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Abstract

In recent years, there have been many interesting usages for differential
subordinations of analytic functions in Geometric Function Theory of
Complex Analysis. The concept of the first and second-order differential
subordination have been pioneered by Miller and Mocanu. In 2011,
the third-order differential subordination were defined to give a new
generalization to the concept of differential subordination. While the
fourth-order differential subordination has been introduced in 2020. In the
present article, we introduce new concept that is the Kth-order differential
subordination of analytic functions in the open unit disk U.
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1 Definitions and Main Results

Denote H(U) the family of analytic functions in the open unit disk U = {z ∈ C :

|z| < 1}. For a positive integer number n ∈ N and a ∈ C, we indicate by

H[a, n] =
{
f ∈ H(U) : f(z) = a+ anz

n + an+1z
n+1 + · · · , z ∈ U

}
.

Also, let A be the subclass of H(U) consisting of functions of the form:

f(z) := z +
∞∑
n=2

anz
n (z ∈ U). (1.1)

Now we recall the principle of subordination between analytic functions, let
the functions f and g be analytic in U , we say that the function f is subordinate to
g, if there exists a Schwarz function w analytic in U with w(0) = 0 and |w(z)| < 1

(z ∈ U) such that f(z) = g (w(z)). This subordination is indicated by f ≺ g or
f(z) ≺ g(z) (z ∈ U). Furthermore, if the function g is univalent in U , then we have
the following equivalent (see [10]), f(z) ≺ g(z) ⇐⇒ f(0) = g(0)andf(U) ⊂ g(U).

The theory of differential subordination in C is the generalization of differential
inequality in R. Many of the significant works on differential subordination have
been pioneered by Miller and Mocanu, and their monograph [10] compiled their
great efforts in introducing and developing the same. In recent years, various
authors have successfully applied the theory of first and second order differential
subordination to address many important problems in this field for example (see
[5, 6, 9, 12, 14,18–21]).

The concept of the third-order differential subordination in the open unit disk
U was introduced by Antonino and Miller [1] in 2011. They extended the theory
of second-order differential subordination in U introduced by Miller and Mocanu
[10] to the third-order case that satisfy the third-order differential subordination
{ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z); z) : z ∈ U} ⊂ Ω. Recently, the several
authors have considered the applications of these results to third-order differential
subordination for analytic functions in U for example (see [1,3,4,7,8,13,15–17]). In
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2020, Atshan et al. [2] extended the theory of third-order differential subordination
in U introduced by Antonino and Miller [1] to the fourth-order case. They
determined properties of functions p that satisfy the fourth-order differential
subordination {ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z), z4p′′′′(z); z) : z ∈ U} ⊂ Ω. Now,
we investigate the problem of determining properties of functions p that satisfy
the following Kth-order differential subordination:

{ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z), . . . , zk−1p(k−1)(z), zkp(k)(z); z) : z ∈ U} ⊂ Ω,

k = 2, 3, . . . .

Definition 1.1. [10] Let Q denote the family of functions q(z) that are analytic
and univalent on the set U \ E(q(w)), where

E(q(w)) =

{
ζ ∈ ∂U : lim

z→ζ
q(w) =∞

}
is such that min |q′(ζ)| = ρ > 0 for ζ ∈ ∂U \ E(q). Further let the subfamily of Q
for which q(0) = a be denoted by Q(a) and Q(1) = Q1.

Definition 1.2. [10] Let ψ : CK+1 × U × U −→ C and the function h(z) be
univalent in U . If the function p(z) is analytic in U and satisfies the following
kth-order differential subordination:

ψ(p(z), zp′(z), z2p′′(z), z3p′′′(z), . . . , zk−1p(k−1)(z), zkp(k)(z); z) ≺ h(z), (1.2)

then p(z) is called a solution of the differential subordination. A univalent function
q(z) is called a dominant of the solutions of the differential subordination, or more
simply a dominant if p(z) ≺ q(z) for all p(z) satisfying (1.2). A dominant q̃(z)
that satisfies q̃(z) ≺ q(z) for all dominants of (1.2) is said to be the best dominant
of (1.2).

Lemma 1.3. Let z0 ∈ U with r0 = |z0|. For n ∈ N \ {k − 2}, let f(z) = anz
n +

an+1z
n+1 + · · · be continuous on U r0 and analytic in Ur0 ∪ {z0}, with f(z) 6= 0. If

|f(z0)| = max
{
|f(z)| : z ∈ U r0

}
, (1.3)

|f ′(z0)| = max
{
|f ′(z)| : z ∈ U r0

}
, (1.4)
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and
|f (l)(z0)| = max

{
|f (l)(z)| : z ∈ U r0

}
(l ≥ 2) (1.5)

then there exists a τ ≥ n such that

z0f
′(z0)

f(z0)
= τ, (1.6)

Re

(
z0f
′′(z0)

f ′(z0)
+ 1

)
≥ τ, (1.7)

Re

(
z0(z0(z0f

′(z0))
′)′

z0f ′(z0)

)
≥ τ2, (1.8)

Re

(
z0(z0(z0(z0f

′(z0))
′)′)′

z0f ′(z0)

)
≥ τ3, (1.9)

then (k − 1) times differentiating to get

Re

(
z0(· · · (z0(z0(z0f ′(z0))′)′)′ · · · )′

z0f ′(z0)

)
≥ τk−2. (1.10)

Proof. We only need to show that relation (1.10) holds true. This Lemma 1.3
can be verified by the method of induction. The relations (1.6), (1.7) were due to
Miller and Mocanu [10] and (1.8) were proved in [11], (1.9) were also proved in [2].
Thus, the proof of the Lemma is completed.

Lemma 1.4. Let p(z) = a+anz
n+an+1z

n+1+ · · · be analytic in U, with p(z) 6= a

z0 ∈ U and τ ≥ n, and q ∈ Q(a), with = |z0|. If there exists points z0 = r0e
iθ0 ∈ U

and w0 ∈ ∂U \ E(q) such that p(z0) = q(w0), p(U r0) ⊂ q(U),

Re
w0q

′′(w0)

q′(w0)
≥ 0, and Re

zp′(z)

q′(w)
≤ τ, (1.11)

Re
w2
0q
′′′(w0)

q′(w0)
≥ 0, and Re

z2p′′(z)

q′(w)
≤ τ2, (1.12)

Re
wk−20 q(k−1)(w0)

q′(w0)
≥ 0, and Re

zk−2p(k−2)(z)

q′(w)
≤ τk−2, (1.13)

when z ∈ U r0 and w ∈ ∂U \E(q), then there exists a real constant τ ≥ n ≥ 3 such
that
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z0p
′(z0) = τw0q

′(w0), (1.14)

Re

(
z0p
′′(z0)

p′(z0)
+ 1

)
= τRe

w0q
′′(w0)

q′(w0)
+ k ≥ τ

[
Re

w0q
′′(w0)

q′(w0)
+ 1

]
, (1.15)

Re

(
z20p
′′′(z0)

p′(z0)
+ 1

)
≥ τ2

[
Re

w2
0q
′′′(w0)

q′(w0)

]
+(k2−3k+3) ≥ τ2

[
Re

w2
0q
′′′(w0)

q′(w0)

]
+1,

(1.16)
or

Re
z20p
′′′(z0)

p′(z0)
≥ τ2

[
Re

w2
0q
′′′(w0)

q′(w0)

]
, (1.17)

Re

(
z30p

(4)(z0)

p′(z0)

)
≥ τ3Re

(
w3
0q

(4)(w0)

q′(w0)

)
, (1.18)

then (k − 1) times differentiating to get

Re
zk−20 p(k−1)(z0)

p′(z0)
≥ τk−2

[
Re

wk−20 q(k−1)(w0)

q′(w0)

]
. (1.19)

Proof. We only need to show that relation (1.19) holds true. This Lemma 1.4 can
be verified by the method of induction. The relations (1.14), (1.15) were due to
Miller and Mocanu [10] and (1.17) were proved in [11], (1.18) were also proved
in [2]. Thus, the proof of the Lemma is completed.

Definition 1.5. Let Ω be a set in C, q ∈ Q and n ∈ N \ {k − 2}. The class of
admissible functions Ψn[Ω, q] consists of those functions ψ : CK+1 ×U ×U −→ C
that satisfy the following admissibility condition:

ψ(r1, r2, r3, . . . , rk, rk+1; z) /∈ Ω (z ∈ U),
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whenever

r1 = q(ξ), r2 = τξq′(ξ),

Re

(
r3
r2

+ 1

)
≥ τRe

(
ξq′′(ξ)

q′(ξ)
+ 1

)
,

Re

(
r4
r2

+ 1

)
≥ τ2Re

(
ξ2q′′′(ξ)

q′(ξ)
+ 1

)
,

...

Re

(
rk
r2

+ 1

)
≥ τk−2Re

(
ξk−2q(k−1)(ξ)

q′(ξ)
+ 1

)
,

Re

(
rk+1

r2
+ 1

)
≥ τk−1Re

(
ξk−1q(k)(ξ)

q′(ξ)
+ 1

)
,

where z ∈ U, ξ ∈ ∂U \ E(q), and τ ≥ n.

Theorem 1.6. Let p ∈ H[a, n] with n ∈ N\{k−2}. Also, let q ∈ Q(a) and satisfy
the following conditions:

Re

(
ξk−2q(k−1)(ξ)

q′(ξ)

)
≥ 0,

∣∣∣∣∣ξk−2p(k−1)(ξ)q′(ξ)

∣∣∣∣∣ ≤ τk−2, (1.20)

where z ∈ U, ξ ∈ ∂U \ E(q) and τ ≥ n. If Ω is a set in C, ψ ∈ Ψn[Ω, q] and

ψ(p(z), zp′(z), z2p′′(z), z3p(3)(z), . . . , zk−1p(k−1)(z), zkp(k)(z); z) ∈ Ω, (1.21)

then
p(z) ≺ q(z).

Proof. If we assume that p(z) ⊀ q(z), then there exist point z0 = r0e
iθ0 ∈ U

and s0 ∈ ∂U \ E(q) such that p(z0) = q(s0) and p(U r0) ⊂ q(U). From (1.20), we
see that the conditions (1.11), (1.12) and (1.13) of Lemma 1.4 are satisfied when
z ∈ U r0 and s0 ∈ ∂U \E(q). Since all the conditions of that Lemma are satisfied,
conclusions (1.14),(1.15),(1.17), (1.18) and (1.19) follow. Using these results of
Lemma 1.5 leads to

ψ(p(z), zp′(z), z2p′′(z), z3p(3)(z), . . . , zk−1p(k−1)(z), zkp(k)(z); z) /∈ Ω.
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Since this contradicts (1.21), we must have p(z) ≺ q(z).
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