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Abstract

In this work, through the convex structure, we introduce the concept of the
extended convex quasi s-metric spaces. In addition, through Mann’s iterative
technique, we theorize the existence of a unique fixed point for two types of
contraction mapping in extended convex quasi s-metric spaces.

1 Introduction

Since 1922 when introduced S. Banach in his doctoral thesis, theorem that there
is a unique fixed point for each contraction over an entire metric space. We can
notice the great interest in developing fixed point theory due to the diversity of
its applications in many branches of mathematics, especially in metric spaces.
Hundreds of scientific papers have been presented to generalize this result [2–4,10,
11,13,15].

Czerwik [5] in 1993 introduced a new s-metric space with a more generalized
inequality of the triangle (with a coefficient of s ≥ 1), which is called a s-metric
space. Later on, a new space, known as a quasi s-metric space, was proposed by
Felhi et al. [8], which is created by taking both the s-metric and quasi metric space
.
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Takahashi [14] introduced the idea of a convex structure in 1970 and named the
space with a convex structure as “convex metric space”. Then many researchers
studied exsists the fixed point in it, as in the papers of Goebel and Kirk [9], Shih [6]
and Reich and Shafrir [12].

Chen et al. [7] introduced the convex b metric space and extend Maan’s
iteration algorithm. The first step in in our this work involves applying the convex
suructure and extended quasi-b-metric space to interoduce a space referred to as
the extended convex quasi s-metric spaces (Shortly ECQSMS). Furthermore, we
consider two types of contraction mapping in ECQSMS and verify that these
mappings possess a fixed point that is unique by Mann’s iterative technique.

Definition 1.1. [8] Given a set C 6= � with a constant s ≥ 1 and a mapping
~ : C×C −→ [0,∞) which is said to be a quasi s-metric mapping, if the following
conditions are true for every v, r, t ∈ C:

(i) ~(v, r) = 0 and ~(r, v) = 0 ⇔ v = r;

(ii) ~(v, r) ≤ s[~(v, t) + ~(t, r)].

A pair (C, ~) is called a quasi s-metric space (Shortly QSMS).

Definition 1.2. A mapping ~µ : C × C → [0,∞) is named a extended quasi
s−metric (Shortly EQSMS) on a nonempty set C if for any n,m, v ∈ C and a
mapping µ : C × C → [1,∞), it satisfies the following conditions:

(i) ~µ(n,m) = 0 and ~µ(m,n) = 0 ⇔ n = m;

(ii) ~µ(n,m) ≤ µ(n,m)[~µ(n, v) + ~µ(v,m)].

The pair (C, ~µ) is called EQSMS.

Definition 1.3. [1, 8] Every sequence {ln} in C converges to some ω ∈ C ⇔

lim
n−→∞

~µ(ln, ω) = lim
n−→∞

~µ(ω, ln).
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The left (right)-Cauchy sequence is defined as defined in the papers [1, 8].

Definition 1.4. Let (C, ~) be a EQSMS and I = [0, 1]. Define a continuous
function F : C × C × I → C. Then F is said to be the convex structure on C if
the following holds:

~(v, F (n,m; τ)) ≤ τ~(v, n) + (1− τ)~(v,m) (1.1)

for all v, n,m ∈ C and τ ∈ I.

2 Main Results

In this section, we begin by defining convex quasi s metric space (shortly
CQSMS) and then proceed to define extended convex quasi s metric space (shortly
ECQSMS).

Definition 2.1. Let (C, ~) be a QSMS with s ≥ 1 and I = [0, 1]. Define a
continuous function F : C×C× I → C. Then F is said to be the convex structure
on C if for all r, n,m ∈ C and τ ∈ I, the following hold:

~(r, F (n,m; τ)) ≤ τ~(r, n) + (1− τ)~(r,m) (2.1)

and

~(F (n,m; τ), r) ≤ τ~(n, r) + (1− τ)~(m, r) (2.2)

Then, we say that (C, ~, F ) is a CQSMS.

Example 2.1. Let C = R and for any a, b ∈ C, l > 1, define the function such as

~(a, b) = |a− b+ 2|l if a = 1 6= b

= |a− b|l if o.w.

To prove that (C, ~, F ) is a CQSMS with s = 2l−1, we will use the fact

(u+ v)l ≤ 2l−1(ul + vl)
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holds, for any u, v ∈ [0,∞) and l ≥ 1. Indeed, (C, ~) is a QSMS. However, (C, ~)
is not s-metric space because ~ does not satisfy symmetric condition.

~(1, 3) = |1− 3 + 2|l = 1 6= ~(3, 1) = |1− 3|l = 2l.

Let F : C × C ×
{
1
2

}
→ C be the mapping defined as

F (a, b; τ) =
a+ b

2

for any a, b ∈ C. To prove that F is convex structure on C. For any a, b, k ∈ C,
for a = 1 6= b, we have

~(1, F (b, k;
1

2
)) =

∣∣∣∣1− b+ k

2
+ 2

∣∣∣∣l
≤ 2l−1

[∣∣∣∣3− b2

∣∣∣∣l + ∣∣∣∣3− k2

∣∣∣∣l
]

≤ 2−1[|3− b|l + |3− k|l]

= τ~(1, b) + (1− τ)~(1, k),

and for otherwise, we get

~(a, F (b, k;
1

2
)) =

∣∣∣∣a− b+ k

2

∣∣∣∣l
≤ 2l−1

[∣∣∣∣a− b2

∣∣∣∣l + ∣∣∣∣a− k2

∣∣∣∣l
]

≤ 2−1
[
|a− b|l + |a− k|l

]
= τ~(a, b) + (1− τ)~(a, k).

By the same argument we can prove that ~(F (b, k; 12), a) ≤ τ~(b, a)+(1−τ)~(k, a).
Hence, (C, ~, F ) is a CQSMS with s = 2l−1.

Definition 2.2. Let (C, ~µ) be a EQSMS and I = [0, 1]. Define a continuous
function F : C × C × I → C. Then F is said to be the convex structure on C if
for all s, n,m ∈ C and τ ∈ I, the following hold:

~µ(s, F (n,m; τ)) ≤ τ~µ(s, n) + (1− τ)~µ(s,m) (2.3)
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and

~µ(F (n,m; τ), s) ≤ τ~µ(n, s) + (1− τ)~µ(m, s). (2.4)

Then, we say that (C, ~µ, F ) is an ECQSMS space.

Let (C, ~µ, F ) is a ECQSMS and H : C → C be a mapping, a sequence xn
where

xn+1 = F (xn, Hxn; τn), n ∈ N

is called Mann’s iteration sequence for H.

Theorem 2.2. Let (C, ~µ, F ) be a complete ECQSMS with a a contraction
mapping µ : C × C → (1,∞) and H : C → C; that is, there exists α ∈ [0, 1)

such that

~µ(Hs,Hr) ≤ α~µ(s, r),

for all s, r ∈ C. Let us choose v0 ∈ C such that ~µ(v0, Hv0) = N <∞ and define
vn = F (vn−1, Hvn−1; τn−1), where 0 ≤ τn−1 < 1 and n ∈ N. If [τn−1 + α(1 −
τn−1)] ≤ 1

(µ(vn−1,vn))2
, then H has a unique fixed point in C.

Proof. The following inequality holds for any n ∈ N,

~µ(vn, vn+1) = ~µ(vn, F (vn, Hvn; τn)) ≤ (1− τn)~µ(vn, Hvn)

and

~µ(vn, Hvn)

≤ µ(vn, Hvn)~µ(vn, Hvn−1) + µ(vn, Hvn)~µ(Hvn−1, Hvn)

≤ µ(vn, Hvn)~µ(F (vn−1, Hvn−1; τn−1), Hvn−1) + µ(vn, Hvn)α~µ(vn−1, vn)

≤ µ(vn, Hvn)[τn−1~µ(vn−1, Hvn−1) + α(1− τn−1)~µ(vn−1, Hvn−1)]

= µ(vn−1, vn)[τn−1 + α(1− τn−1)]~µ(vn−1, Hvn−1).
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Since [τn−1 + α(1− τn−1)] ≤ 1
(µ(vn−1,vn))2

for any n ∈ N, we get

~µ(vn, Hvn) ≤ µ(vn−1, vn)[τn−1 + α(1− τn−1)]~µ(vn−1, Hvn−1) (2.5)

<
1

[µ(vn−1, vn)]
~µ(vn−1, Hvn−1). (2.6)

That means that,~µ(vn, Hvn) is a non-negative real decreasing sequence. Hence,
there exists η ≥ 0 such that

lim
n−→∞

~µ(vn, Hvn) = η.

Suppose that η > 0 , letting n→∞ in inequality (2.5), we get

η ≤ 1

[µ(vn−1, vn)]
η < η,

and this contraction. Then η = 0 and we have

~µ(vn, vn+1) ≤ (1− τn)~µ(vn, Hvn) < ~µ(vn, Hvn),

that means that

lim
n−→∞

~µ(vn, vn+1) = 0.

By the same procedure, we can write

~µ(vn+1, vn) < ~µ(vn, Hvn),

that means that

lim
n−→∞

~µ(vn+1, vn) = 0.
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Now, we provide proof that {vn} is a Cauchy sequence. For any n, k ∈ N, we have

~µ(vn, vn+k+1)

= ~µ(vn, F (vn+k, Hvn+k, τn+k))

≤ τn+k~µ(vn, vn+k) + (1− τn+k)~µ(vn, Hvn+k)

≤ τn+kµ(vn, vn+k[~µ(vn, Hvn+k) + ~µ(Hvn+k, vn+k)] + (1− τn+k)~µ(vn, Hvn+k)

= [τn+kµ(vn, vn+k) + 1− τn+k]~µ(vn, Hvn+k) + τn+kµ(vn, vn+k)~µ(Hvn+k, vn+k)

≤ [τn+kµ(vn, vn+k) + 1]~µ(vn, Hvn+k) + τn+kµ(vn, vn+k)~µ(Hvn+k, vn+k)

≤ µ(vn, Hvn+k)[τn+kµ(vn, vn+k) + 1][~µ(vn, Hvn) + ~µ(Hvn, Hvn+k)]

≤ µ(vn, Hvn+k)[τn+kµ(vn, vn+k + 1]α~µ(vn, vn+k)

≤ µ(vn, Hvn+k)[τn+kµ(vn, vn+k) + 1]µ(vn, Hvn+k−1)[τn+k−1µ(vn, vn+k−1) + 1]α2

~µ(vn, vn+k−1)

≤ ....

≤ µ(vn, Hvn+k)[τn+kµ(vn, vn+k) + 1]µ(vn, Hvn+k−1)[τn+k−1µ(vn, vn+k−1) + 1]....

µ(vn, Hvn+k−(k−1))[τn+k−(k−1)µ(vn, vn+k−(k−1)) + 1]αk~µ(vn, vn).

Hence, lim
n−→∞

~µ(vn, vn+k+1) = 0 for all k.

Therefore, the sequence {vn} is a right-Cauchy in C. By the same process, we
can prove that {vn} is a left-Cauchy sequence. Hence, {vn} is a Cauchy sequence
in the ECQSMS C.

Since (C, ~µ) is complete, the sequence vn converges to some v∗ ∈ C, that is

lim
n−→∞

~µ(vn, v∗) = lim
n−→∞

~µ(v∗, vn) = 0.

The continuity of H yields,

lim
n−→∞

~µ(Hvn, Hv∗) = lim
n−→∞

~µ(Hvn+1, Hv
∗) = 0.

Using the fact that the limit is unique, we get Hv∗ = v∗. Therefore, v∗ is a fixed
point of H. 2

Earthline J. Math. Sci. Vol. 14 No. 4 (2024), 605-615



612 Qusuay H. Alqifiary

Theorem 2.3. Let (C, ~µ, F ) be a complete ECQSMS with a mapping µ : C×C →
[1,∞) and a contraction mapping H : C → C; that is, there exists k ∈ (0, 12) such
that

~µ(Hv,Hu) ≤ k[~µ(u,Hu) + ~µ(v,Hv)],

for all u, v ∈ C. Let us choose v0 ∈ C such that ~µ(v0, Hv0) = N <∞ and define
vn = F (vn−1, Hvn−1; τn−1), where 0 < τn−1 ≤ 1

4[µ(r,s)]2
and n ∈ N. If for any

r, s ∈ C, k ∈ [0, 1
4[µ(r,s)]2

], then H has a unique fixed point in C.

Proof. We have for any n ∈ N, there holds

~µ(vn, vn+1) = ~µ(vn, F (vn, Hvn; τn)) ≤ (1− τn)~µ(vn, Hvn) ≤ ~µ(vn, Hvn)

and

~µ(vn, Hvn)

= ~µ(F (vn−1, Hvn−1; τn−1), Hvn)

≤ τn−1~µ(vn−1, Hvn) + (1− τn−1)~µ(Hvn−1, Hvn)

≤ τn−1~µ(vn−1, Hvn) + ~µ(Hvn−1, Hvn)

≤ τn−1~µ(vn−1, Hvn) + k~µ(vn−1, Hvn−1) + k~µ(vn, Hvn)

≤ τn−1µ(vn−1, Hvn)[~µ(vn−1, Hvn−1) + ~µ(vn, Hvn)] + k~µ(vn−1, Hvn−1)

+ k~µ(vn, Hvn)

≤ τn−1µ(vn−1, Hvn)~µ(vn−1, Hvn−1) + kτn−1µ(vn−1, Hvn)~µ(vn−1, Hvn−1)

+ kτn−1µ(vn−1, Hvn)~µ(vn, Hvn) + k~µ(vn−1, Hvn−1) + k~µ(vn, Hvn),

then, we get

[1− kτn−1µ(vn−1, Hvn)− k]~µ(vn, Hvn)

≤ [kτn−1µ(vn−1, Hvn) + τn−1µ(vn−1, Hvn) + k]~µ(vn−1, Hvn−1)

then ~µ(vn, Hvn) ≤ [kτn−1µ(vn−1,Hvn)+τn−1µ(vn−1,Hvn)+k]
[1−kτn−1µ(vn−1,Hvn)−k] ~µ(vn−1, Hvn−1) and since

[kτn−1µ(vn−1, Hvn) + τn−1µ(vn−1, Hvn) + k]

[1− kτn−1µ(vn−1, Hvn)− k]
≤ 9

11
,
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then
~µ(vn, Hvn) <

9

11
~µ(vn−1, Hvn−1) (2.7)

which enables us to deduce that {~µ(vn, Hvn)} is decreasing sequence of
non-negative reals. Hence, there exists ρ ≥ 0 such that lim

n−→∞
~µ(vn, Hvn) = ρ.

Letting n → ∞ in (2.7), we get that ρ ≤ 9
11ρ < ρ, a contradiction. Hence, we

obtain that ρ = 0; i.e.
lim

n−→∞
~µ(vn, Hvn) = 0.

Similarly, we can see that

lim
n−→∞

~µ(Hvn, vn) = 0.

Now, we show that {vn} is Cauchy sequence. For any n, k ∈ N, we have

~µ(vn, vn+k+1)

= ~µ(vn, F (vn+k, Hvn+k, τn+k))

≤ τn+k~µ(vn, vn+k) + (1− τn+k)~µ(vn, Hvn+k)

≤ τn+kµ(vn, vn+k[~µ(vn, Hvn+k) + ~µ(Hvn+k, vn+k)] + (1− τn+k)~µ(vn, Hvn+k)

= [τn+kµ(vn, vn+k) + 1− τn+k]~µ(vn, Hvn+k) + τn+kµ(vn, vn+k)~µ(Hvn+k, vn+k)

≤ [τn+kµ(vn, vn+k) + 1]~µ(vn, Hvn+k) + τn+kµ(vn, vn+k)~µ(Hvn+k, vn+k).

Hence, lim
n−→∞

~µ(vn, vn+k+1) = 0 for all k.

Therefore, the sequence {vn} is a right-Cauchy in C. By the same process, we
can prove that {vn} is a left-Cauchy sequence. Hence, {vn} is a Cauchy sequence
in the ECQSMS C.

Since (C, ~µ) is complete, the sequence vn converges to some v∗ ∈ C, that is
lim

n−→∞
~µ(vn, v∗) = lim

n−→∞
~µ(v∗, vn) = 0.

The continuity of H yields,

lim
n−→∞

~µ(Hvn, Hv∗) = lim
n−→∞

~µ(Hvn+1, Hv
∗) = 0.

Earthline J. Math. Sci. Vol. 14 No. 4 (2024), 605-615



614 Qusuay H. Alqifiary

Using the fact that the limit is unique, we get Hv∗ = v∗. Therefore, v∗ is a fixed
point of H. 2
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