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Abstract 

In this paper, we derive a class of symmetric p-stable Obrechkoff methods via Padé 

approximation approach (PAA) for the numerical solution of special second order initial 

value problems (IVPs) in ordinary differential equations (ODEs). We investigate 

periodicity analysis on the proposed scheme to verify p-stability property. The new 

algorithms possess minimum phase-lag error which shows that they can accurately solve 

oscillatory problems. Reports on several numerical experiments are provided to illustrate 

the accuracy of the method. 

1. Introduction  

Our task in this paper is to approximate the solution of the special second order IVPs 

of the form 

( ) ( ) ( ) ,,,, 0000 yxyyxyyxfy ′=′==′′                                (1) 
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where ( ) ,R∈xy  ,:
gg

f RRR →×  and the first derivative does not appear explicitly. 

Such problems are often encountered in applied science and engineering. Popular 

examples include: mechanical systems without dissipation, satellite tracking, celestial 

mechanics, etc. The solution of the type (1) which is considered in this paper is a priori 

known to be periodic, and when integrated numerically, the desire is that the numerical 

solution also preserves the analogical periodicity of the analytic solution [10-23]. 

Furthermore, equation (1) is known to have inherent “periodic stiffness” [12] which 

makes it difficult to solve analytically. Numerical methods must be employed to obtain 

its approximate solution. The well-known Stomer-Cowell method with step number 

greater than two exhibits orbital instability making it unsuitable to numerically solve (1). 

Unlike other stability requirements, 2-step p-stable methods remain desirable for the 

solution of (1). There is vast literature on approximate solution of (1), see [7], [8], [9], 

[10], [11], [31], [32], [3-5], [2], [24-27], [6], [11], [32], [28-30], [10], [35-37], [20], [33]. 

The significance of this present work is five-fold; (i) to illustrate the strength of PAA in 

the development of numerical methods capable of handling IVPs that are periodic in 

nature, (ii) derive new p-stable methods and investigate their phase-lag properties, (iii) 

provide useful insight on p-stable Obrechkoff methods, (iv) remark that “direct 

application of PAA framework” on the development of p-stable numerical methods will 

often be limited to schemes of order ,4≤p  (v) wide application of the derived methods. 

In what follows, we have demonstrated the accuracy of our methods using stiff, linear 

and non-linear IVPs in ODEs. 

Consider the Obrechkoff method of the form 
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for the numerical solution of the problem (1). When the method (2) is applied on test 

equation (3) 

R∈λ=λ+′′ yyy ,,0
2                                              (3) 

we get the characteristics equation as 
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where 0=λ− hv  and 
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Definition 1.1. The method in (2) is said to be symmetric if ,jkj −α=α  

....,,2,1,0, kjjkj =β=β −  

Definition 1.2. The method in (2) is said to have order p if the truncation error 

associated with the linear difference operator is given as 

( ) ,,2 11
2

2 ++−
+

+ <η<+= nkn
p

p xxpyhCTE                             (6) 

where 2+pC  is the error constant dependent on h. 

Definition 1.3. The method in (2) is said to have interval of periodicity ( )2
0,0 v  if 

for all ( )2
0

2
0 ,0 vv ∈  the roots of (4) are complex and at least two of them lie on the unit 

circle and others lie inside the unit circle. 

Definition 1.4. The method in (2) is said to be p-stable if its interval of periodicity is 

( ).,0 ∞  

2. Derivation of the Method 

In the spirit of [10], we consider the following algebraic expressions 

( ) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))zPzPzPzPzPzPz jjjjjj −+ξ−+−ξ−=ξΠ 222,           (7) 

with C∈z  and jP  described by the expression 
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whose roots is given by 
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such that 

( ) ( ) 0,
12
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is known as the ( )jj, -diagonal Padé approximation to .
z

e  Observe that (7) is of the 

form (4). In what follows, the basic idea is to obtain the stability function of an 

integration scheme and compare it with (7) to determine the corresponding coefficients 

of the numerical method. 

Consider the symmetric Obrechkoff methods (2), when applied on (3) yield the 

following stability function 

( ) ( ) ( ) ξβ−β−α+ξβ−β−α=ξΠ 21
4
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Without loss of generality, we compare (11) with results from which 2=j  in (7) and 

obtain the following symmetric p-stable Obrechkoff method 

( )[ ] ( ) ,
2

1

72
10

12
2 11

4

11

2

11 




 ′′+′′−′′
γ

+′′+′′+′′
γ

=+− −+−+−+ nnnnnnnnn yyy
h

yyy
h

yyy  (12) 

where .10
3≥γ  Figure 1 shows an indefinite progression of the new method along the 

positive real axis satisfying Definition 1.4, 

 

Figure 1. The stability plot of scheme (12). 

Remarkably, the stability region of the famed most accurate p-stable formulas 

satisfying Definition 1.4 is given in Figure 2  

 

Figure 2. The stability plot of the famed most accurate p-stable method. 
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Also, in [10] the following methods are proposed 
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where h is the step size and 
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When applied to the scalar test (3) yields a difference equation with the following 

characteristics polynomial 

[ ( ) ] .0
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The interval of periodicity of this scheme is found to be indeed p-stable. Figure 3 shows 

the stability region of the integration scheme. Clearly, this grows indefinitely along the 

positive real axis with however some insignificant jumps at the origin which could be as 

a result of parameter choice. 

 

Figure 3. Stability plot showing the interval of periodicity of scheme (13). 

Next, we carry out phase-lag analysis on the method (12) following [20-22], see also 

[27-29] and [31-33]. The phase-lag analysis of numerical method is described by 
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and when expanded has a non-vanishing phase-lag order d and phase-lag constant 2+dc . 
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In what follows, the application of (18) on the derived method (12) yields the 

following phase-lag  

( ) ( ) ,00
120

1 42
2

86 ++
+ +−=+− dd

d zzczz                              (19) 

where 2+− dc  is the phase-lag error (PLE) constant, and d, the phase-lag order. 

Remark. For all values of j in (7), p-stable numerical methods obtained by directly 

applying PAA will be limited to order of accuracy .4≤p  

3. Numerical Experiment and Results 

In this section, we carry out numerical experiments in order to show the accuracy of 

the new algorithm. Consider the following second order IVPs. 

Example 1. (An orbital problem): Source [12] 

ix
eyy 001.0+−=′′  

( ) ( ) 1,9995.00,10
2 −==′= iiyy                                    (20) 

and has a theoretical solution 

( ) ( ) ( )xvxuxy +=  

( ) xxxxu sin0005.0cos +=  

( ) .cos0005.0sin xxxxv −=                                          (21) 

The initial value problem (20) represents a motion on a perturbed circular orbits in 

the complex plane in which the point ( )xy  slowly spirals outward such that its distance 

from the origin at a any given time x is described by 
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( ) ( ) ( ).22
xvxux +=Ψ                                              (22) 

Using the predictor 

,2 1
2

12 +++ =+− nnnn fhyyy                                         (23) 

the system of equation in (20) can be approximated in the interval [0, 40] which 

corresponds to 20 orbits of the points ( ).xy  The integration is then carried out with 

uniform meshsizes 

( ) .1013,
2

=π= qh
q

                                               (24) 

The numerical results from the new p-stable Obrechkoff methods comparing with 

existing p-stable numerical methods from the literature are presented in Table 1 and 

Table 2 respectively. 

Table 1. ( ) .34490019719765.1=Ψ fx  

q h New symmetric Obrechkoff method (12) ( Ψ ) Error 

3 32

π
 1.001848523273178 1.24E-4 

4 42

π
 1.001801747000679 1.70E-4 

5 52

π
 1.001987397382566 1.54E-5 

6 62

π
 1.001974909077729 2.93E-6 

7 72

π
 1.001973299992589 1.32E-6 

8 82

π
 1.001972374396628 3.98E-7 

9 92

π
 1.001972355120986 3.79E-7 

10 102

π
 1.001972345485908 3.69E-7 
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Table 2. Continuation of Table 1. 

q h Method in 

[12] 

Error Method in 

[10] 

Error Method in 

[2] 

Error 

3 32

π
 0.965645 3.63E-2 0.994863 7.11E-3 NA NA 

4 42

π
 0.993734 8.23E-3 0.997223 4.75E-3 1.004118 2.15E-3 

5 52

π
 0.999596 2.38E-3 0.997578 4.39E-3 1.002856 8.84E-4 

6 62

π
 NA NA 0.997687 4.39E-3 1.002400 4.3E-4 

7 72

π
 NA NA 0.997730 4.24E-3 NA NA 

8 82

π
 NA NA 0.997748 4.22E-3 NA NA 

9 92

π
 1.001829 1.43E-4 0.997757 4.22E-3 1.002057 8.50E-5 

10 102

π
 NA NA 0.997761 4.21E-3 NA NA 

In what follows, we apply the derived method (12) to investigate the orbital property 

of problem (20), 

 

Figure 4. Numerical simulation of an orbital problem comparing with its analytical 

solution. 
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Example 2. (Stiff Oscillatory Problem: Source [14]) 

Consider the stiff oscillatory problem defined by 

( ) ( ) ( ) ( ) ( ) ( ) 5with00,10,3cos
3

2
cos82 ==′=







 +=+′′ myytttymty           (25) 

whose exact solution is 

( ) ( ).5cos3coscos
3

1
tttty ++=                                        (26) 

In similar manner, we implement the system (25) using meshsize 
8

π=h  at .10π=t  

 

Figure 5. Numerical simulation of stiff oscillatory problem comparing with its analytical 

solution. 

Example 3. (Undamped Duffing Problem: Source [3]) 

Consider again a non-linear duffing problem, 

( ) ( ) ( ) .00,0,cos3 =′=µδ=++′′ yAytyyy                          (27) 

The initial condition described by A is the value of the Galerkin’s approximation Gy  at 

.0=t  Problem (27) is forced by a harmonic function with parameter values 002.0=δ  

and .01.1=µ  However, by Urabe’s method applied to Galerkin’s procedure, Van 

Dooren has carried out computation of the Galerkin’s approximation of order 9=p  to a 

periodic solution having the same period as the forcing term with a precision of the 

coefficients of :
10

1

12
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( )∑
=

+ µ+α=
5

0

12 ,12cos

i

iG tiy                                          (28) 

in a simplified form, (28) becomes 

( ) ( ) ( )ttttyG µα+µα+µα+µα= 7cos5cos3coscos 7531  

( ) ( ),11cos9cos 119 tt µα+µα+  (29) 

where 

6
5

3
31 10304014.0,10246946143.0,362001794775.0 −− ×=α×=α=α  

.105676.0,10460964452.0,10374.0
15

11
12

9
9

7
−−− ×=α×=α×=α          (30) 

Using step size 
32

π=h  at ,40π=t  we apply the new method on problem (27) and 

obtained the following behaviours 

 

Figure 6. Numerical simulation of undamped duffing problem comparing with its 

analytical solution. 

4. Conclusion 

PAA is an interesting method for the development of numerical schemes that must 

possess p-stability property. In view of the foregoing, we present a class of symmetric 

p-stable Obrechkoff methods which possess minimum phase-lag error for the solutions of 

IVPs that are periodic in nature. However, we desired higher order p-stable method, but 

due to the limitation encountered in the use of PAA, we therefore remark that numerical 

algorithms obtained by directly applying PAA will often be limited to order ( ),4≤p  see 
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also the works in [7, 8, 10]. In particular, the new results in this article enjoy 

considerable order of accuracy and stronger p-stability property which are illustrated in 

Table 1 and Figures 1, 4, 5, 6, respectively. 
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