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Abstract

This work investigates the effect of Inflation and the impact of hedging on the optimal
investment strategies for a prospective investor in a DC pension scheme, using inflation-
indexed bond and inflation-linked stock. The model used here permits the plan member to
make a defined contribution, as provided in the Nigerian Pension Reform Act of 2004.
The pension plan member is allowed to invest in risk-free asset (cash), and two risky
assets (i.e., the inflation-indexed bond and inflation-linked stock). A stochastic
differential equation of the pension wealth that takes into account certain agreed
proportions of the plan member’s salary, paid as contribution towards the pension fund, is
constructed and presented. The Hamilton-Jacobi-Bellman (H-J-B) equation, Legendre
transformation, and dual theory are used to obtain the explicit solution of the optimal
investment strategies for CRRA utility function. Our investigation reveals that the
inflation have significant negative effect on wealth investment strategies, particularly, the
RRA(w) is not constant with the investment strategy, since the inflation parameters and
coefficient of CRRA utility function have insignificant input on the investment strategies,
and also the inflation-indexed bond and inflation-linked stock has a positive damping

effect (hedging) on the severe effect of inflation.
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1. Introduction

There are two major designs of pension plan, namely, the defined benefit (DB)
pension, and the defined contribution (DC) pension plan. As the names implies, in that of
the DB, the benefits of the plan member are defined, and the sponsor bears the financial
risk. Whereas, in the DC pension plan, the contributions are defined, the retirement
benefits depends on the contributions and the investment returns, and the contributors
(the plan members) bears the financial risk. Recently, the DC pension has taken
dominance over the DB pension plan in the pension scheme, since DC pension plan is
fully funded, which makes it easier for the plan managers (Pension Fund Administrators
(PFAs’) and the Pension Fund Custodians (PFCs’) to invest equitably in the market, and
also makes it easier for the plan members to receive their retirement benefit as and when

due.

Investment strategies of the contributions, which in turn is a strong determinant of
the investment returns vis-a-vis the benefits of the contributors at retirement must be
given optimum attention. Recent publications in economic journals and other reputable
mathematics and science journals have brought to light, variety of methods of optimizing
investment strategies and returns. For instance, some researchers have made various
contributions in this direction, particularly, in DC pension plan. Cairns et al. [3], did a
work on, “stochastic life styling: optimal dynamic asset allocation for defined
contribution pension plans. In their work, various properties and characteristics of the
optimal asset allocation strategy, both with and without the presence of non-hedge able
salary risk were discussed. The significance of alternative optimal strategy by pension

providers was established.

In order to deal with optimal investment strategy, the need for maximization of the
expected utility of the terminal wealth became necessary. Example, the constant relative
risk aversion (CRRA) utility function, and (or) the constant absolute risk aversion
(CARA) utility function were used to maximize the terminal wealth. Cairns et al. [3],
Gao [8], Boulier et al. [2], Deelstra et al. [6] and Xiao et al. [15] used CRRA to
maximize terminal wealth. However, Gao [9] used the CRRA and the CARA to
maximize terminal wealth.

Zhang and Rong [4] applied the well-known H-J-B equation, Legendre transform,
and dual theory to obtain the explicit solutions of CRRA and CARA utility function, for

the maximization of the terminal wealth. In 2012, Han and Hung [12] took a different
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direction. The investigated optimal asset allocation for DC pension plans under inflation.
In their work, the retired individuals receive an annuity that is indexed by inflation and a
downside protection on the amount of this annuity is considered. More so, in 2015,
Othusitse and Xue [13] considered an Inflationary market. In their work, the plan
member made extra contribution to amortize the pension fund. The CRRA utility
function was used to maximize the terminal wealth. This triggered our research. Ours is
to investigate and view the extent of damage the inflation may have caused to enable us
introduce, not just an amortization fund, but an optimum amortization fund that would
sufficiently dampen the effect of inflation. The approach used here is similar to that of
Zhang and Rong [4]. The models we used is that of Othusite and Xue [13], though, we
considered inflation of globally competing goods, and some real life assumptions are
made to buttress this fact.

2. Preliminaries

We start with a complete and frictionless financial market that is continuously open

over the fixed time interval [0, T], for T > 0, representing the retirement time of any

plan member.

We assume that the market is composed of the risk-free asset (cash), the inflation-
linked bond, and risky asset (the stock price subject to inflation). Let (Q, F, P) be a

complete probability space, where Q is a real space and P is a probability measure,

{Wg(z), W; ()} are two standard orthogonal Brownian motions, {F;(t), Fg(z)} are right

continuous filtrations whose information are generated by the two standard Brownian

motions {Wg (), W; (¢)}, whose sources of uncertainties are respectively to the inflation

rate and the stock market. We assume also that at the early stage of the inflation, before

government intervention policy, {Wg(r), W;(¢)}, {Wg(z), Wg(s)} are two standard

orthogonal Brownian motions, respectively.

Let C(t) denote the price of the risk free asset at time ¢ and it is modeled as
follows:

dc(t)
C(t)

=r()dt  C(0)=1 (1)

r(t) is the real interest rate process and is given by the stochastic differential equation

(SDE)
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drg(t) = (a = brg(t)) dt — o dW(), 2)

Opr :\lker(I)'sz, t=0, 3

where rp is a real interest rate, a, b, rg(0), k; and k, are positive real numbers. If k
(resp., k5 ) is equal to zero, we have a special case, as in Vasicek [14], Cox et al. [5]
dynamics. So under these dynamics, the term structure of the real interest rates is affine,
which has been studied by (Chubing and Ximing [4], Duffie and Kan [7], Deelstra et al.
[6] and Gao [8].

Let S(t) denote the price of the risky asset subject to inflation and its dynamics is

given based on a continuous time stochastic process at ¢+ =2 0 and the dynamics of the

price process is described as follows:

as() _ (rg(c) + Moo + A,0%0; ) dt + 05wy + akaw,,  S(0) =1 “4)

S(z)

with A; and A, represent the instantaneous risk premium associated with the positive

volatility constants O'g and O{g, respectively, see Deelstra [6]. ©; represents the

inflation price market risk.

An inflation-linked bond with maturity 7, whose price at time ¢ is denoted by
B(t, I(¢)), t = 0, and its evolution is given by the SDE below (see Othusite et al. [13])

dB(t, 1(t))
B(. (1)

Let us denote the stochastic wage of the plan member, at time ¢, by P(¢) which is

= (rg(t) + 0,8, )dt + 0,aW;(t),  B(T, I(T)) = 1. (5)

described by
dPlr) Wp (1) dr + 03 dWg (1) + ol aw, (¢), (6)
P(t) P b

where Wp(r) denotes the expected instantaneous rate of the wage, while 07, and 0;

denote the two volatility scale factors of stock and inflation, respectively. Since the wage

is stochastic, we let the instantaneous mean of the wage to be Wp(t, rg()) = rg () + u,y,

where u » is a real constant.
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3. Methodology

3.1. Hamilton-Jacobi-Bellman (HJB) equation

Suppose, we represent u = (up, ug) as the strategy and we define the utility

attained by the contributor from a given state y at time ¢ as
G, (t. g, y) = E[V(X(T)) | rg(t) = rg. ¥ (1) = ¥], (7

where 7 is the time, rp is the real interest rate and y is the wealth. Our interest here is to

find the optimal value function
G(t, rg ¥) = sup, Gy (t, 1z, ¥) ®)
. o_, g 0O
and the optimal strategy u— = (ug, ug) such that
G ot g, y) = G(t. g, ). )
3.2. Legendre transformation

Theorem 3.1. Let f : R" — R be a convex function for z > 0, define the Legendre

transform

L(z) = max ,{f(y) - 2}, (10)
where L(z) is the Legendre dual of f(y), Jonsson and Sircar [11].

Suppose, f(y) is strictly convex, then the supremum (10) would be attained at one

point, denoted by y( (i.e., the sup. exist). We write
L(z) = sup  {f(y) = 23} = f(3o) — 2v0- (11)

By Theorem 3.1 and the assumption of convexity of the value function G(t, rg, y),

we define the Legendre transform

G(t, rg. z) = supy>0{G(t, Ry ¥)— 2y |0<y<ew}, 0<t<T (12)

where z > 0 denotes the dual variable to y and G is the dual function of G.

The value of y where this optimum is attained is denoted by h(z, rg, z), so that

h(t, rg, z) = infy>0{y | G(t, rg, y) = zy + é(t, R, 7)), 0<t<T. (13)
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From (13), we see that the function /& and G are closely related, hence we write either of

them as dual of G. To see this relationship,
G(t, rg» 2) = G(t, rg, h) = zh, (14)
where
h(t, rg, z) = y, Gy = z, and relating G tohby h = —GZ. (15)

Replicating the idea in (12) and (13), above, we define the Legendre transform of the

utility function U (), at terminal time, thus

~

U(z) = supy»o{U(x) = 2x | 0 < y < oo}, (16)

where z > 0 denotes the dual variable to y, and U is the dual of U.

Similarly, the value of y where this optimum is attained is denoted by G(z), such

that
G(z) = supy>o{w | U(y) = 2y + U(2)}. (17)
Consequently, we have
G(z) = (U")(2). (18)
where G is the inverse of the marginal utility U.

Since A(T, rg, y) = U(y), then at the terminal time, 7, we can define

WT, g, z) = info{y |U(y) 2 2y + h(T, rg, 2)} and A(T, rg, z) = sup{U(y) - 2y}
y=> y>O

so that
T, 1z, 2) = (U)7'(2). (19)
4. Model Formulation

Here, the contributions are continuously paid into the pension fund at the rate of
KP(t) where K is the mandatory rate of contribution. Let W(f) denote the wealth of

pension fund at time ¢ 0 [0, T]. ug(t) and ug(t) represent the proportion of the pension
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fund invested in the bond and the stock respectively. This implies that the proportion of

the pension fund invested in the risk-free asset uc(r) =1 - ug(t) — ug(¢). The dynamics

of the pension wealth is given by

dc(r)
C(1)

Substituting (1), (4) and (5) in (20) we have

dB(r, 1(1)) .

ds(t)
B, 1()

S(t)

dw(t) = ucWw(z) +ugW(r) w(t) + KP(t)dt. (20)

dW (t) = W (t) [rg(r) + 0,8up + (M0} +Ay070; )ug]dr
+ KP(t)dt + W(t) (0up + 0lug)dW, () + W(t) 0SugdWs (1) (21)

Let the relative wealth Y(¢) be defined as follows

y() = 2 (22)

Applying product rule and Ito’s formula to (22) and making use of (6) and (21) we arrive

at the following equation
— $ \2 2
av(t) =YX () - n, +(0},)* +(0},)

1 1
+[(\o) +1,000)) - 50{01 - Eoio;]us

+ (0191 _%010;)M8}dl‘ + Kdt +Y(l)(0-1MB +0-§l/ts _O-;)dWI

+Y(t)(o5us — a),)dw,,  ¥(0) =W(0)/P(0). (23)

Simplifying,

dy(t) =Y(c; + coug + czug)dt + Kdt +Y(t)(Oup + Ogus - Gg)dWI(t)

+Y(t) (o5ug - 0),)dWg(1), (24)
where
o = 1g(t) =, +(035)* + (o},

1 1
¢y = (A0S +1,0l8)) —Eogog —Eoﬁo‘;,
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= 0,8, - L0,0! 25
C3 - 01 I E 0‘10'1, . ( )
The Hamilton-Jacobi-Bellman (HJB) equation associated with (24) is
G, +(a-brg)G, + lCI2 Grerg * sup, { y(c; + ugco) +upc3)G, + KG
)’1Gy,} =0, (26)

1 2 1 I\ 4
+Ey [((GIMB + Oyl _Gp)) (0 U _0
where Gy, G,, Gp,pp» Gy and G, are partial derivatives of first and second orders

with respect to time, real interest rate, and relative wealth
we obtain the first-order

Differentiating (26) with respect to up and ug,

maximizing conditions for the optimal strategies ul%' and uE, thus

~ol)G,, =0, 27)

d I
C3Gy + ycI(GIuB + O5ug p/Yyy

wug = 0,) G,y + yoy(

Gy + yol(ogug + ohug » olug -0%)G,, =0. (28)

p/yy

Solving (27) and (28) simultaneously we have
s I I 1

[opov +0,05 —01,0?]’ 29

(03

-0, Gy

O_ ajes
(03) 01y Gy

11
GS(OSC3 _020-1) Gy _ C3 Gy . (30)

0 oﬁ, o, (0 o! + 07,05 —og,oﬁ)
up = — - -

1 (0% )2 O (G:E)Zy Gyy UIyG
Substituting (29) and (30) into (26), and assuming independent and identically

L= 0),), we have

distributed volatility scale of salary for stock and inflation (i.e., O

1 1
G, + (a _er)GrR +EO-3RGrRrR +(K + )’(EPS +p1)jG

2
1 G 1
+(29% +5(0§7)2 ‘9102 tpy t p4jG_y+Ey2p3 =0, (31)
Yy

12 s 1 1\2n2 s I 1
(0%)" +A\05050,8; + A, (0y) 870, ——7\10 5010,

©
—_—

1]
N | W
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1 1\2 I 11 I
—E)\Z(O'S) 8,0;0 » —Eoiol,

I
» 0,0/6;

1 2
_E(Gg) 8,0,0

12 I
L, 1\20 142 L s/ 1\2 1 s Ma(o5)78;0,
+z(0s) (o)) 0y +Zos(0s) 0,07 + A0, +T

N

2 2 2
AR AR R CA

s p’
20}

0y (03)°

- MOSO, _ 2AM,018; _ Ni(oh)26F N A (05)*8;0), A A,056,07,

(%)
207 oy (03)? (03)? oy
2 2 2
GG 3 0,(0;)’0, 80,0, 6}(al)? . 0,00\
4(as ) 2 (o)’ 207 (03)? oy
2 2 2
(o)) (ol)*  (0%)0l
2(0?)? 408
I (of )40%(05;)2

_ 4002 _ (ol Y420 ol
p3 =(05) 0,67 —(0;)"076;0), +
- (o3 )Zogcr%e,o; + Zogcr,e,o; - 20§0£01610§,

, (o )’(0;)*07(a},)* 2(a},)* (o)
4 (O.s )2

N

2

_(al)'e}  (o1)0,0) (01)*(0h) 263(al)?  olole
Ps = + + _ N

(a3)* (a3)* 4(a3)* (a3)? (a3)?
. ol (o} )>6, ~ ol (af, )? N 2A\,000, Aolol, . A (ol )?e?
(a3)? 2(a3)? (o oy (a3)?

T [ ~
+
=
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N

(03)? (03)? (03)? 2(a})

4 2
oo = (of )301910; _2(o! ) 0,067 N (af) 01015791 _ (of )301(02)
s =

I \2(~1\2
o o,)°0
+26%01(0§)2—61(0§)20101 +( p) (0,)

I s I
» 5 -20,0,0;0;\;

12 2 s~ 1 s~ 1 12 1
- 2(0s) 0-191)\2 + o-so-so-lelo-p + 0-so-so-lelo-p)\l + (Gs) o-10-17)\261

2 2
(o!)20,(c},)> _olclo(o

1 )2 2)\ Ie 1
2059,0
PZ—20i\,008,0) + —L
2 ol

with G(T, rg, y) = U(y).

Applying Legendre transform to (31), we have

A . . 1
Gt + (Cl - er(t)) GrR + _o-l%RGrRrR + |:K + y(E p5 + plj:|z

1, v L1 1
‘[29%5(02) - 6,0, +p, +P4JZZGzz ‘5y293 g =0,

_3 0y I 122 1 I I
P _E(O-p) +\1050,0,8; + A, (05 ) 670, —57\10§0s010p
_L, (6)?0,0,0! —1(01)26001 ~Loislola,e
EZS IIpEs IIpEspsII

(o} )2910;
9)2

+(61)2(0} )20, + o3(0} Volo + Ao} + 5
S

4 p

2 2 2
naolo0h_opalol(ebf _(ohFol
s p’

20

s 5)2

oy (o3

_ MOG,  2AA,0l0,  A3(al)?e}  A(of )*6,0%, . A2018;0),

P2 L+
20 o; (03)? (o) =
2 2 2
(010} _38,(01)0} _Biohol _e}(al)? | 80l
4(as)? 2 (o3) 205 (03)? (o

(32)

(33)
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I1\27 12 s\2 1
RCARCO R GARY:
AP 4o

s

(05)"0i(0})?
ps = (0y)' 0,67 - (07)*078,0}, + —"— "+ (0})*(0{) 076

- (o3 )Zoﬁo%eloﬁ7 + 2cr§0,(910§7 - Zoﬁoﬁoleloﬁ,

ARG A CANCY,

4 (@)

>

Py = (00)'6] + (0} )36105’ + (o )2(057 )’ _263(c!)? . Gioﬁ,el
4=
@ (@) ) (@) (@)

I(-1\2 I(.1y2 I 51
N Gp(os) 6, B os(cp) + 2)\1)\20'£91 _)\10-50-]? +)\%(0{)29%

(03)? 2(0})® oy oy (03)?

(of )301910; _2(cl)*0,67 . (of )4010;91 ~ (of )301(057 )?
(03)? (03)? (03)? 2(as )

ps =

I\2(1\2
o o,)°0
+26%01(0§)2—61(0§)20101 +( p) (0,)

I s I
» -20,0,0;0;\;

142 2 s~ 1 s~ 1 142 1
- 2(0s) 0-191)\2 + o-so-so-lelo-p + 0-so-so-lelo-p)\l + (Gs) o-10-17)\261

(05)’0,(0

I1\2 s I 1\2 1 1
p) _Oscsol(op) 2)‘ZO-SGIO-p
—
s

s 1 1
- 20S7\20s910[, + 5

Differentiating equation (33) for G with respect to z we obtain a linear PDE in terms of

h and its derivatives and using y = h = —éz, we have

1 1 1
hy +(a = brg) hy, +503thRrR _ZhZ(EPS + Pl) —{k + h[aps + Plﬂ
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- (207 1 (0! 1) =8,00, + 0y +py |(h, 20+ 2h, ) + 2h+h2hhzz =0
> 1 P2 P4 t*z P3 2 g
Z

where

3,12 s I 1\2 2 I
P :E(Up) +A05050,8; +\,(05)°070; - 7\10 ol 5010

P
—l)\z(og)zelolol —l(oé)zelolol l0501010161
2 P L)
IN2q
Lo 12 1y2 1 sq 1y2,1 s . Ma(o5)780,
+Z(Gs) (Op) Oy +ZO-S(O- ) 050y +)\10p + (0;)2

Py =
205 (o (a3)? (a3)? o
2 2 2
3(at)* (o) _391(0§)0§ 010,05 07(al)? . 8,0l
4(0)? 2 (a3)? 205 (03)? (o
I\2¢ . 1\2 s\2 I
, (GhP(eh) | (o)
2(0§)2 407
N4 2/ 1\2
(Os) O-I(O-p)

V2 (] \2 202
+(03)*(05) 0767
- (a%)%a! %6,0 +20! 0,6,0 - 20%0, 0,6,0

, (00)(05)0i(05) 20, )*(oy)?
4 (03)°

o, < (o)) (0000, (0)*(0,) 263(a})? | 00,8
\=
(@) (o) W)t (@) (@)

(34)
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1 1\2 g1 \2
0,(05)°8; 05(0y) N 2MA,008; 050} N AR
2 2
(03) 2(o) o3 o3 (a3)?
1\2 1 1 1 IN2¢ 1 \2 112
_ )‘Z(OS) 910'p _ )‘20361019 + (Gs) (Op) + 0-s(o-p)
(o)) oy 403 ) 205
I1\3 1 1\4 1 1\3 112
os = (05)'0,6;0, 2(c!)*c,07 . (05)"0;0,6; (0y) 0;(0))
2 2 2
(o3) (03) (o3) 2(ay)
I \2¢ . 1\2
o (e) (0)
+2070;(0})* - 6;(0} )?0,0%, +( p)°(05) -20%0l0,0,)\
- 2(a} )2019%)\2 + Uioiolelofn + Oiogoleloé)\l + (o] )2010;)\291
1\2 1\2 s I 1\2 1 1
_ (Gs) 01(017) 0 sO 0-I(O-p) _20?7\20{9101 + 2)\20selo-p . o_I =g
2 2 S S )4 O_s p p
S
MCZI_MB_MS (35)
o.I
o - Ao} —A,0.0, +olah +ol| 6; - 7”
ug =2 - — zh, (36)
O )’(Os)
1 11
0_9p _9p9
MB -— B
I OSGI
IN\2 I NP o |
1\2 I I _ I (05)70, 05050
(Gs) 0; - 0,00, _O-s)\lo-i _(Gv) A8 + 2 Py = 2S p]
* 512 ch
h(ay)
0;zh
}iz z (37)
O
I _ s
g, =0, (38)
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We will now solve (34) for & and substitute into (36) and (37) to obtain the optimal

investment strategies.

5. Explicit Solution of the Optimal Investment Strategies for the CRRA Utility

Function

Assume the investor takes a power utility function
yl’
U(y)==—, p<1, pz0. (39)
p
The relative risk aversion of an investor with utility described in (39) is constant and (39)
is a CRRA utility.

From (19) we have (T, rg, z) = (V')"'(z) and from (39), we have

1

KT, rg, z) = 2771 (40)
We assume a solution to (34) with the following form

ne
h(t, e, 2) = g(t, )| 2770 | +0(),  v(T)=0, g(T,s)=1.

Then
1 ) )
I , I 8 I
ht:gzzpl"'v’hzz_lf 2P o Dy = _rRZpl ’
P l-p
( ) ( L 1 1
_2-p)g (p1 _ -1 _ -1
hZZ - (1 )2 < b ° hrR grRZp > hrRrR - grRrRZ (41)
-p

Substituting (41) into (34), we have

Ps j
8 2 = 4+
RROrgp g( 2 P eps

g+ (a=brg)gy ——— =, T, P
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1
2g(29? (o) )> -8,00, +py + p4)
+

=0, (42)

where p3 = 0.

Splitting (42), we have
1
V0 =505 o1 o)~k =0 @)

Ps
8 2 g(ﬂ)lj
IprprO
KRR R 2 _ 8Ps

g+ a=brg)gp ——— =5 5

1
2g(26% (o) )> -6,0, +py + p4)

I-p

+

1
(2= (267 ) (0} - 0,0, +ps +p4

- = 0. (44)
(1-p)?

Considering the boundary condition, v(T') = 0, (43) yields the solution

W(t) = = (1 - 7Pl )y (45)
Po

1
where p3 =0, pp= gps +pPr.
Next, obtain the solution of (44), by assuming, a solution of the form
glt, rg) = M(@)eNOR M(T)=1, N(@T)=0

8re = M(1) N(t)eN(t)rR, Srerp = M(t)NZ(t)eN(’)rR
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and
g, = M ()N (1) eNOR 4y (1) N

Substituting (46) into (44), we have
M 1.9 1.9
N,rg +—L + Na = Nbrg + —N“kyrg + =N~k
t'R M R 2 1I'R 2 2

P1
2(1-p) 1-p

L -1,
2™ oMl

Splitting (47), we have

M
—t+Na+lNzk1+ b5 __+ P ‘105—191
M 2 A-p) 1-p 2° 2

1
2[29% 5(0; ) - 6,0, +py + 94)

1-p

1
(2= 1) 267 1 (0} =010} + 2 4

(1-p)

:0’

N, = Nb +%N2kl = 0.

Solving (48) and (49), we obtain

N(Y) = 2b[t — T
ky
1
{ai(a2—2k2H )QkZ_It}
M(t):CIE ) C] :eC,

(46)

(47)

(48)

(49)

(50)

&1y
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g=_Ps .

200-p) 1-p 2

1
2(29% B (Ufp )? - 9102 TPyt 94)
21 1-p

_ M(T) =1, (52)

(1-p)?

where
4b
di = — 53
172 ©9)
dy =0 (54)
2 L
ai(a —Zsz)2k2 t
e 2b(t —T
g(rg, 1) = - exp (k )rR (55)
{ai(az—Zsz )2k2_1T} 1
e
Therefore, the solution of (34) becomes
1
{ai(az—Zsz 2 k5 lr}
I k - _
h(t, rg, 2) = = P - D (1= P, (56)
{ai(az—Zsz Y2 ks 1T} PO
e

1
where p3 =0, pp = §p5 + Py

Proposition 5.1. The optimal investment strategies for cash, bond and stock is given

as follows:

ug :l—ug—ug

$=P

I
o
- A0} - \,000; +olol + Gi[el _ZPJ
1

o) p-l
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1 1
{ai(az—ZkQH)zkz_lt} {ai(a2—2k2H)2k2_1T} 1
-1
e e _ pDZp
X ) 1 1 k(1 - -pc(T-1)y |’ (57)
{ai(a —2k2H)2k21T} {ai(az—Zsz)zkzlt} (1-e )
e e
I 1.1
0_9 _9p9
MB -— B
Oy 0,0
I\2 I s I I
o, oloio
(a1)26; - 0%, ~ olhio} - (0! g8, + (%) 00, OO
N 1
(a3)? p-1
1 1
{ai(az—Zsz)zkz_lt} {ai(a2—2k2H)2k2_1T} 1
€ e _ pre P!
1 1 (T -
{ai(az—zkzﬂ)zkgl} {a+(a2—2k2H)2k2_1t} k(1 - ¢PHT1))
e
1
{LI a —2k2H 2k2 l‘} { a —2k2H)2k2 } %
0, e P
M Ty | 68)
p {a (a2-2kyH ) 2k2 } { a2 =2koH )3 k3t } ok(l-e )
e
=0 -1 5= 59
Pz =0, pD—Eps"'pl’ 0, =0, (59)
21, 12
0 o 1 | 2(291 ~(0,)" =6,0), +py + 94)
H = 2+ ——ps——p +
20-p) 1-p 2 2 1-p

; (60)

1

P = %(0; )2 + 7\10§0§0191 + 7\2(0§ )29%01 - ;7\10 ol 5010,

1
p

1010,61

1 12 r_1, 1y 1
—EAZ(OS) 8,0,0, _E(OS) 8,0;0 Eoso
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1\2 1
L, 12012 I s/ 1y21 s, Maloy)° 80,
+—(o o,)'o; +—o.(0,) 0,07y +\O,, + ——— ——
4( v)( p) 1 4 s( s) sYI 1™~p (0;)2
1 1 IN2¢ I \2 I\2 1
+ )‘ZO-Selo-p _ 91)\2(0'3) (Gp) _ (Gp) O —u
oy (a3)? 20} "
1 1\2 1 1 1
0, = Alo-so-p 2)\1)\20§91 )\22(0'§ )292 A (GS) elcp )\cheIO'p
) =
205 o (a3) (a3)? o
3(0!)’(0})® 30(0lf0h 80hal e}(al) 8,0,
4(a3)? 2 (o) 203 (a3) oy
I\2¢ 1\2 2 1
RCARC N CAR:
2(0§)2 407 ’
N4 20 1\2
(Os) O-I(O-p)

ps = (07)* 0,67 - (07 )* 078,07, + +(03)*(0g)? 0767

N

(o )zogo%elog, + 2o§o,e,o§, - 20[§0§0,6,0§,

, (00)(05)0i(05)* (0, )*(oy)?
4 (03)°

il

_(cl)'e} , (95)°0,0), (05)*(0})° _26}(al)? |, 050,,8
(@) (o) W)t (@) (@)

I (~1\2 112 1.1
+ o-p(o-s) eI o-s(o-p) + 2)\17\20'§91 _ Alo-so-p + A%(Cé )29%
2

(03)? 2(a;) oy oy (03)?

_M(05)8,0;, _As008,0;,  (05)(0;,)*  oy(,)’

(03)° oy 4oy ) 20;

3 4 3 2
(af) 01910; _2(c!)o,67 N (af) 01015991 _ (of) 01(02)

N

(03)? (03)? 2(0})?

p =
T (@)
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o
+2070,(cl)* - 0;(cl )00, + (9 L -20%0l0,0,7

p 2

Iy\2 2 s 1 I s 1 I 142 I
- 2(O-s) 0-Iel)\Z + O-so-so-lelo-p + 0-so-so-lelo-p)\l + (O-s) O-Io-p)\ZeI

12 12 s 1 I1\2 In 1
o.)o;(o 0.0.0;(0 2A,0.0;0
_( s) 1( p) _UsYs 1( p) —20°\ 019 O.I + 2%s¥I¥p (61)
sN2YsY 1Y p .
2 2 O
N@):@ (62)
1
dlzﬂ
2k,
d2:0.

1
p

would be of the form of the Zhang and Rong [4].

Remark 5.1. If we let 0, = O'g =0; =0, the optimal strategies (57) and (58)

Result 1

Recall from Zhang and Rong [4], the coefficients d;, d, degenerates to % and

1
zero, in the absence of the coefficient of the CRRA (i.e., as p — 0), however, in this
work, even in the presence of the coefficient of CRRA the coefficients d;, d, are

already degenerate. We therefore, conclude that, under the inflationary market, the
CRRA utility function has little or no effect on the investment strategy. This depicts the
effect of Inflation on optimal investment strategy.

Result 2

More so, in this our work, in the absence of the coefficient of the CRRA (i.e., as —
0), the coefficients d;, d,, still retains its value (i.e., will never degenerate further than
this). This shows the hedging role of the Inflation linked Bond and Stock in the optimal

investment strategy in a DC Pension scheme.

The associated optimal investment strategy for a logarithmic utility function, as
p - 0 is given by
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1
(o] 1
I -\ 0} —7\20§92 + 01057 + c 6; - —P {ai(a2—2k2p1)2k21t}
0_9% . 2 ) e
ug = —
N s 1
O Oy {ai(aZ =2kop1 )2 kz_lT}
e
2 ! -1
ai(a —2kopy )Ekz T
¢ PO
X -
2 1 k(l— _PD(T_f)) ’ 63)
at(a”=2kopy)2katp % ¢
e
1 I 1
u0 = 0, 0,0
O; 0307

2 ! -1 2 ! -1
ai(a —2kopy )51(2 t ai(a —2kpp; )5](2 T
€ e _ PO

1 1 0T -
{“’—'(az —2kopy )2k2_1T} {ai(az—Zkzpl )21(2‘1,} k(1 -e ot ’))
e

e

1
{ a®=2kypy ) 2k2 { a®=2kopy )2 k3" }
91 e _ pD

' e )
p-1 { *(a®~2kop; ) 2’<2 } { a —2k2p1)2k2 } 207k(1=e™P )
e

>

(64)
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1
(2= 1)(267 1 (0})? 8,0} +p2 +py

(1-p)?

6. Discussion and Conclusion

6.1. Discussion

From Proposition 5.1, we deduced that in the absence of inflation, proportions of the
pension wealth invested in stock and bond would be at least at minimal returns, and the
optimal investment strategy, with CRRA utility function would be constant. From (60)
and (61), we observe that the optimal investment process is lumped with a lot of inflation
radicals, which in turn serves as catalyst in the hedging of inflation effects, during the
optimization of the pension wealth. More so, from Remark 5.1, we discovered that the
CRRA utility function does not have much effect on inflation and its effect on wealth
investment, whereas, the inflation linked bond and stock serves as a hedging mechanism
against adverse effect of Inflation on the optimization of pension wealth. From the
analysis, we see that the returns on investment of the pension wealth will reduce to an
extent, as a result of depreciated wealth allocation, therefore, the contributor require
extra measure to dampen the effect of inflation on the investment strategy. From this
analysis, we deduce also that the more the returns on optimal investment degenerates,
the more the price of stock reduces, then the need for more wealth investment in both
stock and bond becomes necessary, in order to recover for the lost times, hence the need

for an amortization fund by the plan member becomes necessary.
6.2. Conclusion

The wealth investment strategies for a prospective investor in a DC pension scheme,
under inflationary market, with stochastic salary, under the geometric Brownian motion
model has been studied. Relevant to this work, the CRRA utility function was used and
we obtained the wealth investment strategies for cash, inflation-indexed bond and
inflation-linked stock using the Legendre transform and dual theory. More so, the effects
of inflation parameters and coefficient of CRRA utility function and the role of the
inflation-indexed bond and inflation-linked stock were analyzed, with insignificant input
on the investment strategies. We conclude therefore, inflation have significant negative
effect on wealth investment strategies, particularly, the RRA(w) is not constant with the
investment strategy. More so, the inflation-indexed bond and inflation-linked stock plays
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a vital role in hedging the fund investments against severe economic damage

(devaluation).

6.3. Recommendation

Based on our results so far, we recommend the investigation of the effect of extra

stochastic contribution on optimal investment strategy, in DC pension scheme, under

inflationary market.
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