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Abstract

To obtain a thorough understanding of the influence of schistosomiasis
infections on the transmission dynamics of tuberculosis, a deterministic
mathematical model for the transmission dynamics of tuberculosis (TB)
co-infection with schistosomiasis is created and examined. The aim of the
research is to examine the reasons behind the backward bifurcation in the
co-infection dynamics of tuberculosis and schistosomiasis. The backward
bifurcation phenomena can be caused by the following parameters, according
to the model’s analysis (when the associated reproduction number is less
than one), other than the well established route of exogeneous re-infection
of latently infected TB individuals, the relative rates at which humans with
latent schistosomiasis (η1) and active schistosomiasis (η2) are infected with
TB, respectively, the lowered rate of reinfection with schistosomiasis (ψ),
the fraction of individuals who experience fast progression to active TB (p),
the adjustment parameter which accounts for the increased probability of
infectiousness of humans with active TB and latent schistosomiasis (Π1), the
treatment rate of people infected with active TB exposed to schistosomiasis
(ζT1) and the rate of progression to active TB and exposed to schistosomiasis
to active TB and active schistosomiasis (σ).
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1 Introduction

Tuberculosis, popularly known as TB, precipitated by the pathogen
Mycobacterium tuberculosis, taints a third of global populace, with the resultant
consequence of two to three million fatalities annually [26, 48, 58], is a dominant
health situation globally [59] that induces malady among several millions of persons
annually and is positioned paripasu the human immunodeficiency virus (HIV) as
a dominant agent of mortality globally [59]. It is estimated that 10% of persons
infected with TB are disposed to advance to infectious TB [29]. There was a
notification of 6.4 million fresh TB infections to governments and disclosed to
WHO in 2017 [62]. The rate of success of medical care, in 2016, for humans
freshly detected with the disease was reported to be 82% globally [62].

On the other hand, the prominence of schistosomiasis as a neglected tropical
disease (NTD), ranks after malaria with respect to illness amongst humans in
tropical regions of the world [24]. Schistosomiasis is induced by infectious parasitic
flatworms of the class Schistosoma [24]. It was reported, in 2011, that 243 million
persons living in 78 nations were estimated to be at high-risk for schistosomiasis in
such territories [24]. Furthermore, according to WHO 2017 estimates, a minimum
of 220.8 million people needed schistosomiasis preventive medical care with more
than 102.3 million people reportedly treated [63]. The building of water projects
to satisfy agricultural and power necessities for advancement have contributed
immensely to rising infections [12, 31]. Constantly growing populace alongside
migration, significantly, have supported increased infectiousness and appearance
of the disease in uncharted frontiers [8, 12].

From the global reports on TB and schistosomiasis, respectively, above, it is
evident that TB and schistosomiasis are co-endemic and co-infectious; and that
the relevance of investigating if a pleura-residing parasitic worm can eventually
frustrate the host’s competence to contain pulmonary TB contagion will not be
impaired [29,45,48,58,65]. The results from the works of [10,29,45,48,58], greatly
suggest that infections from helminths adversely affects the host’s capability to
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regulate TB infection through a system involving substitute invigoration of pleura
macrophages. Nonetheless, the systems resulting in the reactivation of TB in
alternatively humans with effective immune systems are greatly obscured [29]. Per
se, co-infection with parasitic worms is treated as a risk factor related along side
enhanced susceptibility to tuberculosis and rates of tuberculosis reactivation [29].

Since the formulation of the first mathematical model for schistosomiasis
by Macdonald [27], numerous authors have laboriously examined the disease
dynamics of schistosomiasis through mathematical modeling geared towards
control programmes for the disease. Particularly, [4, 14, 64] carried out extensive
and detailed review of such schistosomiasis models. Of course, several authors
have, indeed, further enriched the literature on the mathematical modelling of
schistosomiasis since that time. [11,13,17,18,20–22,28,31,32,41–43,49–51,66,67].
Furthermore, there have been several treatises on the mathematical investigation
for the infection dynamics of TB [3, 5, 9, 16, 30, 34–40, 46, 53] since the pioneering
work of Waaler et al. [57] was done. These other mathematical models
formulated have given greater, deeper and clearer insights into TB population
dynamics, thereby enhancing the literature. These other mathematical models
formulated have given greater, deeper and clearer insights into TB population
dynamics, thereby enhancing the literature. [31] formulated a model for the
co-interaction of schistosomiasis and HIV/AIDS for the purpose of assessing their
symbiotic connection in the company of therapeutic measures. [33] investigated,
mathematically, malaria and schistosomiasis co-infection for the purpose of
scrutinizing the symbiotic connection that exists between them in the presence
of treatment.

From the preceding, it is obvious that divers mathematical models have been
designed to analyze TB infection and schistosomiasis infection, respectively and
their co-infections with other diseases but none has looked at the possibility of
the co-infection dynamics of TB and schistosomiasis, to the best of the authors’
awareness.

The document is categorized as follows: In Section 2, the model formulation
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is presented. In Section 3, the qualitative mathematical analysis is completed
along with the model’s examination for the backward bifurcation phenomenon and
global asymptotic stability (GAS) of the disease-free equilibrium (DFE). Section 4
provides a quantitative analysis of the model, and Section 5 provides a conclusion.

2 Model Formulation

The TB-schistosomiasis co-infection transmission model to be developed will
assume the form of a system of non-linear deterministic differential equations.
In the formulation, only populations (human beings, snails and intermediate
stages of pathogen life-cycle (miracidia and cercariae)) directly involved in disease
transmission dynamics are considered.

The model demarcates the entire human populace at time t, represented by
NH(t), into fourteen mutually exclusive classes of susceptible to infections (SH(t)),
latent with TB but not infectious (EHT (t)), active TB (IHT (t)), exogenously
re-infected with TB (IRT (t)), treated for TB (THT (t)), exposed to schistosomiasis
(EHS(t)), with schistosomiasis infection (IHS(t)), treated for schistosomiasis
(THS(t)), exposed to TB, exposed to schistosomiasis (ETS(t)), with active TB,
schistosomiasis exposure (IST (t)), exogenously re-infected with TB, exposed to
schistosomiasis (IRS1(t)), exposed to TB, with active schistosomiasis (EST (t)),
exogenously re-infected with TB and active schistosomiasis (IRS2(t)), and with
active TB, active schistosomiasis (ITS(t)). Where

NH(t) = SH(t) + EHT (t) + IHT (t) + IRT (t) + THT (t) + EHS(t)

+ IHS(t) + THS(t) + ETS(t) + IST (t) + IRS1(t) + EST (t)

+ IRS2(t) + ITS(t).

(2.1)

In order to include the pathogen that causes schistosomiasis in the co-infection
dynamics, we assume that the cercariae and miracidia populations are represented
by L(t) and J(t) classes respectively.
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Next, we incorporate the intermediary hosts, freshwater snails, for the
pathogen responsible for schistosomiasis in the model construction. We presume
that the whole snail populace in the freshwater habitat at time t, given by NS(t),
is categorized into the jointly exclusive classes of snails susceptible to infection
(SS(t)) along side snails infected with miracidia (IS(t)), where

NS(t) = SS(t) + IS(t). (2.2)

All snails infected by miracidia, do not procreate as a result of castration [13, 31]
and that periodic and climatic changes do not have any impact on the total number
of snails and contact arrangements.

ΘRT is an adjustment parameter accounting for the decreased probability of
the transmission of TB by humans exogenously re-infected with TB, compared
to persons with active TB [2]. The parameter ΘRS1 is a modification parameter
accounting for the increased probability of the transmission of TB by humans
exogenously re-infected with TB and exposed to schistosomiasis, compared to
persons with active TB [54].

Based on the specific assumptions above, our developed model is represented
by the following deterministic system of non-linear ordinary differential equations
in (2.3); the corresponding variables and parameters of the model are tabulated in
Table 1 and Table 2, respectively, while the values and ranges of the parameters
used for numerical simulation on the model (2.3) are listed in Tables 3 and 4,
respectively.
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S′H = ΛH − λTSH − λJSH − µHSH ,

E′HT = (1− p)λT (SH + ξTHT + THS) + ζS1EST − (1− π1)λTEHT

− λJEHT − (κ1 + µH)EHT ,

I ′HT = pλT (SH + ξTHT + THS) + κ1EHT + ζS3ITS − λJIHT
− (ζT + δT + µH)IHT ,

I ′RT = (1− π1)λTEHT + ζS2IRS2 − λJIRT − (ζR + δR + µH)IRT ,

T ′HT = ζT IHT + ζRIRT − ξλTTHT − λJTHT − µHTHT ,

E′HS = λJ(SH + THT + ψTHS) + ζT1IST + ζR1IRS1 − η1λTEHS

− (α1 + µH)EHS ,

I ′HS = α1EHS + ζT2IRS2 + ζT3ITS − η2λT IHS − (ζS + δS + µH)IHS ,

T ′HS = ζSIHS − λTTHS − ψλJTHS − µHTHS ,

E′TS = (1−m)η1λTEHS + λJEHT − (1− π2)λTETS − (α2 + κ2 + µH)ETS ,

I ′ST = mη1λTEHS + λJIHT + λJIRT + κ2ETS − (ζT1 + σ + χ1δT + µH)IST ,

I ′RS1 = (1− π2)λTETS − (α3 + ζR1 + τ1δR + µH)IRS1,

E′ST = (1− f)η2λT IHS + α2ETS − (1− π3)λTEST

− (ζS1 + κ3 + v1δS + µH)EST ,

I ′RS2 = (1− π3)λTEST + α3IRS1 − (ζT2 + ζS2 + τ2δR + v2δS + µH)IRS2,

I ′TS = fη2λT IHS + κ3EST + σIST − (ζT3 + ζS3 + χ2δT + v3δS + µH)ITS ,

L′ = Neγ(IHS + EST + IRS2 + ITS)− µLL,

S′S = ΛS − λLSS − µSSS ,

I ′S = λLSS − µSIS ,

J ′ = φIS − µJJ.
(2.3)
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Table 1: Description of parameters of model (2.3)
Parameter Description
ΛH Recruitment rate for humans
µH Natural human mortality rate
βT Tuberculosis transmission rate
ξ Lowered rate of reinfection with TB after recovery from a previous infection
f,m, p Fraction of fast progressors to TB
π1, π2, π3 Exogenous re-infection rates
κ1, κ2, κ3 Endogenous reactivation rates
ζT , ζT1, ζT2, ζT3, ζR, ζR1 Treatment rates for TB
δT , δR TB-induced human death rates
ψ Reduced rate of infection with schistosomiasis after recovery from a previous infection
α1 Progression rate from latent to active schistosomiasis infection
α2 Rate of progression from exposed to both TB/schistosomiasis to exposed to TB/active

schistosomiasis
α3 Rate of progression from exogenously re-infected with TB/exposed to schistosomiasis to

exogenously re-infected with TB/active schistosomiasis
ζS , ζS1, ζS2, ζS3 Treatment rates for schistosomiasis
δS Schistosomiasis-induced human death rate
σ Rate of progression from active TB/exposed to schistosomiasis

to active TB/active schistosomiasis
χ1, χ2 Adjustment parameters for increased TB mortality due to co-infection
η1, η2 Adjustment parameters for the increased susceptibility to TB of humans with

latent and active schistosomiasis
ΘRT Adjustment parameters which account for the decreased probability of transmission of TB by

humans exogenously re-infected with TB
ΘRS1,ΘRS2 Adjustment parameters for the increased probability of transmission of TB by

humans exogenously re-infected with TB, and exposed to/active schistosomiasis, respectively
Π1,Π2 Adjustment parameters for the increased probability of infectiousness of humans

with active TB and latent/active schistosomiasis respectively
τ1, τ2 Adjustment parameters for increased TB mortality as a result of exogenous re-infection due to

co-infection
v1, v2, v3 Adjustment parameters which account for schistosomiasis-induced deaths
ΛS Snail population recruitment rate
µS Mortality rate for snails
ε Growth velocity limitation
L0 Miracidia saturation constant
βL Infection rate of miracidia
Ne Human-released egg count
γ Success rate at which eggs transform into miracidia
µL Mortality rate of miracidia
φ Production rate of cercariae
J0 Cercarial saturation constant
βJ Infection rate of cercariae
µJ Mortality rate of cercariae
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where the following lists the infection forces associated with tuberculosis (TB),
schistosomiasis (which results from cercariae penetration), and snail infection by
miracidia, respectively:

λT =
βT (IHT + ΘRT IRT + ΘRS1IRS1 + ΘRS2IRS2 + Π1IST + Π2ITS)

NH
,(2.4)

λJ =
βJJ

J0 + εJ
, (2.5)

λL =
βLL

L0 + εL
. (2.6)

2.1 Basic properties of the TB-schistosomiasis model (2.3)

The basic dynamical properties of the model (2.3) will now be investigated.
Specifically, we establish the following positivity and boundedness results.

2.1.1 Positivity and boundedness of solutions

For the TB-schistosomiasis co-infection model (2.3) to be epidemiologically
relevant, it is critical to demonstrate that every trajectory with positive inaugural
data remains positive for all time and the biological feasible region will also
remain positively-invariant for all time. Using a similar approach in [44, 52], the
following results can be established.

Theorem 2.1. Permit the inaugural data for the model for TB-schistosomiasis
co-infection (2.3) to be given as SH(0) > 0, EHT (0) > 0, IHT (0) > 0, IRT (0) > 0,

THT (0) > 0, EHS(0) > 0, IHS(0) > 0, THS(0) > 0, ETS(0) > 0, IST (0) > 0,

IRS1(0) > 0, EST (0) > 0, IRS2(0) > 0, ITS(0) > 0, L(0) > 0, SS(0) > 0, IS(0) > 0

and J(0) > 0. Then the orbits
(
SH(t), EHT (t), IHT (t), IRT (t), THT (t), EHS(t),

IHS(t), THS(t), ETS(t), IST (t), IRS1(t), EST (t), IRS2(t), ITS(t), L(t), SS(t), IS(t),
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J(t)
)
of the model with positive initial conditions, will remain positive for all time

t > 0.

Proof:
Recall the premier equation of model (2.3), we have

dSH(t)

dt
= ΛH − (λT + λJ + µH)SH(t), (2.7)

which is re-expressed as

d

dt

[
SH(t) exp

{
µHt+

∫ t

0
(λT (τ) + λJ(τ))dτ

}]
≥ ΛH exp

{
µHt+

∫ t

0
(λT (τ) + λJ(τ))dτ

}
.

(2.8)

Hence, proceeding to integrate (2.8) with regards to t ∈ [0, t1], we have

SH(t1) exp
{
µt1+

∫ t1

0
(λT (τ) + λJ(τ))dτ

}
− SH(0)

≥
∫ t1

0
ΛH

[
exp

{
µHy +

∫ y

0
(λT (τ) + λJ(τ))dτ

}]
dy,

(2.9)

So that,

SH(t1) ≥ SH(0) exp
[
− µHt1 −

∫ t1

0
(λT (τ) + λJ(τ))dτ

]
+
[

exp
{
− µHt1 −

∫ t1

0
(λT (τ) + λJ(τ))dτ

}]
×
∫ t1

0
ΛH

[
exp

{
µHy +

∫ y

0
(λT (τ) + λJ(τ))dτ

}]
dy > 0.

(2.10)

Therefore SH(t) > 0, ∀ t > 0.

Equivalently, recalling equations two to the eighteen of model (2.3), we have
that EHT (t) > 0, IHT (t) > 0, IRT (t) > 0, THT (t) > 0, EHS(t) > 0, IHS(t) >

0, THS(t) > 0, ETS(t) > 0, IST (t) > 0, IRS1(t) > 0, EST (t) > 0, IRS2(t) >

0, ITS(t) > 0, L(t) > 0, SS(t) > 0, IS(t) > 0 and J(t) > 0, ∀ t > 0.
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Theorem 2.2. Permit
(
SH(t), EHT (t), IHT (t), IRT (t), THT (t), IHS(t), THS(t),

ETS(t), IST (t), IRS1(t), EST (t), IRS2(t), ITS(t), L(t), SS(t), IS(t), J(t)
)
to be

trajectories of the system (2.3) along side basic circumstances and the biological
reasonable region given by the set

D = DH ×DL ×DS ×DJ ⊂ R14
+ × R1

+ × R2
+ × R1

+ ⊂ R18
+

where:
DH = {(SH , EHT , IHT , IRT , THT , EHS , IHS , THS , ETS , IST , IRS1, EST , IRS2, ITS) ∈
R14

+ : NH ≤ ΛH
µH
}

DL = {L ∈ R1
+ : L ≤ NeγΛH

µLµH
}

DS = {(SS , IS) ∈ R2
+ : NS ≤ ΛS

µS
}

DJ = {J ∈ R1
+ : J ≤ φΛS

µJµS
}

is invariant positively and attracts every positive trajectory of the model (2.3).

Proof:
Summing up the right side of the vector field for the entire human populace in
both patches in (2.3), yields

dNH

dt
= ΛH−µHN− (δT IHT +δRIRT +δSIHS +χ1δT IST +τ1δRIRS1 +v1δSEST

+ (τ2δR + v2δS)IRS2 + (χ2δT + v3δS)ITS . (2.11)

From (2.11), it ensues that dNH
dt ≤ ΛH − µHNH . Hence, dNH

dt ≤ 0 if NH(t) ≥ ΛH
µH

.
Utilizing [25] comparison theorem, we show that

NH(t) ≤ NH(0)e−µH t +
ΛH
µH

(1− e−µH t) (2.12)

Specifically, on the condition thatNH(0) ≤ ΛH
µH

, thenNH(t) ≤ ΛH
µH

for every t >
0. Thus, the set DH is invariant positively. Moreover, if NH(0) > ΛH

µH
, then one or

the other flows invade the set DH in finite time or NH(t) asymptotically advances
in the direction of ΛH

µH
as t→∞. Thus, the set DH attracts all trajectories in R16

+ .

From (2.11), it ensues that dNH
dt ≤ ΛH − µHNH . Hence, dNH

dt ≤ 0 if NH(t) ≥
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ΛH
µH

. Utilizing [25] comparison theorem, we show that

NH(t) ≤ NH(0)e−µH t +
ΛH
µH

(1− e−µH t) (2.13)

Specifically, if NH(0) ≤ ΛH
µH

, then NH(t) ≤ ΛH
µH

for all t > 0. Therefore, the set
DH is invariant in a positive way. Moreover, if NH(0) > ΛH

µH
, then one of the two

happens: the flows penetrate the set DH in fixed time or NH(t) asymptotically
advances in the direction of ΛH

µH
as t→∞. Hence, the set DH serves as an attractor

for every trajectory in R16
+ .

For the concentration of the miracidia, from (2.3), we have

dL

dt
= Neγ(IHS + EST + IRS2 + ITS)− µLL. (2.14)

From (2.14), which ensues that dL
dt ≤

NeγΛH
µH

− µLL since NH = SH + EHT +

IHT+IRT+THT+EHS+IHS+THS+ETS+IST+IRS1+EST+IRS2+ITS ≤ ΛH
µH

=⇒
IHS + ETS + IRS2 + ITS ≤ ΛH

µH
. Thus, dL

dt ≤ 0 if L(t) ≥ NeγΛH
µLµH

. Utilizing [25]
comparison theorem, we reveal that L(t) ≤ L(0)e−µLt + NeγΛH

µLµH
(1− e−µLt).

Specifically, if L(0) ≤ NeγΛH
µLµH

, then L(t) ≤ NeγΛH
µLµH

for all t > 0. Hence, the set
DL is invariant in a positive way. Moreover, if L(0) > NeγΛH

µLµH
, thereupon one of the

two happens: the orbits penetrate the set DL in fixed time or L(t) asymptotically
advances in the direction of NeγΛH

µLµH
as t → ∞. Hence, the set DL serves as an

attractor for every solution in R1
+.

For the entire snail populace, we add up the right hand side of the vector field
of the population of snails in (2.3), which gives

dNS

dt
= ΛS − µSNS . (2.15)

From (2.15), it ensues that dNS
dt ≤ 0 if NS(t) ≥ ΛS

µS
. It implies that NS(t) =

NS(0)e−µSt + ΛS
µS

(1− e−µSt). Then the lim supt→∞NS(t) = ΛS
µS

.
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In particular, if NS(0) ≤ ΛS
µS

, then NS(t) ≤ ΛS
µS

for all t > 0. Hence, the set DS
is invariant in a positive way. Moreover, if NS(0) > ΛS

µS
, thereupon one of the two

happens: the flows enter the set DS in fixed time or NS(t) asymptotically advances
in the direction ΛS

µS
as t→∞. Hence, the set DS attracts every trajectory in R2

+.

For the cercariae concentration, we recall the right hand side of the vector field
J in (2.3), we obtain

dJ

dt
= φIS − µJJ. (2.16)

From (2.16), dJ
dt = φIS − µJJ which follows that dJ

dt ≤
φΛS
µS
− µJJ since

NS = SS + IS ≤ ΛS
µS

=⇒ IS ≤ ΛS
µS

. Therefore, dJdt ≤ 0 if J(t) ≥ φΛS
µJµS

. Utilizing [25]
standard comparison theorem, we reveal that J(t) ≤ J(0)e−µJ t+ φΛS

µJµS
(1− e−µJ t).

Specifically, if J(0) ≤ φΛS
µJµS

, then J(t) ≤ φΛS
µJµS

for all t > 0. Hence, the set DJ is
invariant in a positive way. Moreover, if J(0) > φΛS

µJµS
, thereupon one of the two

happens: the flows enter the set DJ in fixed time or J(t) asymptotically advances
in the direction of φΛS

µJµS
as t → ∞. Thus, the set DJ attracts every trajectory in

R1
+.

From the above, we have shown that DH ,DL,DS and DJ are invariant in a
positive way and since D = DH × DL × DS × DJ , it implies that the set D is
invariant in a positive way and an attractor, so that no trajectory escapes through
any boundary of D.

D =



(SH , EHT , IHT , IRT , THT , EHS , IHS , THS , ETS , IST , IRS1, EST , IRS2,

ITS) ∈ R14
+ : NH ≤ ΛH

µH

L ∈ R1
+ : L ≤ NeγΛH

µLµH

(SS , IS) ∈ R2
+ : NS ≤ ΛS

µS

J ∈ R1
+ : J ≤ φΛS

µJµS

(2.17)

Thus, analyzing the flow patterns produced by the model (2.3) in D suffices.
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We declare, therefore, that the model (2.3) is well-posed mathematically and

epidemiologically.

3 Mathematical Analysis of the Model

We proceed with the analysis of the full co-infection model 2.3.

3.1 Model (2.3)’s local asymptotic stability of the DFE

The model system (2.3) possesses a disease-free equilibrium, that is, the DFE,
represented by

E0 =(S∗H , E
∗
HT , I

∗
HT , I

∗
RT , T

∗
HT , E

∗
HS , I

∗
HS , T

∗
HS , E

∗
TS , I

∗
ST , I

∗
RS1, E

∗
ST , I

∗
RS2, I

∗
TS ,

L∗, S∗S , I
∗
S , J

∗)

=(
ΛH
µH

, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
ΛS
µS

, 0, 0)

It can be shown, employing the next-generation operator method [56](van den
Driessche and Watmough, 2002), that the corresponding effective reproduction
number of the model (2.3), RTS , is represented by

RTS = max {RHT ,RHS} (3.1)

where

RHT =
βT ((1− p)κ1 + p(κ1 + µH))

(κ1 + µH)(ζT + δT + µH)
,

RHS =

√
α1βJβLΛHΛSNeγϕ

J0L0µHµJµLµ2
S(α1 + µH)(ζS + δS + µH)
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are the respective effective reproduction number for TB-only and
schistosomiasis-only disease transmission dynamics in (2.3). Utilizing Theorem 2
in [56], we establish the following conclusion:

Lemma 3.1. The infection-free equilibrium (DFE), E0, is locally asymptotically
stable (LAS) in D on the grounds that RTS < 1 and unstable given that RTS > 1.

The threshold number, RTS , is a calibration of the mean number of secondary
cases created by a single infected human individual in a totally exposed populace
[23]. This implies that a little influx of infected humans would not generate large
outbreaks if RTS < 1, and the epidemic will prevail in the populace if RTS > 1.

3.2 Backward bifurcation analysis

Due to the large number of variables and parameters of model (2.3), it
is mathematically intractable to show the existence of the unique endemic
equilibrium point (EEP). However, we proceed to analyse model (2.3) for the
cause(s) of the existence of the backward bifurcation phenomenon. Adopting the
method in [9], we claim the following result.

Theorem 3.1. If RTS < 1 and the bifurcation coefficients a and b are both positive
(i.e., a > 0, b > 0), then (2.3) exhibits a backward bifurcation at RTS = 1,
otherwise the equation exhibits a forward bifurcation.

Proof: The presence of backward bifurcation is explored utilizing the Center
Manifold Theory as espoused [9].

Let SH = x1, EHT = x2, IHT = x3, IRT = x4, THT = x5, EHS = x6, IHS = x7,
THS = x8, ETS = x9, IST = x10, IRS1 = x11, EST = x12, 1RS2 = x13, ITS = x14,
L = x15, SS = x16, IS = x17 and J = x18, so that NH =

∑14
i=1 xi; hence the model

(2.3) is re-written in the form
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ẋ1 ≡ f1 = ΛH − λTx1 − λJx1 − µHx1,

ẋ2 ≡ f2 = (1− p)λT (x1 + ξx5 + x8) + ζS1x12 − (1− π1)λTx2 − λJx2 −M1x2,

ẋ3 ≡ f3 = pλT (x1 + ξx5 + x8) + κ1x2 + ζS3x14 − λJx3 −M2x3,

ẋ4 ≡ f4 = (1− π1)λTx2 + ζS2x13 − λJx4 −M3x4,

ẋ5 ≡ f5 = ζTx3 + ζRx4 − ξλTx5 − λJx5 − µHx5,

ẋ6 ≡ f6 = λJ(x1 + x5 + ψx8) + ζT1x10 + ζR1x11 − η1λTx6 −M4x6,

ẋ7 ≡ f7 = α1x6 + ζT2x13 + ζT3x14 − η2λTx7 −M5x7,

ẋ8 ≡ f8 = ζSx7 − λTx8 − ψλJx8 − µHx8,

ẋ9 ≡ f9 = (1−m)η1λTx6 + λJx2 − (1− π2)λTx9 −M6x9,

ẋ10 ≡ f10 = mη1λTx6 + λJx3 + λJx4 + κ2x9 −M7x10,

ẋ11 ≡ f11 = (1− π2)λTx9 −M8x11,

ẋ12 ≡ f12 = (1− f)η2λTx7 + α2x9 − (1− π3)λTx12 −M9x12,

ẋ13 ≡ f13 = (1− π3)λTx12 + α3x11 −M10x13,

ẋ14 ≡ f14 = fη2λTx7 + κ3x12 + σx10 −M11x14,

ẋ15 ≡ f15 = Neγ(x7 + x12 + x13 + x14)− µLx15,

ẋ16 ≡ f16 = ΛS − λLx16 − µSx16,

ẋ17 ≡ f17 = λLx16 − µSx17,

ẋ18 ≡ f18 = φx17 − µJx18.

(3.2)

Then the forces of infection for our model (3.2) become:

λT =
βT (x3 + ΘRTx4 + ΘRS1x11 + ΘRS2x13 + Π1x10 + Π2x14)∑14

i=1 xi
,

λJ =
βJx18

J0 + εx18
, λL =

βLx15

L0 + εx15
.

where M1 = κ1 + µH , M2 = ζT + δT + µH , M3 = ζR + δR + µH , M4 = α1 + µH ,
M5 = ζS + δS + µH , M6 = α2 + κ2 + µH ,
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M7 = ζT1 + σ + χ1δT + µH , M8 = α3 + ζR1 + τ1δR + µH ,
M9 = ζS1 + κ3 + v1δS + µH , M10 = ζT2 + ζS2 + τ2δR + v2δS + µH , and
M11 = ζT3 + ζS3 + χ2δT + v3δS + µH .

Consider the case with βT = β∗T and βJ = β∗J as bifurcation parameters.
Figuring out βT = β∗T and βJ = β∗J from RTS = 1 yields

βT = β∗T =
(κ1 + µH)(ζT + δT + µH)

[(1− p)κ1 + p(κ1 + µH)]
,

βJ = β∗J =
J0L0µHµJµLµ

2
S(α1 + µH)(ζS + δS + µH)

α1βLΛHΛSNeγφ

(3.3)

The system (3.2) possesses a Jacobian at the infection-free equilibrium with
βT = β∗T , is represented by:

Jβ∗T = J(E0)|β∗T =

(
P11 P12

P21 P22

)
, (3.4)

where

P11 =



−µH 0 −β∗T −β∗T ΘRT 0 0 0 0 0

0 −M1 (1 − p)β∗T (1 − p)β∗T ΘRT 0 0 0 0 0

0 κ1 pβ∗T −M2 pβ∗T ΘRT 0 0 0 0 0

0 0 0 −M3 0 0 0 0 0

0 0 ζT ζR −µH 0 0 0 0

0 0 0 0 0 −M4 0 0 0

0 0 0 0 0 α1 −M5 0 0

0 0 0 0 0 0 ζS −µH 0

0 0 0 0 0 0 0 0 −M6


,

(3.5)
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P12 =



−β∗T Π1 −β∗T ΘRS1 0 −β∗T ΘRS2 β∗T Π2 0 0 0 −βJA∗
(1 − p)β∗T Π1 (1 − p)β∗T ΘRS1 ζS1 (1 − p)β∗T ΘRS2 (1 − p)β∗T Π2 0 0 0 0

pβ∗T Π1 pβ∗T ΘRS1 0 pβ∗T ΘRS2 p)β∗T Π2 + ζS3 0 0 0 0

0 0 0 ζS2 0 0 0 0 0

0 0 0 0 0 0 0 0 0

ζT1 ζR1 0 0 0 0 0 0 βJA∗

0 0 0 ζT2 ζT3 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


,

(3.6)

P21 =



0 0 0 0 0 0 0 0 κ2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 α2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 Neγ 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


, (3.7)

P22 =



−M7 0 0 0 0 0 0 0 0

0 −M8 0 0 0 0 0 0 0

0 0 −M9 0 0 0 0 0 0

0 α3 0 −M10 0 0 0 0 0

σ 0 κ3 0 −M11 0 0 0 0

0 0 Neγ Neγ Neγ −µL 0 0 0

0 0 0 0 0 −βLA∗∗ −µS 0 0

0 0 0 0 0 βLA∗∗ 0 −µS 0

0 0 0 0 0 0 0 φ −µJ


.

(3.8)
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and

A∗ =
ΛH
J0µH

, A∗∗ =
ΛS
L0µS

,
(3.9)

Consider the case when RTS = 1. We assume that the maximum of

RTS = max {RHT ,RHS} = RHT . (3.10)

Figuring out βT = β∗T from RHT = 1 gives

βT = β∗T =
(κ1 + µH)(ζT + δT + µH)

[(1− p)κ1 + p(κ1 + µH)]
(3.11)

Matrix Jβ∗T possesses a right eigenvector given by w = (w1, w2, ..., w18)T , where

w1 = −
(β∗Tw3 + βJA∗w18)

µH
, w2 =

(1− p)β∗T
M1(M2 − pβ∗T )

,

w3 =
M1

(1− p)κ1β∗T
, w4 = 0, w5 =

ζTw3

µH
,

w6 =
βJA∗w18

M4
, w7 =

µJµLµSw18

βLφNeγA∗∗
, w8 =

ζSµJµLµSw18

βLφNeγA∗∗
,

w9 = w10 = w11 = w12 = w13 = w14 = 0,

w15 =
µJµSw18

βLφA∗∗
, w16 = −µJw18

φ
,w17 =

µJw18

φ
,w18 = w18 > 0.

(3.12)

In addition, Jβ∗T possesses a left eigenvector v = (ν1, ν2, ...., ν18) fulfilling
v.w = 1, with
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ν1 = 0, ν2 =
κ1

M1(M2 − pβ∗T )
, ν3 =

M1

(1− p)κ1β∗T
,

ν4 =
((1− p)ν2 + pν3)β∗TΘRT

M3
, ν5 = 0, ν6 =

µJν18

βJA∗
,

ν7 =
βLϕNeγA∗∗
µLµSM5

, ν8 = 0, ν9 =
κ2ν10 + α2ν12

M6
,

ν10 =
((1− p)ν2 + pν3)β∗TΠ1 + ζT1ν6 + σν14

M7
,

ν11 =
((1− p)ν2 + pν3)β∗TΘRS1 + ζR1ν6 + α3ν13

M8
,

ν12 =
ζS1ν2 + κ3ν14 +Neγν15

M9
,

ν13 =
((1− p)ν2 + pν3)β∗TΘRS2 + ζS2ν4 + ζT2ν7 +Neγν15

M10
,

ν14 =
((1− p)ν2 + pν3)β∗TΠ2 + ζS3ν3 + ζT3ν7 +Neγν15

M11
,

ν15 =
βLφA∗∗ν18

µLµS
, ν16 = 0, ν17 =

φν18

µS
, ν18 = ν18 > 0.

(3.13)

We compute the connected non-zero partial derivatives of the right sides of the
modified system (3.2), (appraised at the disease-free equilibrium with βT = β∗T )
that the related bifurcation coefficients, a and b, are given by

a =
n∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0), and b =

n∑
k,i=1

vkwi
∂2fk
∂xi∂β∗T

(0, 0), (3.14)
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where

a =
2β∗T
x∗1

[(((1− p)ν2 + pν3)w2β
∗
TΘRT (1− π1)

M3
+ η1((1−m)ν9w6 +mν10w6)

+ η2((1− f)ν12w7 + fν14w7)
)
w3

]
+

2β∗J
J0

[
ψν6w8w18

]
+

2β∗J
J0

[(
ν6
ζTw3

µH
+ ν9

(1− p)β∗T
M1(M2 − pβ∗T )

+
(((1− p)ν2 + pν3)β∗TΠ1 + ζT1ν6 + σν14

M7

)
w3

)
w18

]
−

2β∗T
x∗1

[(
ν2(((1− p) + (1− π1))w2 + (1− p)(w3 + (1− ξ)w5 + w6 + w7))

+ pν3(w2 + w3 + (1− ξ)w5 + w6 + w7) + η1ν6w6 + η2ν7w7

)
w3

]
−

2β∗J
J0

[(
ν2w2 + ν3w3 +

ν6

J0

(β∗TJ0w3 + β∗Jx
∗
1w18

µH
+ εx∗1w18

))
w18

]
− 2βL

L0

[(εφx∗16w15 + L0µJw18

L0φ

)
ν17w15

]
(3.15)

and

b = ((1− p)ν2 + pν3)w3 > 0. (3.16)

However, since our interest is in identifying the parameter(s), which is(are)
responsible for causing the bifurcation coefficient, a, to be negative, i.e. a < 0, it is
worthy of note, at this juncture, that [34–40,53] had established that the relative
rate of infectiousness of exogenously re-infected humans (ΘRT , in this case) as a
source of backward bifurcation in TB transmission dynamics. Similarly, it has also
been reported by [1, 51] that re-infection is a cause of the backward bifurcation
phenomenon in schistosomiasis disease dynamics. A careful scrutiny of (3.15)
shows that eliminating the rate of relative infectiousness of exogenously re-infected
humans (ΘRT ) and the reduced rate of re-infection with schistosomiasis (ψ) by
setting their respective values to zero (i.e., ΘRT = ψ = 0), will not completely
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yield the desired result of eliminating the backward bifurcation phenomenon in a
TB-schistosomiasis co-infection model. Hence, there must be other parameters
responsible for this dilemma. Further scrutiny identifies the relative rates at
which humans with latent schistosomiasis (η1) and active schistosomiasis (η2) are
infected with TB, respectively, the treatment rate for all individuals infectious
with only TB (ζT ), the fraction of individuals who experience fast progression
to active TB (p), the adjustment parameter which accounts for the elevated
probability of infectiousness of people with active TB and latent schistosomiasis
(Π1), the treatment rate of individuals with active TB exposed to schistosomiasis
(ζT1) and the rate of progression to active TB/exposed to schistosomiasis to
active TB/active schistosomiasis (σ), as being responsible for the non-elimination
of the backward bifurcation phenomenon from the TB-schistosomiasis co-infection
model (2.3).

Thus, this study has shown that the existence of the relative rate of
infectiousness of exogenously re-infected humans (ΘRT ), the relative rates at which
humans with latent schistosomiasis (η1) and active schistosomiasis (η2) are infected
with TB, respectively and the reduced rate of re-infection with schistosomiasis
(ψ), the fraction of individuals who experience fast progression to active TB
(p), the adjustment parameter which accounts for the elevated probability of
infectiousness of humans with active TB and latent schistosomiasis (Π1), the
treatment rate of individuals with active TB exposed to schistosomiasis (ζT1) and
the rate of progression to active TB/exposed to schistosomiasis to active TB/active
schistosomiasis (σ) induce backward bifurcation in the disease dynamics of TB in
the presence of schistosomiasis. Thus, the effective reproduction number, RTS ,
less than one, becomes a necessary but not a satisfactory condition for the control
of both diseases in the population.
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3.3 Global asymptotic stability (GAS) of DFE

We go ahead to investigate the global asymptotic stability (GAS) of the DFE of
a special case of (2.3) with negligible relative rate of infectiousness of exogenously
re-infected humans (ΘRT = 0), the relative rates at which humans with latent
schistosomiasis (η1 = 0) and active schistosomiasis (η2 = 0) are infected with TB,
respectively and the reduced rate of re-infection with schistosomiasis (ψ = 0),
the fraction of individuals who experience fast progression to active TB (p =

1), the adjustment parameter which accounts for the elevated probability of
infectiousness of humans with active TB and latent schistosomiasis (Π1 = 0),
the treatment rate of individuals with active TB exposed to schistosomiasis
(ζT1 = 0) and the rate of progression to active TB/exposed to schistosomiasis to
active TB/active schistosomiasis (σ = 0) in the absence of treatment for infected
cases of TB and schistosomiasis, respectively. This leads to the elimination of
the following human sub-populations: individuals exogenously re-infected with
TB (IRT = 0), individuals treated for TB (THT = 0), individuals treated for
schistosomiasis (THS = 0), individuals exogenously re-infected with TB and
exposed to schistosomiasis (IRS1 = 0), and individuals exogenously re-infected
with TB and active schistosomiasis (IRS2 = 0). Using the idea in [36], we claim
the following result.

Theorem 3.2. The DFE, E0, of system (2.3) without the relative rate of
infectiousness of exogenously re-infected humans (ΘRT = 0), the relative rates
at which humans with latent schistosomiasis (η1 = 0) and active schistosomiasis
(η2 = 0) are infected with TB, respectively and the reduced rate of re-infection with
schistosomiasis (ψ = 0) is globally asymptotically stable (GAS) on the condition
that RTS < 1 and unstable on the condition that RTS > 1.

Proof: In order to prove the GAS of the DFE, we employ the comparison theorem
[25]. To do this, we rewrite the infected classes in (2.3) as

dX1

dt
= (F − V )X1 −DX1 (3.17)
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where

X1 = [EHT , IHT , EHS , IHS , ETS , IST , EST , ITS , IS , L, J ]T

That is, 

ĖHT

İHT

ĖHS

İHS

ĖTS

İST

ĖST

İTS

İS

L̇

J̇



= (F − V )



EHT

IHT

EHS

IHS

ETS

IST

EST

ITS

IS

L

J



−D



EHT

IHT

EHS

IHS

ETS

IST

EST

ITS

IS

L

J



, (3.18)

where

F =

(
F11(6×6) F12(6×5)

F21(5×6) F22(5×5)

)
, (3.19)

F11 =



0 0 0 0 0 0

κ1 βT 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 κ2 0


, F12 =



0 0 0 0 0

0 βTΠ2 0 0 0

0 0 0 0 βJΛH
J0µH

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, (3.20)

F21 =


0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 , F22 =


0 0 0 0 0

κ3 0 0 0 0

0 0 0 βLΛS
L0µS

0

0 0 0 0 0

0 0 0 0 0

 . (3.21)
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V =

(
V11(6×6) V12(6×5)

V21(5×6) V22(5×5)

)
, (3.22)

where

V11 =



M
′
1 0 0 0 0 0

0 M
′
2 0 0 0 0

0 0 M
′
3 0 0 0

0 0 −α1 M
′
4 0 0

0 0 0 0 M
′
5 0

0 0 0 0 0 M
′
6


, (3.23)

V12 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, (3.24)

V21 =


0 0 0 0 −α2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −Neγ 0 0

0 0 0 0 0 0

 , V22 =


M
′
7 0 0 0 0

0 M
′
8 0 0 0

0 0 M
′
9 0 0

−Neγ −Neγ 0 M
′
10 0

0 0 −φ 0 M
′
11


(3.25)

with M
′
1 = κ1 + µH , M

′
2 = δT + µH , M

′
3 = α1 + µH , M

′
4 = δS + µH , M

′
5 =

α2 +κ2 +µH , M
′
6 = σ+χ1δT +µH , M

′
7 = κ3 +v1δS +µH , M

′
8 = χ2δT +v3δS +µH ,
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M
′
9 = µS , M

′
10 = µL, and M

′
11 = µJ .

And

D =

(
D11(6×6) D12(6×5)

D21(5×6) D22(5×5)

)
, (3.26)

where

D11 =



0 0 0 0 0 0

κ1G1 βTG1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, D12 =



0 0 0 0 0

0 βTΠ2G1 0 0 0

0 0 0 0 βJJG2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,

(3.27)

D21 =


0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 , D22 =


0 0 0 0 0

0 0 0 0 0

0 0 0 βLLG3 0

0 0 0 0 0

0 0 0 0 0

 (3.28)

and

G1 = 1− SH
NH

, G2 =
ΛH
J0µH

− SH
J0 + εJ

, G3 =
ΛS
L0µS

− SS
L0 + εL

(3.29)

which implies that D ≥ 0 since, SH ≤ NH ≤ ΛH/µH , SH
J0+εJ ≤

ΛH
J0µH

, and since
SS ≤ NS ≤ ΛS/µS , SS

L0+εL ≤
ΛS
L0µS

for t > 0 in D. It, therefore, follows that
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

ĖHT

İHT

ĖHS

İHS

ĖTS

İST

ĖST

İTS

İS

L̇

J̇



≤ (F − V )



EHT

IHT

EHS

IHS

ETS

IST

EST

ITS

IS

L

J



, (3.30)

Using the phenomenon that the eigenvalues of the matrix F − V possess
negative real components (see local stability consequence, when ρ(FV −1) <

1 on the condition that RTS < 1 which is commensurate with F − V

possessing eigenvalues with negative real components whenever RTS < 1 [56]), it
ensues that the linearised differential inequality system (3.30) is stable whenever
RTS < 1. Consequently, (EHT , IHT , EHS , IHS , ETS , IST , EST , ITS , IS , L, J) →
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) as t → ∞. Thus, by the comparison theorem in [25]
(EHT , IHT , EHS , IHS , ETS ,IST , EST , ITS , IS , L, J) → (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) as
t → ∞. Substituting EHT = IHT = EHS = IHS = ETS = IST = EST =

ITS = IS = L = J = 0 in the special case of equation (2.3) gives SH(t) → S∗H ,
SS(t) → S∗S , as t → ∞. Thus, (SH , EHT , IHT , EHS , IHS , ETS , IST , EST , ITS , L,

SS , IS , J) → (S∗H , 0, 0, 0, 0, 0, 0, 0, 0, 0, S
∗
S , 0, 0) as t → ∞ for RTS < 1. Thus, E0,

is globally asymptotically stable if RTS < 1 when ΘRT = η1 = η2 = ψ = 0.

4 Numerical Simulations

The system (2.3) is simulated, numerically, in order to investigate the impact of
varying certain critical parameters describing the relative infectiousness of humans
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with latent and active schistosomiasis, the relative infectiousness of exogenously
re-infected humans, the reduced re-infection with schistosomiasis and reinfection
exogenous-wise on the population dynamics of TB-schistosomiasis co-infection. In
the numerical simulations carried out in this section, we used specific demographic
and epidemiological characteristics pertinent to Nigeria (see Table 2 and Table
3, respectively). In 2017, the total population of Nigeria was estimated to be
189,559,502 [15] . Hence, it follows that, at the DFE, ΛH/µH = 189, 559, 502. The
mean mortality rate per year in Nigeria is µH = 0.02041 [55]. Hence, the average
recruitment rate into the population is ΛH = 3, 868, 900 per year. Moreover, in
2017, the total incidence of TB in Nigeria was estimated to be 407,000 [61] while
the total incidence of schistosomiasis in Nigeria was approximately 29,000,000 [61].

Figure 1 shows the cumulative TB incidence when the rate of relative
infectiousness of humans with latent schistosomiasis (η1) was varied from 0
to 2. The simulation reveals that the frequency of TB increased as the rate
of relative infectiousness of humans with latent schistosomiasis increases (i.e.,
η1 → 2) amongst human individuals with active schistosomiasis as in Figure 1(b).
The result of simulation shows that the frequency of TB in a population could
increase as the rate of relative infectiousness of humans with latent schistosomiasis
increases. Reducing the rate of relative infectiousness of humans with latent
schistosomiasis (i.e., η1 → 0) as a control strategy could result in the avoidance of
about 12, 960 cases of new TB infections.

Figure 2 shows the cumulative TB frequency when the rate of relative
infectiousness of humans with active schistosomiasis (η2) was varied from 0 to
4. The simulation reveals that the frequency of TB increased as the rate of
relative infectiousness of humans with active schistosomiasis increases (i.e., η2 → 4)
amongst human individuals with active schistosomiasis as in Figure 2(b). The
outcome of the simulation shows that the frequency of TB in a population could
increase as the rate of with active schistosomiasis increases. Reducing the of
relative infectiousness of humans with active schistosomiasis (i.e., η2 → 0) as a
control strategy could result in the prevention of about 27, 670 cases of new TB
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Table 2: Parameter values (and ranges) of the model system (2.3)

Parameters Values Sample ranges References

µH 0.02041 year−1 [0.0143, 0.03] [55]
ΛH 3 868 900 year−1 [3,000,000, 4,000,000] [15]
βT Variable year−1 [0, 2] [60]
ξ 0.075 year−1 [0, 1] [19]
p 0.1 year−1 [0, 1] Assumed
f 0.1 year−1 [0, 0.005] [47]
m 0.1 year−1 [0, 3] [47]
π1 0.4 year−1 [0, 1] [19]
π2 0.45 year−1 [0, 1] [19]
π3 0.5 year−1 [0, 1] [19]
k1 0.005 year−1 [0.005, 0.05] [7]
k2 0.005 year−1 [0.005, 0.05] [7]
k3 0.005 year−1 [0.005, 0.05] [7]
ζT 0.75 year−1 [0.5, 1] [36]
ζT1 0.75 year−1 [0.5, 1] [36]
ζT2 0.75 year−1 [0.5, 1] [36]
ζT3 0.75 year−1 [0.5, 1] [36]
ζR 0.75 year−1 [0.5, 1] [36]
ζR1 0.75 year−1 [0.5, 1] [36]
ζS 0.23 year−1 [0.23, 0.49] [22]
ζS1 0.23 year−1 [0.23, 0.49] [22]
ζS2 0.23 year−1 [0.23, 0.49] [22]
ζS3 0.23 year−1 [0.23, 0.49] [22]

infections.

Figure 3 shows the cumulative TB frequency when the rate of relative
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Table 3: Parameter values (and ranges) of the model system (2.3) (cont’d)
Parameters Values Sample ranges References

δT 0.1 year−1 [0, 0.5] [6]
δR 0.1 year−1 [0, 0.5] [6]
δS 1.4 year−1 [0.365, 2.19] [32]
α1 6.5 year−1 [0, 10] [32]
α2 6.5 year−1 [0, 10] [32]
α3 6.5 year−1 [0, 10] [32]
ψ 0.85 year−1 [0.05, 0.85] Assumed
σ 0.5 year−1 [0, 1] Assumed
χ1 0.65 year−1 [0, 1] Assumed
χ2 0.85 year−1 [0, 1] Assumed
η1 2.0 year−1 [0, 3] Assumed
η2 4.0 year−1 [0, 5] Assumed
ΘRT 0.5 year−1 [0, 1] Assumed
ΘRS1 1.5 year−1 [0, 3] Assumed
ΘRS2 1.5 year−1 [0, 3] Assumed
Π1 1.8 year−1 [0, 3] Assumed
Π2 2.0 year−1 [0, 3] Assumed
v1 0.001 year−1 [0, 1] Assumed
v2 0.002 year−1 [0, 1] Assumed
v3 0.003 year−1 [0, 1] Assumed
µS 0.5 year−1 [0, 1] [22]
ΛS 73,000 year−1 [73,000, 109,500] [13]
ε 182.5 year−1 [0, 182.5] [13]
βL 1.475 year−1 [0, 2] Assumed
L0 108 year−1 [9×107, 1×108] [13]
Ne 300 year−1 [0, 800] [13]
γ 0.8468 year−1 [0, 1] [13]
µL 328.5 year−1 [100, 400] [13]
βJ 4.19 year−1 [0, 5] Assumed
J0 9×107 year−1 [8×107, 9×107] [13]
µJ 3.0 year−1 [0, 3] [13]
τ1 0.1 year−1 [0, 1] Assumed
τ2 0.2 year−1 [0, 1] Assumed
φ 500 year−1 [0, 1,000] [13]
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Figure 1: Cumulative number of new TB cases with βT = 1.2, and varied rate of
relative infectiousness of humans with latent schistosomiasis (η1).

0 2 4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

(a) Time (years)

C
u
m

u
la

ti
v
e
 n

u
m

b
e
r 

o
f 
n
e
w

 c
a
s
e
s
 

o
f 
T

B
 a

m
o
n
g
s
t 
E

H
S
  
  
  
  
  
 

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3
x 10

4

(b) Time (years)

C
u
m

u
la

ti
v
e
 n

u
m

b
e
r 

o
f 
n
e
w

 c
a
s
e
s
 

o
f 
T

B
 a

m
o
n
g
s
t 
I H

S
  
  
  
  
  
 

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

(c) Time (years)

C
u
m

u
la

ti
v
e
 n

u
m

b
e
r 

o
f 
n
e
w

 c
a
s
e
s
 

o
f 
T

B
 a

m
o
n
g
s
t 
E

T
S
  
  
  
  
  
 

0 2 4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

(d) Time (years)

C
u
m

u
la

ti
v
e
 n

u
m

b
e
r 

o
f 
n
e
w

 c
a
s
e
s
 

o
f 
T

B
 a

m
o
n
g
s
t 
E

S
T
  
  
  
  
  
 

η
2
 = 4

η
2
 = 0

η
2
 = 0

η
2
 = 4

η
2
 = 4

η
2
 = 0

η
2
 = 4

η
2
 = 0

Figure 2: Cumulative number of new TB cases with βT = 1.2, and varied rate of
relative infectiousness of humans with active schistosomiasis (η2).
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infectiousness of exogenously re-infected humans with TB (ΘRT ) was varied from
0 to 1. The simulation reveals that the frequency of TB increased as the rate of
relative rate of infectiousness of exogenously re-infected humans with TB increases
(i.e., ΘRT → 1) amongst human individuals active schistosomiasis as in Figure
3(b). The simulation result shows that the frequency of TB in a population could
increase as the relative rate of infectiousness of exogenously re-infected humans
with TB increases. Reducing the relative rate of infectiousness of exogenously
re-infected humans with TB (i.e., ΘRT → 0) as a control strategy could result in
the prevention of about 530 cases of new TB infections.
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Figure 3: Cumulative number of new TB cases with βT = 1.2, and varied relative
rate of infectiousness of exogenously re-infected humans with TB (ΘRT ).

When the rate of cercarial generation in the aquatic environment (φ) is
changed from 200 to 1,000, Figure 4 displays the cumulative TB incidence. The
simulation’s result indicates that when the rate of cercarial development in an
aquatic environment increases, the frequency of tuberculosis (TB) increases (i.e.,
φ → 1, 000) amongst human individuals with active schistosomiasis as in Figure
4(b). The result of the simulation shows that the frequency of TB in a population
could increase as the rate of cercarial production in the aquatic environment
increases. Reducing the rate of cercarial production in the aquatic setting (i.e.,
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φ → 200) as a control strategy could result in the prevention of about 31, 240
cases of new TB infections.
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Figure 4: Cumulative number of new TB cases with βT = 1.2, and varied rate of
cercarial production in the aquatic environment (φ).

5 Conclusions

To investigate how the relative infectiousness of TB-infected individuals who
become active through exogenous re-infection affects the total TB burden in
the population, a unique deterministic mathematical model is created. The
following is a summary and availability of the main findings: It was shown that
the disease-free state was locally asymptotically stable (LAS) when the related
effective reproduction number of the model (2.3) was less than unity. Furthermore,
the model was shown to illustrate the backward bifurcation phenomenon caused
by the relative rate of infectiousness (ΘRT ) of the exogenously re-infected
individuals, which represents the percentage of individuals who rapidly progress
to active tuberculosis (p), the relative rates at which humans with latent
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schistosomiasis (η1) and active schistosomiasis (η2) contract tuberculosis, and
the decreased rate of schistosomiasis re-infection (ψ), the adjustment parameter
which accounts for the increased probability of infectiousness of humans with
active TB and latent schistosomiasis (Π1), the treatment rate of individuals
with active TB exposed to schistosomiasis (ζT1) and the rate of progression to
active TB/exposed to schistosomiasis to active TB/active schistosomiasis (σ)
induce backward bifurcation in the disease dynamics of TB in the presence
of schistosomiasis. Additionally, a special case of the model system (2.3) was
shown to be asymptotically stable globally (GAS), When the associated effective
reproduction number was below unity.

This study has revealed that TB and schistosomiasis control programmes
that uphold the respective treatment of active cases of both diseases and the
deliberate reduction of cercarial production in the aquatic environment should be
tenaciously pursued, since it has been shown that such programmes have the
propensity to result in significant decline in the burden of TB-schistosomiasis
co-infection in the populace. Also, to prevent the situation where the backward
bifurcation phenomenon may occur, control measures should target the following
parameters that are responsible for its occurrence, namely: the relative rate of
infectiousness of exogenously re-infected humans (ΘRT ), the relative rates at which
humans with latent schistosomiasis (η1) and active schistosomiasis (η2) are infected
with TB, respectively and the reduced rate of re-infection with schistosomiasis
(ψ), the fraction of individuals who experience fast progression to active TB
(p), the adjustment parameter which accounts for the increased probability of
infectiousness of humans with active TB and latent schistosomiasis (Π1), the
treatment rate of individuals with active TB exposed to schistosomiasis (ζT1) and
the rate of progression to active TB/exposed to schistosomiasis to active TB/active
schistosomiasis (σ).

The incidence of TB-schistosomiasis co-infection in the population could be
significantly reduced by lowering the value of critical parameters such as the
rate of relative infectiousness of humans with latent and active schistosomiasis,
respectively, the rate of infectiousness of exogenously re-infected humans with
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TB combined with effective treatment, and the rate of cercarial production in the
aquatic environment. These findings were obtained from the numerical simulation
of the model system (2.3).
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