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Abstract

In this paper we consider a class of second order singular homogeneous
differential equations called the Lane-Emden-type with time singularity in the
drift coefficient. Lane-Emden equations are singular initial value problems
that model phenomena in astrophysics such as stellar structure and are
governed by polytropics with applications in isothermal gas spheres. A hybrid
method that combines two simple methods; Euler’s method and shooting
method, is proposed to approximate the solution of this type of dynamic
equations. We adopt the shooting method to reduce the boundary value
problem, then we apply Euler’s algorithm to the resulted initial value problem
to get approximations for the solution of the Lane-Emden equation. Finally,
numerical examples and simulation are provided to show the validity and
efficiency of the proposed technique, as well as the convergence and error
estimation are analyzed.

1 Introduction

Laplace’s equation and Poisson’s equation are important examples of elliptic
partial differential equations which used broadly in applied mathematics and
theoretical physics, see, e.g., [22]. For instance, Poisson’s equation used to
calculate gravitational field in potential theory and can be seen as generalization of
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Laplace’s equation. By removing or reducing dimensions from Poisson’s equation,
we obtain a second-order nonlinear differential equation called Lane-Emden-type
equation (LE, for short). The Lane-Emden equation (a.k.a. polytropic dynamic
equation) is one of the well studied classical dynamical systems that has
many applications in nonlinear mathematical physics and non-Newtonian fluid
mechanics (see, for instance, [2, 3, 6, 10, 11, 21, 26]). A preliminary study on the
LE equations (polytropic and isothermal) was undertaken by astrophysicists Lane
(1870) and Emden (1907), such that the interest of the LE derived from its
nonlinearity and singular behavior at the origin. The point x0 is called ordinary
point (or regular point) of the dynamic equation (2) if the coefficients of x, x′

are analytic in an interval about x0. Otherwise, it is called singular point. In
solving singular boundary value problems (BVPs) some numerical techniques are
based on the idea of replacing a two-point BVP by two suitable initial value
problem [14,21,25]. In this paper we adopt such idea (called the shooting method)
to study dynamical models that play an essential role in the theory of star structure
and evolutions, thermodynamics, and astrophysics (see, e.g., [9]). Equation (1)
describes and models the mechanical structure of a spherical body of gas such as
a self-gravitating star and also appeared in the study of stellar dynamics (see, for
instance [8, 11] and the references therein). The solutions to the LE, which are
known as polytropes, are functions of density versus the radius expressed by x(t)

in (2). The index n determines the order of that solution. Nonlinear singular LE
equations can be formulated as

1

t2
d

dt
(t2
dx

dt
) + xn = 0 (1)

or,

x′′(t) +
2

t
x′(t) + [x(t)]n = 0, n ≥ 0 (2)

subject to
x(0) = 1 , x′(0) = 0.

The dynamical system model (2) along with initial conditions form a special type
of initial value problems (IVP) for which it has several applications in the fields of
celestial mechanics, quantum physics and astrophysics [6,10,14,26]. The following
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figure is a motivation example shows finite solutions of Lane-Emden equation for
the value of n in equation (1) or (2) given by n = 0, 1, 2, 3, 4, 5, 6.

For some special cases when n = 0, 1, 5 exact analytical solutions were obtained
by Chandrasekhar [8], while for all other values of n approximate analytical
methods were obtained such as: the Adomian decomposition method [20, 27],
homotopy analysis method [5], power series expansions [16], variational method
[13], and linearization techniques [23] (provide accurate closed-form solutions
around the singularity.). Numerical discretization for equation (1) has been the
object of several studies in the last decades (see, e.g., [1–3, 6, 10, 21, 25, 26] and
the references therein). In [16], the authors presented numerical method for
solving singular IVPs by converting Lane-Emden-type equation (1) to an integral
operator form then rewriting the acquired Voltera integral equation in terms
of a power series. Ramos [23] applied linearization method for the numerical
solution of singular initial value problems of linear and nonlinear, homogeneous
and nonhomogeneous second-order dynamic equations. Russell and Shampine
in [25] discussed the solution of the singular nonlinear BVP for certain dynamical
systems in the context of analytical geometry and symmetry as follows

x′′(t) +
k

t
x′(t) + g(t, x) = 0, where k = 0, 1, 2, (3)
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and with boundary conditions x′(0) = 0 (or equivalently x(0) is finite), x(b) = λ,

for some scalar λ, and the convergence is uniform over the interval [0, 1]. Biles et
al. in [6], have considered an initial value problem for Lane-Emden type of the
form

x′′(t) + p(t)x′(t) + q(t, x(t)) = 0, t > 0 with x(0) = a, x′(0) = 0 (4)

where a ∈ R and p(t) may be singular at t = 0. They introduced the following
definition and theorem, respectively; where the theorem gives the conditions of
existence and uniqueness of solution of second-order linear BVPs.

Definition 1.1 ( [6]). x is a solution of the above equation (4) if and only if there
exist some T > 0, such that x, x′ are absolutely continuous on [0,T].

Theorem 1.1 ( [6]). Suppose in the above equation (4) p is measurable on [0,1],
non-negative on (0,1] and

∫ 1
0 sp(s)ds is finite, and q is bounded. Specifically,

suppose there exist α, β with α < a < β and K > 0 such that:

i. for each t ∈ [0, 1], q ∈ C
(
[α, β]

)
; and q is Lipschitz in y on [α, β]

ii. for each x ∈ [α, β], q is measurable on [0,1]; and

iii. sup
(t,x)∈[0,1]×[α,β]

|q(t, x)| ≤ K.

iv. Suppose that q is Lipschitz in y on [α, β]. Then equation (4) has a unique
solution.

Our paper is organized in the following fashion. In Section 2, we provide
some necessary notations and essential background. In Section 3 we present the
second-order dynamical system of Lane-Emden type, and the BVP is transformed
to IVP by shooting method. Then applying Euler’s method on the resulted initial
value problem to get approximations for the solution of the LE. The convergence
results and error estimation are analyzed in Section 4. Finally, numerical examples
are provided to demonstrate the validity and efficiency of the proposed technique.
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2 Preliminaries

In this section we introduce some basic definitions and conventional notations.
Let C1(I) be the space of all continuously differentiable functions defined on an
interval I. A set D in the Euclidean space Rn is compact set if and only if it is
closed and bounded set. The basic space used throughout this paper is the space
of continuous functions C[0, 1] on the compact set [0, 1] with the associated norm
(distance) function defined by,

‖x‖ = max
0≤t≤1

|x(t)|.

Define a continuous function f : D → Rn where D is an open subset of Rn+1, and
consider the dynamical system

ẋ(t) = f(t, x) , x(t0) = x0. (5)

Given (t0, x0) ∈ D, a continuous function x(t) in an open interval (a, b) containing
t0 is a solution of the IVP (5) if and only if

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds

for every t ∈ (a, b). Conventionally, most of dynamic evolution equations of this
type (5) arising in application-driven aspects cannot be solved algebraically or
exactly, but they can be investigated qualitatively without knowing the exact
solutions. As we know, qualitative approaches are not very accurate, hence, an
approximate solution (more accurate) of this dynamic equation (5) can be obtained
by successive approximations methods. We say f is differentiable function if its
graph Gph f := {(t, x(t)); t ∈ (a, b)} has a slope defined at every point t in the
interval (a, b).

Definition 2.1. Let D be a nonempty set. Suppose there is a function f from D

to itself, and 0 ≤ L < 1, where L is free of x and y. If for any two points x, y ∈ D
we have

|f(x)− f(y)| ≤ L|x− y| , ∀ x, y ∈ D,
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then f is called a contraction. The smallest such value of L is called the Lipschitz
constant of f , and f is then called a Lipschitz function.

Definition 2.2. A function f : D ⊂ Rn+1 → Rn is said to be locally Lipschitz in
x if for each compact set contained in D, and each x, y ∈ D, there exists L > 0

such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖.

In particular, all C1 functions are locally Lipschitz. The following two theorems
address existence and uniquness of solutions to any IVP.

Definition 2.3. A sequence xn(t) of functions in C[a, b] converges uniformly to a
function x(t) ∈ C[a, b] if and only if lim

n→∞
‖xn − x‖ = 0.

Theorem 2.1. (Picard-Lindelof theorem). If the function f : D → Rn is
continuous and locally Lipschitz in x in an open set D ⊂ Rn+1, then for each
(t0, x0) ∈ D there exists a unique solution of the initial value problem in some
open interval containing t0.

Theorem 2.2 ( [7]). Assume â(t, x(t), x′(t)) ∈ C([0, 1]× R× R) and â, ∂â∂x ,
∂â
∂x′ ∈

C([0, 1]×R×R). If ∂â∂x > 0 and there existM > 0 such that
∣∣ ∂â
∂x′

∣∣ < M, ∀(t, x, x′) ∈
[0, 1]× R× R, then the BVP

d2x

dt2
= â(t, x, x′) (6)

with

x(0) = α, x(1) = β,

has a unique solution x = x(t).

To better understand the theorem we illustrate it by giving an example on the
interval [1, 2] instead of [0, 1]: Consider the BVP,

x′′(t) + sinx′ + e−tx = 0
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with x(1) = x(2) = 0 and t ∈ [1, 2]. Now apply the theorem to

x′′(t) = − sinx′ − e−tx = â(t, x, x′).

Since q(t, x(t)) = ∂â
∂x = te−tx > 0, ∀t > 0, and

∣∣p(t) = ∂â
∂x′

∣∣ = |− cosx′| ≤ 1 = M ,
then the condition is satisfied and the BVP has a unique solution. Now reader
might ask how can we apply this Theorem to Lane-Emden equation. Theorem
2.2 can be simplified by taking into account that the functions sinx′

x′ and e−tx are
continuous on the interval (0,∞) to assure the differential equation is linear.

3 Computational Methods for Dynamical Systems

In this section, we start by presenting the methods (shooting to transform from
BVP to IVP, and Euler’s for regular singularity in the drift term) and apply them
on the second order singular dynamical system.

3.1 Shooting method

The shooting method treats the two-point BVP as an IVP. The idea basically,
is to write the BVP in a vector form and begin the solution at one end of
the BVP, and then "shooting" to the other end with any IVP solver, such as;
Runge-Kutta method or multistep method for linear case and Secant method or
Newton’s method for nonlinear case, until the boundary condition at the other end
converges to its correct value. To be precise, the ordinary differential equation of
second order, associated with its initial conditions must normally be written as
a system of first order equation before it can be solved by standard numerical
methods. Next figure shows graphically the mechanism of the shooting.

Earthline J. Math. Sci. Vol. 14 No. 4 (2024), 721-746
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Roughly speaking, we ‘shoot’ out trajectories in different directions until we find
a trajectory that has the desired boundary value. The drawback of the method
is that it is not as robust as those used to solve BVPs such as finite difference or
collocation methods presented in [1,25], and there is no guarantee of convergence.
Shooting method can be used widely for solving a BVP by reducing it to an
associated IVP, and is valid for both linear (also called chasing method) and non
linear BVPs, by [18],

d2x

dt2
= â(t, x(t), x′(t)), x(t0) = x0, x(t1) = x1. (7)

Next theorem provides existence and uniqueness to the BVP’s solution.

Theorem 3.1. Define a set D := {(t, x, x′) ∈ [a, b] × R × R}, and assume f is
continuous function on D such that it satisfies the BVP:

x′′(t) = f(t, x, x′)

x(a) = α

x′(b) = β.

(8)

Suppose that fx and fx′ are continuous on the same set D. If
(i) fx(t, x, x′) > 0 for all values, and
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(ii) There exists M > 0 such that

|fx′(t, x, x′)| ≤M, ∀(t, x, x′) ∈ D

then the BVP (8) has a unique solution.

A special case of this theorem is the following corollary, i.e., when the right
hand side of (8) is linear. For linear Lane-Emden equations, one can use Frobenius
method to determine the analytical solutions of (1) near the singularity, see, for
instance, [23].

Corollary 3.2. Consider (8) given by

x′′(t) = p(t)x′ + q(t)x+ r(t), (9)

and the time-dependent coefficients p(t), q(t), r(t) are continuous functions on
the domain [a, b] and further q(t) > 0, then the BVP (8) has a unique solution.

Proof. We need to consider two cases: (i)When equation (9) given with boundary
conditions x(a) = α, x′(a) = 0, has a unique solution x1(t). (ii) When equation
(9) with r(t) = 0, x(a) = 0, x′(a) = 1, has a unique solution x2(t). Therefore,

one can easily check that the linear combination x̂(t) = x1(t) +
α− x1(b)
x2(b)

x2(t) is

the unique solution to (9), and hence to (8) due to the existence and uniqueness
guaranteed by Picard-Lindelof theorem (2.1).

3.2 Euler’s Method

Euler’s method is a numerical approach for solving (iteratively) initial value
problems, as follows: We divide the time interval [t0, T ] into N equal subintervals,
each of length h = ∆t = tn+1 − tn, for n ≥ 0, and start by initial value x(0) then
move forward using the step size towards x(T ), that is, given the second-order
ordinary differential equation (7), converting it into two first-order dynamic
equations (i.e., dynamical system). Discretize the interval [t0, T ] into subintervals,
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and by assuming yn the approximation to x(tn) and vn the approximation to u(tn).

Euler’s method is then can be expanded, as a two-terms truncated Taylor series,
by the following Euler’s method for solving a second-order differential equation is
given by:

Forward Euler’s Algorithm.

Step 0. (Initialization): Take

t0, x0 ∈ R, and step size h =
T − t0
N

, n ≥ 0.

Step 1. (Forward step): Given tn , yn , vn define

tn+1 = tn + h,

yn+1 = yn + h · vn,

vn+1 = vn + h · â(tn, yn, vn),

Stopping Criterion: If vn+1 = vn then stop.

The local error at every step is proportional to the square of the step size h
and the global error at a given time is proportional to h. Moreover, the order
of the global error can be calculated from the order of the local error ( i.e. by
summing up the local error). We can understand Euler’s method by appealing
the idea that some differential equations provide us with the slope at all points
of the function , while an initial value provides a point on the function. Using
this information we can approximate the function with a tangent line at the initial
point. It is known that the tangent line is only a good approximation over a small
interval. When moving to a new point, we can construct an approximate tangent
line, using the actual slope of the function, and an approximation to the value
of the function at the tangency point. Repeating this manner, we eventually
construct a piecewise-linear approximation to the solution of the differential
equation. Moreover, this approximation can be seen as a discrete function and
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to make it a continuous function, we interpolate (linearly) between each pair of
these points.

In the following, we study and analyse the Lane-Emden-type equation with an
endpoint singularity in terms of the independent variable which has the form

d2x

dt2
=
−a(t, x)

1− t
dx

dt
+ g(t, x) = â(t, x, x′), (10)

where â(t, x(t), x′(t)) : [0, 1) × R × R → R, and the Lipschitz functions

a(t, x), g(t, x) ∈ C1([0, 1) × R), for all 0 ≤ t < 1. At t = 1, the
−a(t, x)

1− t
term

is singular, but symmetry implies the boundary condition x′(0) = 0. With this

boundary condition, the term
−a(t, x)

1− t
dx

dt
is well defined as t → 1. The solution

of (10) can be given by the system:

dx′ = â(t, x(t), x′(t))dt

dx = x′dt.
(11)

Define xt := x(t), x′t := x′(t). By the fundamental theorem of calculus and
provided that all integrals are exist (finite), we notice that equation (11) is
equivalent to the nonlinear system of integral equations:

x′t = x′tn +

∫ t

tn

â(s, xs, x
′
s) ds

xt = xtn +

∫ t

tn

x′s ds,

(12)

where
0 = t0 < t1 < t2 < ... < 1.

Expanding the integrands in (12) so we have:

x′t = x′tn +

∫ t

tn

[
â(tn, xtn , x

′
tn) +

∫ s

tn

[∂â
∂t

(u, xu, x
′
u)

+
∂â

∂x
(u, xu, x

′
u)x′u +

∂â

∂x′
(u, xu, x

′
u)â(u, xu, x

′
u)
]
du
]
ds

xt = xtn +

∫ t

tn

[
x′tn +

∫ s

tn

â(u, xu, x
′
u)du

]
ds.
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Or in the equivalent form,

x′t = x′tn + â(tn, x(tn), x′(tn))(t− tn)

+

∫ t

tn

∫ s

tn

(
∂â

∂t
+
∂â

∂x
x′u +

∂â

∂x′
â)(u, xu, x

′
u) du ds

xt = xtn + x′tn(t− tn) +

∫ t

tn

∫ s

tn

â(u, xu, x
′
u) du ds.

For simplicity we assume

L(1)
n =

∫ t

tn

∫ s

tn

(∂â
∂t

+
∂â

∂x
x′u +

∂â

∂x′
â)(u, xu, x

′
u) du ds,

L(2)
n =

∫ t

tn

∫ s

tn

â(u, xu, x
′
u) du ds.

Thus the system becomes,

x′tn+1
= x′tn + â(tn, x(tn), x′(tn))(hn+1) + L(1)

n

xtn+1 = xtn + x′tnhn+1 + L(2)
n ,

(13)

where hn+1 = tn+1 − tn.

In order to estimate the error, we need to find a bound for the integrands in
L
(1)
n and L

(2)
n . The double integrals in both L(1), L(2) yield the local truncation

error, if we define the numerical value by:

y′n+1 = y′n + â(tn, yn, y
′
n)hn+1

yn+1 = yn + y′nhn+1.
(14)

where hn+1 = tn+1 − tn.

4 Discretization and Convergence Analysis

Consider a sequences of times 0 = t0 < t1 < t2 < ... < 1, and the corresponding
step sizes hn = tn − tn−1. Define xn = x(tn) and x′n = x′(tn) where (x(t), x′(t)) is
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a solution of (5). Writing (8) in the form:

x′n+1 = x′n + â(tn, xn, x
′
n)(hn+1) + L(1)

n

xn+1 = xn + x′nhn+1 + L(2)
n .

(15)

Use yn as defined in (9) and let εi = xi − yi , ε′i = x′i(t)− y′i(t),∀i. So we have

ε′n+1 = ε′n +
[
â(tn, xn, x

′
n)− â(tn, yn, y

′
n)
]
(hn+1) + L(1)

n

εn+1 = εn + ε′nhn+1 + L(2)
n .

By using the inequality (x+ y)2 ≤ 2x2 + 2y2, the error can be estimated as,

(ε′n+1)
2 ≤ (ε′n)2 + 2

[
â(tn, xn, x

′
n)− â(tn, yn, y

′
n)
]2

(hn+1)
2 + 2(L(1)

n )2

+2ε′n

(
â(tn, xn, x

′
n)− â(tn, yn, y

′
n)
)
hn+1 + 2ε′nL

(1)
n

(εn+1)
2 ≤ (εn)2 + 2(ε′n)2(hn+1)

2 + 2(L(2)
n )2 + 2εnε

′
nhn+1 + 2εnL

(2)
n .

(16)

Next, we introduce some assumptions on the functions a(t, x(t)), g(t, x(t)) and
their partial derivatives for t ∈ [0, 1), x ∈ R . But before that we remind ourselves
of the value of â from Section 3,

â(t, x(t), x′(t)) =
−a(t, x(t))

1− t
dx

dt
+ g(t, x(t)).

Also, for any T1, T2 ∈ [0, 1) the Lipschitz conditions are:

|a(t, x)− a(t, y)| ≤ T1|x− y| , |g(t, x)− g(t, y)| ≤ T2|x− y|.

Our required bounds explicitly are:

|a(t, x(t))| ≤ C0 , |g(t, x(t))| ≤ C3.

Earthline J. Math. Sci. Vol. 14 No. 4 (2024), 721-746
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The partial derivatives bounds are:∣∣∣∂a
∂t

(t, x(t))
∣∣∣ = |a1(t, x(t))| ≤ C1, (17a)∣∣∣∂a

∂x
(t, x(t))

∣∣∣ = |a2(t, x(t))| ≤ C2, (17b)∣∣∣∂g
∂t

(t, x(t))
∣∣∣ = |g1(t, x(t))| ≤ C4, (17c)∣∣∣∂g

∂x
(t, x(t))

∣∣∣ = |g2(t, x(t))| ≤ C5. (17d)

This final bound applies along the path

|x′(t)| ≤ A1.

Taking the difference between the computed and the exact values of â,∣∣â(t, x, x′)− â(t, y, y′)
∣∣ =

∣∣∣−a(t, x)

1− t
x′ + g(t, x) +

a(t, y)

1− t
y′ − g(t, y)

∣∣∣
≤
∣∣∣∣a(t, y)y′ − a(t, x)x′

1− t

∣∣∣∣+
∣∣∣g(t, x)− g(t, y)

∣∣∣. (18)

By adding and subtracting the required terms, we have∣∣a(t, y)y′ − a(t, x)x′
∣∣ =

∣∣a(t, x)(y′ − x′) + x′(a(t, y)− a(t, x)) + (a(t, y)− a(t, x))(y′ − x′)
∣∣

≤ C0 |y′ − x′|+A1T1 |y − x|+ T1 |y − x|.|y′ − x′|.

Thus, the difference (18) becomes,

|â(tn, xn, x
′
n)− â(tn, yn, y

′
n)| ≤ C0|ε′n|

1− t
+
A1T1|εn|

1− t
+
T1|εn| |ε′n|

1− t
+ T2|εn|.

Note that,

∂â

∂t
= â1(t, x, x

′)

=
−a1(t, x)x′

1− t
− a(t, x)x′

(1− t)2
+ g1(t, x),

∂â

∂x
x′ =

−a2(t, x)

1− t
(x′)2 + g2(t, x)x′,

∂â

∂x′
â =

a2(t, x)

(1− t)2
x′ − a(t, x)g(t, x)

1− t
.
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We now apply a very well known result from functional analysis, Cauchy-Schwarz
inequality twice on L(1)andL(2) :

(
L
(1)
N

)2
=

(∫ tn+1

tn

∫ t

tn

(
∂â

∂t
+
∂â

∂x
x′ +

∂â

∂x′
â) ds dt

)2

≤ h2n+1

∫ tn+1

tn

∫ t

tn

(∂â
∂t

+
∂â

∂x
x′ +

∂â

∂x′
â
)2
ds dt

≤ h2n+1

∫ tn+1

tn

∫ t

tn

[
3
(∂â
∂t

)2
+ 3
(∂â
∂x
x′
)2

+ 3
( ∂â
∂x′

â
)2]

ds dt

≤ 3h2n+1

∫ tn+1

tn

∫ t

tn

(
3C2

1A
2
1

(1− t)2
+

3C2
0A

2
1

(1− t)4
+ 3C2

4

+
2C2

2A
4
1

(1− t)2
+ 2C2

5A
2
1 + 2

C4
0A

2
1

(1− t)4
+ 2

C2
0C

2
3

(1− t)2

)
ds dt

≤ D1
h4n+1

(1− tn+1)4
,

for some Constant D1, which does not depend on hn+1 and n.

(
L
(2)
N

)2
=

(∫ tn+1

tn

∫ t

tn

(
−a(t, x)

1− s
+ g(t, x)) ds dt

)2

≤ h2n+1

∫ tn+1

tn

∫ t

tn

(−a(t, x)

1− s
+ g(t, x)

)2
ds dt

≤ h2n+1

∫ tn+1

tn

∫ t

tn

2
a2(t, x)

(1− s)2
ds dt + h2n+1

∫ tn+1

tn

∫ t

tn

2g2(t, x) ds dt

≤ 2h2n+1

(∫ tn+1

tn

∫ t

tn

C2
0

(1− s)2
ds dt +

∫ tn+1

tn

∫ t

tn

C2
3 ds dt

)
= 2h2n+1

(
C2
0

∫ tn+1

tn

−1

1− s
dt+ C2

3

∫ tn+1

tn

(t− tn) dt
)

≤
2h4n+1C

2
0

(1− tn+1)2
+
C2
3

2
h4n+1

≤ D2
h4n+1

(1− tn+1)2
,

where D2 is independent of n and hn+1.
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To avoid the singularity and produce a better estimation to test the efficiency
of the algorithm, we introduce a variable step size by fixing ĥ > 0 and then defining
step size hn and node points tn using ĥ:

ĥ =
hn+1

1− tn+1

or,

tn+1 = tn + ĥ(1− tn+1). (19)

In the process of estimating the global error, we need to use the following two
fundamental lemmas:

Lemma 4.1. For all x ≥ −1, and any m > 0, we have 0 ≤ (1 + x)m ≤ emx.

The proof of this result follows by applying Taylor’s theorem with f(x) =

ex, x0 = 0, and n = 1.

Lemma 4.2. If M1 ≥ −1 and M2 ≥ 0 are real numbers and {an}Nn=0 is a sequence
with a0 ≥ 0 such that

an+1 ≤ (1 +M1)an +M2, ∀n = 0, 1, 2, . . . , N − 1, (20)

then,

an+1 ≤ e(N+1)M1

(
M2

M1
+ a0

)
− M2

M1
, ∀n = 0, 1, 2, . . . , N − 1. (21)
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Proof. Fix a positive integer n, then (20) can be written as

an+1 ≤ (1 +M1)an +M2

≤ (1 +M1)
[
(1 +M1)an−1 +M2

]
an +M2

...

≤ (1 +M1)
n+1a0 +

[
1 + (1 +M1) + (1 +M1)

2 + · · ·+ (1 +M1)
n
]
M2

≤ (1 +M1)
n+1a0 +

[ n∑
j=0

(1 +M1)
j
]
M2

≤ (1 +M1)
n+1a0 +

[1− (1 +M1)
n+1

1− (1 +M1)

]
M2 (sum of geometric series)

≤ (1 +M1)
n+1a0 +

[
(1 +M1)

n+1 − 1
]M2

M1

≤ (1 +M1)
n+1
(
a0 +

M2

M1

)
− M2

M1
.

By Lemma 4.1, equation (21) follows, i.e.,

an+1 ≤ e(1+N)M1

(
a0 +

M2

M1

)
− M2

M1
.

Now if we add the two inequalities in (11) together, we will have

(ε′n+1)
2 + (εn+1)

2

≤ (ε′n)2 + (εn)2 + 2h2n+1(ε
′
n)2 + 2

[
â(tn, xn, x

′
n)− â(tn, yn, y

′
n)
]2
h2n+1

+ 2(L(1)
n )2 + 2(L(2)

n )2 + 2εnε
′
nhn+1 + 2εnL

(2)
n

+ 2ε′n

((
â(tn, xn, x

′
n)− â(tn, yn, y

′
n)
)
hn+1 + L(1)

n

)

≤ (ε′n)2 + (εn)2 + 2h2n+1(ε
′
n)2 + 8C2

0 (ε′n)2
( hn+1

1− tn+1

)2
+ 8A2

1T
2
1 ε

2
n

( hn+1

1− tn+1

)2
+ 8T 2

1 ε
2
n(ε′n)2

( hn+1

1− tn+1

)2
+ 8T 2

2 ε
2
nh

2
n+1

+ 2D1

( hn+1

1− tn+1

)4
+ 2D2

( hn+1

1− tn+1

)2
h2n+1 + 2εnε

′
nhn+1
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+ 2ε′n
√
D1

( hn+1

1− tn+1

)2
+ 2εn

√
D2

( hn+1

1− tn+1

)
hn+1

+ 2(ε′n)2C0

( hn+1

1− tn+1

)
+ 2A1T1εnε

′
n

( hn+1

1− tn+1

)
+ 2T1εn(ε′n)2

( hn+1

1− tn+1

)
+ 2T2εnε

′
nhn+1

≤
[
K1h

2
n+1 +K2

( hn+1

1− tn+1

)2
+ hn+1 +K3

( hn+1

1− tn+1

)]
||εn||2

+ 2D1

( hn+1

1− tn+1

)4
+ 2D2

( hn+1

1− tn+1

)4
+K4εn(ε′n)2

( hn+1

1− tn+1

)
+ 2
( hn+1

1− tn+1

)2[√
D1 +

√
D2

]√
(ε′n)2 + (εn)2 +K2

5ε
2
n(ε′n)2

( hn+1

1− tn+1

)2
.

(22)

Using the definition of the norm ‖εn‖ =
√

(ε′n)2 + (εn)2 , then system (13) can be
simplified as

(ε′n+1)
2 + (εn+1)

2 ≤ (ε′n)2 + (εn)2 +m1(ĥ)
[
(ε′n)2 + (εn)2

]
+m2(ĥ)3,

where m1 and m2 are independent constants of hn+1 and tn+1. Now we apply
Lemma 4.2 for an = ‖εn‖2, followed by a foundation for the step size order, with
M1 = 1 +m1(ĥ) and M2 = m2(ĥ)3 such that if

‖εn+1‖2 ≤ ‖εn‖2 +M1‖εn‖2 +M2 = (1 +M1)‖εn‖2 +M2,

then we have

‖εn+1‖2 ≤ eNM1

(M2

M1
+ ‖ε0‖2

)
− M2

M1
= (eNM1 − 1)

M2

M1
. (23)

The following theorem can assur the variable step size and the uniform convergence
for solutions of the method.

Theorem 4.3. Given that the singular boundary value problem in (10) satisfies
the upper bounds assumption in (17a)-(17d), then the successive approximation
(14) with variable step sizes (19) as ĥ → 0, has O((ĥ)2), converges uniformly in
n for tn < 1 − δ < 1, and thus the global pointwise error for the above proposed
algorithm is of order O(ĥ).
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Proof. If we have N steps, (19) gives (1−ĥ)N = δ, and thus N =
ln δ

ĥ
=
− ln δ

ln(1− ĥ)
,

whenever h∗ → 0. Then by using Lemma 4.2 on (23), we have

‖εn‖2 ≤
[
e

(
−N
(
1+m1(ĥ)

))
− 1

]
m2(ĥ)3

1 +m1(ĥ)

≤ D

δm1
(ĥ)2,

where D and M1 are constants that do not depend on n, ĥ or δ.

5 Simulation and Numerical Experiments

In this section we run the algorithm over some examples to show the validity
of the method. We used MATLAB with bulit-in functions such as; ode45 and
EulerSolver

Example 5.1. Consider the second order differential equation (10) with a(t, x) =

sinx, and g(t, x) = x5, where the step size is 0.05 and time interval [0, 1] along
with initial conditions x(0) = 0, x′(0) = 2; i.e.,

d2x

dt2
=
− sinx

1− t
dx

dt
+ x5

Table 1 compares the two dependent solutions x(t) and x′(t) for equation (10)
given the above numerical values, and figures below draw the relationships between
trajectories of the differential equation and the time.

Time 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x(t) 0 0.2005 0.4055 0.62081 0.85335 1.1111 1.3984 1.7017 1.957 2.0312 1.7276
x′(t) 2 2.0105 2.0682 2.186 2.3787 2.6495 2.9446 3.026 2.293 0.09581 -4.4824

Table 1: the solutions x, x′ for Lane-Emden equation with time interval [0, 1].

The analytical solution to this problem is somewhat lower than our
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approximation. By shrinking the size of the interval ∆t, we could calculate a
more accurate estimate.

Example 5.2. Consider equation (10) with a(t, x) = tx, and g(t, x) = x3, where
the step size is ∆t = 0.1 and same time interval [0, 1] along with initial conditions
x(0) = 0, x′(0) = 2; i.e.,

d2x

dt2
=

tx

1− t
dx

dt
+ x3
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Example 5.3. Consider a constant function a(t, x) = 3 in Lane-Emden equation
(10) with g(t, x) = etx, where the step size is ∆t = 0.05 and the time interval is
[0, 2] along with initial conditions given as, x(0) = 0, x′(0) = 2; i.e.,

d2x

dt2
=

3

1− t
dx

dt
− etx.

Example 5.4. Consider the second-order dynamic equation (10) with a(t, x) =

2t, and g(t, x) = tx2, where the step size is 0.01 (which can enlarged to help
decrease the error estimates) and time interval [0, 1] along with initial conditions
x(0) = 0, x′(0) = 1; i.e.,

d2x

dt2
=

2t

1− t
dx

dt
+ tx2.
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Example 5.5. In this example we consider the non-autonomous inhomogeneous
second order system with the right-hand side being t3e2t, a(t, x) = 4, and g(t, x) =

4x, where the step size is 0.01 and along with initial conditions x(0) = 0, x′(0) =

0; with the absence of singularity. The graphs shown below and the tables as well.

Figure 1: Comparison
between approximated
solution by Euler’s
method and the actual
solution for the equation
x′′ + 4x′ + 4x = t3e2t.

t x y(Euler) y(exact) Absolute error
0 0.500000 0.550000 0.588250 0.03825
0.2 0.618326 0.642485 0.662213 0.019728
0.4 0.678516 0.692098 0.703465 0.011367
0.3 0.712985 0.720934 0.727519 0.006585
0.4 0.732901 0.737205 0.740529 0.003324
0.6 0.742951 0.744533 0.745325 0.000792
0.8 0.745363 0.744600 0.743002 0.001598
1.0 0.500000 0.425000 0.367225 0.057775
1.2 0.321304 0.283689 0.251965 0.031724
1.4 0.224446 0.199932 0.177544 0.022388
1.6 0.156632 0.136705 0.117386 0.019319
1.8 0.098381 0.079456 0.060422 0.019034
2.0 0.041116 0.021389 0.001065 0.020324
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6 Conclusion and Extensions

In this paper our primary goal was to investigate the second-order singular Lane
Emden type equations and we have successfully arrived at the solutions by the
forward Euler’s algorithm combined with the shooting method, which in turn,
reduces the boundary value problem into initial value problem, so the method
showed that it is a precise and time-saving method. The Lane Emden equations are
solved for the values of the polytropic indices varies from 1, 2, 3 and 5 with having
constants, linear functions and periodic functions in the drift term. The numerical
solution of the problem for these values of indices replaces the unsolvable version
of equation and any closed form solution that we wish to find. For the case of n =
2 the solution is obtained as an infinite power series. Graphical representations of
these results give us information about polytropes for different values of polytropic
indices which may be helful in the study of the behavior of stellar structures in
astrophysics. One good extension for this work is through implementing backward
Euler formula for a second-order differential equations where the recursion formula
is the same, except that the dependent variable is a vector. Another possible
modification for the work is by using the reliable RungeâKutta method which
promises accurate results in deriving the solutions of the Lane Emden equations.
It is also significant in handling highly nonlinear differential equations with less
computations and a larger interval of convergence. For thinking globally, finite
difference methods may be used to replace the shooting method to treat the
boundary value problem. Finally, we may think of adding the additive noice
to the second order differential equation (it will be called stochastic differential
equation) and in this case, Euler’s method will be replaced by Euler-Maruyama
Algorithm, see, for instance, [12,15].
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