on the 2000th day, and 1 on both the 3000 and 4000th

day. The shaded regions around the survival curve represent confidence intervals

at the 95% level. They indicate the uncertainty around the survival estimates,

which is higher for group 2 and least for group 3. In other words, the confidence

intervals for group 3 are narrower, suggesting more precise survival estimates.

For comparing the three disease groups, the plot includes a p-value from the
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Figure 1: Kaplan-Meier Curve for the 137 Bone Marrow Transplant Patient Data
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Table 1: Parametric COX PH model fitted on 137 Bone Marrow Transplant

Patients Data
covariates β̂j ecoefs e−coefs L-95 U-95 LR Wald p-value con. MSE

g 0.44132 1.50680 0.71083 0.877205 2.28949

1.22974 1.02974

0.16186

0.98101 13.231

T2 -0.01482 0.98528 1.01494 0.98094 0.98965 0.00000

δ2 -2.07528 0.02552 7.96680 0.05391 0.29227 0.00000

δ3 NA NA NA NA NA NA

TA -0.02054 0.98952 1.01059 0.98584 0.99421 0.00000

δA -2.80910 0.08134 12.29380 0.02340 0.28271 0.00008

TC -0.00891 0.99113 1.00895 0.98819 0.99408 0.00000

δC -1.69170 0.18421 5.42869 0.07125 0.47625 0.00048

TP -0.00282 0.99718 1.00283 0.99285 1.00153 0.20345

δP -0.17990 0.83536 1.19710 0.25500 2.73649 0.76635

Z1 0.04751 1.01766 0.98264 0.95681 1.08238 0.57783

Z2 0.01470 1.01481 0.98541 0.96104 1.07158 0.59664

Z3 -0.01917 0.99087 1.00921 0.54709 1.79465 0.00586

Z4 -0.17895 0.83698 1.19477 0.43096 1.72553 0.00928

Z5 0.09902 1.10409 0.90573 0.49699 2.45276 0.00790

Z6 -0.46149 0.63034 1.58644 0.33376 1.19049 0.00588

Z7 0.00029 1.00029 0.99971 0.99924 1.00134 0.00877

Z8 -0.08159 0.93091 1.07422 0.40865 2.12062 0.00466

Z9 -0.64225 0.53140 1.88184 0.33364 0.84636 0.00776

Z10 1.09666 2.99616 0.33398 1.04067 8.61462 0.03196

log-rank test, assessing whether the differences between the survival curves are

statistically significant. With a p-value of 0.00059, the differences between the

curves are significant.
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Table 2: Classical COX PH model fitted on 137 Bone Marrow Transplant Patients

Data
covariates β̂j ecoefs e−coefs L-95 U-95 LR Wald p-value con. MSE

g 0.3413 1.4068 0.7108 0.8720 2.2695

3.0297 3.0297

0.1619

0.7810 17.6610

T2 -0.0148 0.9853 1.0149 0.9809 0.9897 0.0000

δ2 -2.0753 0.1255 7.9668 0.0539 0.2923 0.0000

δ3 NA NA NA NA NA NA

TA -0.0105 0.9895 1.0106 0.9858 0.9932 0.0000

δA -2.5091 0.0813 12.2938 0.0234 0.2827 0.0001

TC -0.0089 0.9911 1.0089 0.9882 0.9941 0.0000

δC -1.6917 0.1842 5.4287 0.0712 0.4763 0.0005

TP -0.0028 0.9972 1.0028 0.9928 1.0015 0.2034

δP -0.1799 0.8354 1.1971 0.2550 2.7365 0.7663

Z1 0.0175 1.0177 0.9826 0.9568 1.0824 0.5778

Z2 0.0147 1.0148 0.9854 0.9610 1.0716 0.5966

Z3 -0.0092 0.9909 1.0092 0.5471 1.7946 0.9759

Z4 -0.1779 0.8370 1.1948 0.4310 1.6255 0.5993

Z5 0.0990 1.1041 0.9057 0.4970 2.4528 0.8079

Z6 -0.4615 0.6303 1.5864 0.3338 1.1905 0.1549

Z7 0.0003 1.0003 0.9997 0.9992 1.0013 0.5877

Z8 -0.0716 0.9309 1.0742 0.4087 2.1206 0.8647

Z9 -0.6322 0.5314 1.8818 0.3336 0.8464 0.0078

Z10 1.0967 2.9942 0.3340 1.0407 8.6146 0.0420

4 Conclusion and Remarks for Future Studies

Survival analysis has become integral to clinical studies, especially in emerging

diseases and terminal ailments. This study focused on improving the popular

Cox PH model. The new method developed is a parametric type, incorporating

the hazard rate of the exponential distribution. It was noted that though the

functional form of the Cox PH model was altered, the assumptions were upheld.

Additionally, the new model parameters were estimated using the same maximum

partial likelihood as the Cox model. Data on the survival times of 137 patients who

underwent bone marrow transplants were deployed, and the proposed parametric

Cox PH model proved superior to the Cox PH model. It is clear that the
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parametric Cox PH model outperformed the classical Cox model. However, a

number of things can be further established;

1. Because the assumptions of the Cox PH model were not violated in this

study, given that the exponential distribution has a constant hazard rate,

it is therefore recommended that other choices of non-constant hazard rate

functions be made and deployed in the classical Cox PH model to attain

some variant parametric Cox PH models.

2. Further studies can explore various estimation procedures for models that

violate the assumptions of the Cox PH model.

3. It has been shown in the literature that standardized variables are more

mathematically tractable than non-standardized scores. Therefore, any

future proposed variant of this parametric Cox PH model should use

standardized covariates.
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