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Abstract

A class of high-order continuous extended linear multistep methods
(HOCELMs) is proposed for solving systems of ordinary differential equations
(ODEs). These continuous schemes are obtained through multistep
collocation at various points to create a single block method with higher
dimensions. This class of schemes consists of A-stable methods with a
maximum order of p ≤ 14, capable of yielding moderately accurate results
for equations with several eigenvalues of the Jacobians located close to the
imaginary axis. The results obtained from numerical experiments indicate
that these schemes show great promise and competitiveness when compared
to existing methods in the literature.

1 Introduction

For many years, significant interest has been devoted to the development of efficient
schemes with good stability for solving stiff problem of the form:

y′ = Ay; y(a) = y0, a ≤ t ≤ b, (1)
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where y ∈ Rv, the matrix A is an v × v with its eigenvalues {λi}vi=1 such that
Re (λi) < 0 and the stiffness ratio is max |Re(λi)|

min |Re(λi)| . Although the use of ODEs in
(1) is often encountered in atmospheric convention, control theory and biological
system.

According to Cash [1], a fundamental requirement to integrate (1) is to have
a numerical scheme equipped with high order and good stability properties.
Meanwhile, Dahlquist [2] order and stability criteria limit the possibility of deriving
high order A-stable linear multistep methods (LMMs). This allows the backward
differentiation formula (BDF) in Curtis and Hirschfelder [3] to be the most used
code for solving (1).

This pessimistic result enabled Bickart and Rubin [4] to modify the traditional
LMM to a different class of schemes. On this note, Enright [5] proposed a special
class of the Obrechkoff schemes [6], which is A-stable for k ≤ 2 and of order p ≤ 4.
Some other works related to multi-derivative schemes include: [7–10]. The use of
hybrid schemes to bypass the Dahlquist Barrier theorem for LMMs has also been
considered; see [11–19]. However, it was noted in Gupta [20] that the algorithm
procedure for the hybrid scheme is more computationally intensive due to the
occurrence of an off-step function in the method, which requires more predictors
during implementation.

A different approach known as the boundary value method (BVM), which
overcomes the results in Dahlquist, has been considered and fully documented in
[21–26]. The BVM implementation technique (also known as a one-block scheme)
simultaneously computes an approximation of the block solution of (1) and (2)
[27–31]. The scheme has been known to overcome the problems associated with
the conventional step-by-step implementation [32]. This approach is self-starting
and allows a change of stepsize in the implementation. Cash [33] further noted
that the boundary value approach improves the A-stable algorithm of BDF to
order 4.

By adopting the boundary value approach, we propose a continuous extended
Enright’s method through the multistep collocation procedure. The newly
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derived block scheme will generate a block of numerical solutions (y1, y2, · · · , yN )T

simultaneously. We note that block schemes came into existence through Milne [34]
as an alternate way of generating initial solutions for predictor-corrector schemes
(see, [35–41]). In the spirit of Conte and de Boor [42], computer algorithms
associated with predictor-corrector schemes are more complicated, especially when
introducing subroutines in starting solution values for the methods, thus yielding
longer computer time and more computational work. On this premise, the general
use of the proposed self-starting schemes cannot be overemphasized [43].

The article is organized as follows: In Section 2, we obtain a continuous
approximation for the theoretical solution y(t), which is used to generate the
constituent LMMs in the block schemes for solving (1). Section 3 is devoted to
the properties of the proposed HOCELMs, while the implementation strategy of
the continuous schemes is given in Section 4. The numerical results obtained with
the new schemes are reported in Section 5, along with the existing methods.

2 General Derivation and Some Analysis of the
Continuous Scheme

Consider the first order initial value problems of the form

y′ = f(t, y), t0 ≤ t ≤ T, y(t0) = y0, (2)

over the discrete interval tn = t0 +nh, n = 1(1)N , step size h = T−t0
N . The second

derivative k-step Enright method for numerical solution of the continuous problem
in (2) is of the form

yn+k − yn+k−1 = h
k∑
j=0

αjfn+j + h2βkf
′
n+k, (3)

where yn+j ≈ y(tn + jh), fn+j ≡ f(tn + jh, yn + jh) and f ′n+k = df(t,y(t))
dt |t=tn+j

y=yn+j ,
j = 0, 1, · · · , k. The scheme in (3) is A−stable for k = 1, 2, A(α)− stable for
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k = 3(1)7 and instability set in from k ≥ 8 (see, Fig. 1).

(a)

k=1

k=2

k=7

-5 5 10
Re z

-10

-5

5

10

(b)

k=8

-10 -5 5 10 15
Re z

-15

-10

-5

5

10

15

Figure 1: Stability plot of the (a): stable and (b): unstable SDLMM of Enright
(3) of order p = k + 2.

By adopting the approach of Cash [7], we extended the works of Enright in (3)
to the form

yn+i − yn+i−1 = h
k∑
j=0

αi,jfn+j + h2
i∑

j=i−1
βi,jf

′
n+j , i = 1, 2, · · · , k. (4)

We observe that for i = k in (4), it becomes a scheme that is zero-stable for
k ≥ 2, and in the spirit of Brugnano and Trigiante [23], it is only suitable
for approximating the solution of non-stiff systems in (2). This is because the
absolute stability regions of this scheme are all bounded and tend to be smaller as
k increases. On this note, we consider the continuous scheme with i = 1, 2, · · · , k
in (4), which produces a block scheme having an improved A-stability property up
to order p = 14. To obtain the continuous methods, the theoretical solution y(t)
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is approximated by a continuous Y (t) of the form

y(t) ≈ Y (t) =
k+3∑
j=0

bn,j(t− tn)j , (5)

where bn,i are required coefficients. The resultant coefficients bn,i are derived from
a system of k + 4 equations with k + 4 unknowns obtained from

Y (tn+i−1) = yn+i−1, i = t

Y ′′n+i = f ′ (tn+i, yn+i)

Y ′′n+i−1 = f ′ (tn+i−1, yn+i−1)

Y ′n+j = f (tn+j , yn+j) , j = 0, 1, 2, · · · , k.

(6)

In the spirit of Motsa [44], the unknown coefficients with the constituent
methods are generated through the Mathematica code at the collocation points
tn+i to obtain

y(t) = yn+i−1 − h
k∑
j=0

αi,jfn+j + h2
i∑

j=i−1
βi,jf

′
n+j ; i = 1, 2, · · · , k. (7)

The general code for deriving the continuous schemes in (7) is given as follows:

k = "input integer value for k ≥ 2" −;

points = Table[i, {i, 0, k}];
Table[tn+i = h(n+ i), {i, 0, k}];

Y =
∑k+3

j=0 (t− tn) jbn,j ;

equation1 = Simplify
[
Table

[(
∂Y
∂t /. {t→ ti+n}

)
= fi+n, {i, 0, k}

]]
equation2 = (D[Y, {t, 2}]/.t− > tn+i−1 = f ′n+i−1
equation3 = (D[Y, {t, 2}]/.t− > tn+i = f ′n+i
unknown = Table [bn,i, {i, 0, k + 3}]

initial = bn,0 = yn+i−1

Allequations = Join[equation1, {equation2}, {equation3}, {initial}]
solution = Solve[Allequations, unknown]

work(7) = Y /. solution
Constituentmethodsin(9) = Simplify [Table [work/. {t→ tn+i} , {i, 1, k}]] .

(8)
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The resulting scheme from (7) can easily be represented as a matrix of finite
difference equation, which supplies the approximation at the first k-mesh point as
the solution of the discrete problem of the form

A⊗ IkYu+1 = a⊗ y0 + h (B ⊗ IkFu+1 + bf0) + h2
(
C ⊗ IkF ′u+1 + c⊗ f ′0

)
, (9)

where Ik is the identity matrix of size k. Matrices

A =



1 0 0 · · · 0 0

−1 1 0
. . . 0 0

0 −1 1
. . .

... 0

0 0 0
. . . 0 0

...
... −1 1 0

0 0 0
. . . −1 1


k×k

, Ā = [D | a] =



0 0 0 · · · 0 1

0 0 0 · · · 0 0

0 0 0 · · ·
... 0

0 0 0 · · · 0 0
...

. . . 0 0

0 0 0 · · · 0 0


k×k

(10)

C =



β1,1 0 0 · · · 0

β2,1 β2,2 0 · · · 0

0 β3,1 β3,2 0 · · · 0

. . .
. . .

. . .
. . .

. . .
. . .

0 0 · · · 0 βk−1,k−2 βk−1,k−1 0

0 0 0 · · · 0 βk,k−1 βk,k


k×k

,

C̄ = [G | c] =



0 0 0 · · · 0 β1,0

0 0 0 · · · 0 0

0 0 0 · · ·
...

...
...

. . . 0 0

0 0 0 · · · 0 0


k×k

,

(11)
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B =



α1,1 α1,2 · · · α1,k

α2,1 α2,2 · · · α2,k

...
...

...
...

...
...

αk−1,1 αk−1,2 · · · αk−1,k

αk,1 αk,2 · · · αk,k


k×k

,

B̄ = [E | b] =



0 0 0 · · · 0 α1,0

0 0 0 · · · 0 α2,0

0 0 0 · · ·
...

...
...

. . . 0 αk−1,0

0 0 0 · · · 0 αk,0


k×k

,

(12)

and the vector Yu+1, Fu+1 and F ′u+1 in the form

Yu+1 = [y1, y2, · · · , yk]T , Fu+1 = [f1, f2, · · · , fk]T , F ′u+1 =
[
f ′1, f

′
2, · · · , f ′k

]T
,

(13)

contain the discrete solution values, the corresponding solution values of Fu+1

and F ′u+1 respectively. The continuous schemes (also referred as block methods)
is self-starting and only require the initial value y0 provided by the continuous
problem (2). Thus the accumulated error is insignificant on the solution obtained
since the block solution are generated concurrently.
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3 Analysis of the Continuous Scheme

Following the approach of Fatunla [45] and Lambert [46], the continuous scheme
(4) can be expressed in form of a linear difference operator

Li[y(t);h] = y(t+ ih)− y(t+ (i− 1)h)−h
k∑
j=0

αi,jy
′(t+ jh)−h2

k∑
j=0

βi,jy
′′(t+ jh),

(14)
where y(t) is a sufficiently differentiable function on [a, b]. By expanding via Taylor
series the terms in (14), we obtain the expression

Li(y(t);h) = Ci,0y(t) + Ci,1hy
′(t) + · · ·+ Ci,ph

py(p)(t) + · · · , (15)

where

Ci,0 = 0

Ci,1 = 1−
k∑
j=0

αi,j

Ci,2 =
1

2!

(
i2 − (i− 1)2

)
−

k∑
j=0

jαi,j − (βi,i−1 + βi,i)

Ci,3 =
1

3!

(
i3 − (i− 1)3

)
− 1

2!

k∑
j=0

j2αi,j − ((i− 1)βi,i−1 + iβi,i)

...

Ci,p =
1

q + 2!

(
iq+2 − (i− 1)q+2

)
− 1

q + 1!

k∑
j=0

jq+1αi,j −
1

q!
((i− 1)qβi,i−1 + iqβi,i)

for q = 0, 1, 2, · · · p− 2.

(16)

According to Henrici [47], we have the following definition:

Definition 3.1. The continuous scheme (4) is said to be of order p, if

C̄j = 0, j = 0(1)p, C̄p+1 6= 0, (17)
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where C̄p = [C1,p, C2,p, C3,p, · · · , Ck,p]. The vector C̄p+1 is referred as the error
constant. Thus, (15) can be expanded to obtained [44]

Li(y(t);h) =

k+3∑
u=1

(
iu − (i− 1)u

u!
−

k∑
j=0

uju−1

u!
αi,j

−u(u− 1)

u!

(
(i− 1)u−2βi,i−1 + iu−2βi,i

))
huyu(t)+

hk+4

(k + 4)!

[
ik+4 − (i− 1)k+4 −

k∑
j=0

(k + 4)jk+3αi,j

−(k + 4)(k + 3)
(

(i− 1)k+2βi,i−1 + ik+2βi,i

)]
y(k+4)(t) +O(hk+5).

(18)

We observe from the numerical simplification that the first five terms of (18)
turns out to zero. This implies that the truncation error for the continuous scheme
is of the form

Li(y(t);h) =
hk+4

(k + 4)!

[
ik+4 − (i− 1)k+4 −

k∑
j=0

(k + 4)jk+3αi,j

−(k + 4)(k + 3)
(

(i− 1)k+2βi,i−1 + ik+2βi,i

)]
y(k+4)(t) +O(hk+5).

(19)

Hence, the error constant vector from (19) is

C̄p+1 = [C1,k+4, C2,k+4, C3,k+4, · · · , Ck,k+4] ,

with

Ci,k+4 =
1

(k + 4)!

[
ik+4 − (i− 1)k+4 −

k∑
j=0

(k + 4)jk+3αi,j

−(k + 4)(k + 3)
(

(i− 1)k+2βi,i−1 + ik+2βi,i

)]
, i = 01, 2, 3, · · · , k.

(20)

It is worthy to know that the constituents linear multi-step method that formed
the block schemes in (9) are of the same order. Thus the block scheme (9) is
consistent since each constituents linear multistep methods has order p ≥ 1. It
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is confirmed from Fig. 2 that the block schemes (9) have smaller error constant
when compared with the methods of Enright [5] and Cash [7]. Thus, theoretically
the new scheme shows the possibility of more accurate solution to (2).

Following Fatunla [39], let

ρ̄(R) = AR− Ā, σ̄(R) = BR+ B̄, γ̄(R) = CR+ C̄, (21)

be the first, second and third matrix polynomial respectively. Then the first
stability polynomial is given as

ρ(R) = det(AR− Ā) = R2k−1(R− 1), (22)

which has a principal root R =| 1 | and spurious roots Rj = 0, j = 1(1)2k − 1.
It is observed that the block schemes are all zero-stable since the polynomial (22)
possesses only one root of unit modulus.

The stability analysis is obtained by considering the Dahlquist test equation

y′ = λy, y′′ = λ2y, Re(λ) < 0. (23)

The application of the schemes

AYu+1 = ay0 + h (BFu+1 + bf0) + h2
(
CF ′u+1 + cf ′0

)
, (24)

generate the discrete solution of the form

Y = M(z)y0, z = λh, (25)

where a, b and c are vectors in Rk and M(z) =
(
A− zB − z2C

)−1 (
a+ zb+ z2c

)
is the amplification matrix. The behaviour of the numerical solution Yu+1 will
depend on the eigenvalue of M(z). That is, the stability matrix M(z) has
eigenvalues {0, 0, · · · , H(z)}, where H(z) is the dominant eigenvalue. The region
of absolute stability H for the newly derived method is

H = {z ∈ C :| p(H(z)) < 1}, (26)
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and its profile is shown in Fig. 3. The methods are A-stable because the left half
complex plane is contained in H. For example the spectral radius for the block
method of order p =5, 6 and 7 is as follows:

H(z) =
7z4 + 81z3 + 381z2 + 900z + 900

7z4 − 81z3 + 381z2 − 900z + 900

H(z) =
1309z6 + 22185z5 + 164280z4 + 684260z3 + 1720600z2 + 2524800z + 1728000

1309z6 − 22185z5 + 135720z4 − 364900z3 + 243160z2 + 796800z − 1728000
(27)

H(z) =

(
24347850z8 + 541674160z7 + 5443815132z6 + 32530996854z5

+127355563443z4 + 338699439540z3 + 599510574810z2 + 645241282560z

+322620641280

)/(
24347850z8 − 541674160z7 + 5443815132z6

−32530996854z5 + 127355563443z4 − 338699439540z3

+599510574810z2 − 645241282560z + 322620641280

)
.

(28)

More so, from equation (25) one can say the conventional criteria of A-stability
is equivalent, to possess all z ∈ C− ( [23, 41])

‖ yk(z) ‖∞≡‖ ekT
(
A− zB − z2C

)−1 (
a+ zb+ z2c

)
y0 ‖∞<‖ y0 ‖, (29)

where ek is the last unit vector in Rk that is,

Re(z) < 0 =⇒ g(z) ≡‖ ekT
(
A− zB − z2C

)−1 (
a+ zb+ z2c

)
‖∞< 1. (30)

In the spirit of Brugnano and Trigiante [41], a necessary requirement for
A-stability, is to have equation in (25) to be well-defined for all such z. Thus,
we have the following definition:

Definition 3.2. [41] A block scheme is said to be pre-stable if the poles of the
corresponding matrix pencil A− µB − µ2C is contained in C+.

The defintion 3.2 holds for the block schemes (9) up to k = 11 (see, Fig. 4a),
while from Fig. 4b the block schemes for k = 12 cannot be pre-stable, since it has
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Figure 2: The plot of the error constants versus step lengths of the HOCELMs,
Enright. [5], E2BD [7].
.

two roots of det(Q). This indicate that the proposed method is not A-stable from
order p ≥ 15.

Q = A− µB − µ2C, (31)

located in C−1. In Table 1 The maximum order of A-stability attained
by the newly derived schemes is presented along block of BVMs in [23, 48].
More so, it is noticed that the new schemes have superior high order A-stable
methods when compared with the block of generalized backward differentiation
formulas (GBDFs), block of top order methods (TOMs), block of generalized
Adams methods (GAMs) and extended trapezoidal rule of second kind (ETR2s) in
Brugnano and Trigiante [23], pp. 283− 285 and multi-block of generalized Adams
methods (MBGAMs)in [48].
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Figure 4: Eigenvalues of the pencil (31) associated with block schemes (9) of order
(a) fourteenth and (b) fifteenth respectively.
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Table 1: Maximum order of A-stable block methods

Block methods maximum order attainable

HOCELMs (p = k + 3) p ≤ 14

MBGAMs (p = 2(k + 1) p ≤ 10

GAMs (p = k + 1 p ≤ 9

ETR2s (p = k + 1) p ≤ 9

GBDFs (p = k) p ≤ 4

TOMs (k + 1) p ≤ 6
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Table 2: Coefficients, error constant Cpi+1, and the order p of the continuous
scheme (7)

k i αi,0 αi,1 αi,2 αi,3 αi,4 αi,5 αi,6 αi,7 βi,0

1 11
24

8
15

1
120 0 0 0 0 0 1

15

2 2 1
120

8
15

11
24 0 0 0 0 0 0

1 313
720

131
240

1
48 − 1

720 0 0 0 0 7
120

3 2 1
240

119
240

119
240

1
240 0 0 0 0 0

3 − 1
720

1
48

131
240

313
720 0 0 0 0 0

1 50623
120960

4153
7560

41
1120 − 37

7560
53

120960 0 0 0 107
2016

4 2 53
20160

1789
3780

18
35

13
1260 − 31

60480 0 0 0 0

3 − 31
60480

13
1260

18
35

1789
3780

53
20160 0 0 0 0

5 53
120960 − 37

7560
41

1120
4153
7560

50623
120960 0 0 0 0

1 98291
241920

132521
241920

53
960 − 671

60480
481

241920 − 1
5376 0 0 199

4032

2 5
2688

15803
34560

1133
2160

121
6720 − 31

17280
31

241920 0 0 0

5 3 − 31
120960

29
4480

3733
7560

3733
7560

29
4480 − 31

120960 0 0 0

4 31
241920 − 31

17280
121
6720

1133
2160

15803
34560

5
2688 0 0 0

5 − 1
5376

481
241920 − 671

60480
53
960

132521
241920

98291
241920 0 0 0

1 2398441
6048000

9852103
18144000

2309
30240 − 2231

108864
4001

725760 − 6241
6048000

1279
13608000 0 6031

129600

2 1279
907200

8072717
18144000

384773
725760

4901
181440 − 367

90720
2099

3628800 − 817
18144000 0 0

6 3 − 817
5443200

2759
604800

173693
362880

1436
2835

1361
120960 − 1621

1814400
289

5443200 0 0

4 289
5443200 − 1621

1814400
1361

120960
1436
2835

173693
362880

2759
604800 − 817

5443200 0 0

5 − 817
18144000

2099
3628800 − 367

90720
4901

181440
384773
725760

8072717
18144000

1279
907200 0 0

6 1279
13608000 − 6241

6048000
4001

725760 − 2231
108864

2309
30240

9852103
18144000

2398441
6048000 0 0

1 7049453
18144000

9724213
18144000

671
6720 − 913

27216
26213

2177280 − 6817
2016000

131
212625 − 29

544320
5741

129600

2 29
25920

7891613
18144000

9667373
18144000

6749
181440 − 5

672
1159

725760 − 4513
18144000

11
567000 0

7 3 − 11
113400

3127
907200

8468189
18144000

74737
145152

3053
181440 − 911

453600
289

1209600 − 289
18144000 0

4 289
10886400 − 71

136080
797

100800
119167
241920

119167
241920

797
100800 − 71

136080
289

10886400 0

5 − 289
18144000

289
1209600 − 911

453600
3053

181440
74737
145152

8468189
18144000

3127
907200 − 11

113400 0

6 11
567000 − 4513

18144000
1159

725760 − 5
672

6749
181440

9667373
18144000

7891613
18144000 − 2687

43200 0

7 − 29
544320

131
212625 − 6817

2016000
26213

2177280 − 913
27216

671
6720

9724213
18144000

7049453
18144000 0
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Table 3: Table 2 continued.

k i βi,1 βi,2 βi,3 βi,4 βi,5 βi,6 βi,7 pi Cpi+1

1 − 7
60 0 0 0 0 0 0 5 −1

2400

2 2 − 7
60 − 1

15 0 0 0 0 0 5 1
2400

1 − 17
120 0 0 0 0 0 0 6 −31

302400

3 2 11
120 − 11

120 0 0 0 0 0 6 53
302400

3 0 17
120 − 7

120 0 0 0 0 6 53
302400

1 − 41
252 0 0 0 0 0 0 7 − 5

56448

4 2 5
63 − 37

336 0 0 0 0 0 7 31
846720

3 0 37
336 − 5

63 0 0 0 0 7 −31
846720

4 0 0 41
252 − 107

2016 0 0 0 7 5
56448

1 − 731
4032 0 0 0 0 0 0 8 1279

25401600

2 289
4032 − 253

2016 0 0 0 0 0 8 − 817
50803200

5 3 0 191
2016 − 191

2016 0 0 0 0 8 289
25401600

4 0 0 253
2016 − 289

4032 0 0 0 8 − 817
50803200

5 0 0 0 731
4032 − 199

4032 0 0 8 1279
25401600

1 − 8563
43200 0 0 0 0 0 0 9 − 29

933120

2 2863
43200 − 1201

8640 0 0 0 0 0 9 11
1360800

6 3 0 23
270 − 1393

12960 0 0 0 0 9 − 289
65318400

4 0 0 1393
12960 − 23

270 0 0 0 9 289
65318400

5 0 0 0 1201
8640 − 2863

43200 0 0 9 − 11
1360800

6 0 0 0 0 8563
43200 − 6031

129600 0 9 29
933120

1 − 27719
129600 0 0 0 0 0 0 10 146513

7185024000

2 2687
43200 − 6533

43200 0 0 0 0 0 10 − 10709
2395008000

7 3 0 3391
43200 − 205

1728 0 0 0 0 10 59
29568000

4 0 0 2497
25920 − 2497

25920 0 0 0 10 − 317
205286400

5 0 0 0 205
1728 − 3391

43200 0 0 10 59
29568000

6 0 0 0 0 6533
43200 − 2687

43200 0 10 − 10709
2395008000

7 0 0 0 0 0 27719
129600 − 5741

129600 10 146513
7185024000
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4 Implementation Procedure

By adopting the approach in [40,49] we present, the implementation procedure for
the HOCELMs (9) for k = 2, 3, 4, 5 with order p = 5, 6, 7, 8.9, 10, 11, 12, 13, 14

respectively. The HOCELMs of fifth, sixth, seventh, eighth ninth, tenth,
eleventh, twelfth, thirteenth and fourteenth order are denoted by HOCELMs2,
HOCELMs3, HOCELMs4, HOCELMs5, HOCELMs6, HOCELMs7, HOCELMs8,
HOCELMs9, HOCELMs10 and HOCELMs11 respectively. The block schemes (9)
is conveniently written in the form

AYu+1 = ĀYu + h
(
BFu+1 + B̄Fu

)
+ h2

(
CF ′u+1 + C̄F ′u

)
, (32)

where the coefficients A, Ā, B, B̄, C, C̄ are given in (10), (11) and (12), (see also
(13)) and

Yu = [y−k+1, y−k+2, · · · , y0]T , Fu = [f−k+1, f−k+2, · · · , f0]T ,

F ′u+1 =
[
f ′−k+1, f

′
−k+2, · · · , f ′0

]T
.

(33)

The schemes in (32) is used to approximate the IVPs (2) without requiring
starting values. The procedure for block scheme (32) for the case of k = 5 is given
according to the following sequences.

Given the partition
$n : a = t0 < t1 < · · · < tn < tn+1 < · · · < tN , h = tn+1 − tn,
n = 0, 1, · · · , N − 1.

Stage 1: Fixed N for k = 5, h = (b−a)
N the number of block Γ = N

5 . Using (32),
n = 0, u = 0, the solution value of (y1, y2, y3, y4, y5)

T are obtained concurrently
over the sub-interval [t0, t5] since y0 is given by the continuous problem (2).

Stage 2: n = 5, u = 1 (y6, y7, y8, y9, y10)
T are similarly generated over the

sub-interval [t5, t10] since y5 is given in the previous block.
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Stage 3: the iteration process is continued for n = 10, · · · , N − 5 and u = 2, · · · ,Γ
to get approximate solution to (2) on sub-intervals [t10, t15] · · · [tN−5, tN ].

In fact, the accumulated error is insignificant on the solution obtained since the
block solution are generated concurrently from non-overlapping sub-interval. The
implementation of (32) is achieved by using a modified Newton Raphson method
for nonlinear problem while for linear problems, one require Gaussian elimination
using partial pivoting technique.

5 Numerical Experiment

In this section, we considered some known linear and non-linear stiff problems
to examine the accuracy of the HOCELMs. All computations were carried out
using our written code in MATLAB 2010a. First test problem is the well known
integration system which was solved by Cash [7]

y′1 = −y1 − 30y2 + 30e−t, y1(0) = 1,

y′2 = 30y1 − y2 − 30e−t, y2(0) = 1,

and the required theoretical solution is

y1(t) = e−t, y2(t) = e−t.

The Example 5 is solved using HOCELMs5 and compare with those of [7] of the
same order p = 8. It is shown from Table 4, that our methods is superior in
accuracy than the E2BD methods given in [7]. More so, a further comparison of
order p = 5 and 6 with those of [49] is reported in Table 5 for stesize h = 0.01.
From Table 5, it is clear that our method perform better in accuracy than the
method of Akinfenwa and Jator [49]. This confirm that the proposed method
is suitable for integrating problems with eigenvalues lying close to the imaginary
axis. Consider the stiff test recommended by Akinfenwa and Jator [49]

y′1(t) = −2000y1 + 1000y2 + 1 y1(0) = 0

y′2(t) = y1 − y2 y2(0)) = 0,
(34)
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the problem in Example 2 is stiff with the stiffness ratio S = 4001 and the
theoretical results are

y1(t) = 4.97× 10−4e−2000.5t − 5.034× 10−4e−0.5t + 0.001

y2(t) = −2.5× 10−7e−2000.5t − 1.007× 10−3e−0.5t + 0.001.
(35)

In this example, the HOCELMs3 of order 6 is compared with methods of order
6 in Ismail and Ibrahim [50], and ECB2DF in Akinfenwa and Jator [49]. It is
noticed from Table 6 that the HOCELMs3 scheme performs better in accuracy
than the methods of Ismail and Ibrahim [50] and Akinfenwa and Jator [49] at the
point T=5 and 10. Table 7 further shows the results at higher stepsize h = 0.1 for
Akinfenwa and Jator [49] and the proposed methods for order 5 and 6. Given the
IVPs in [51,52]

y′ = −10(y − 1)2, y(0) = 2, t ∈ [0, 0.1] . (36)

The theoretical solution is y = 1 + 1
1+10t . The HOCELMs2 is applied to Example

5 and the error (| y − y(t) |) in the various interval 0 < t ≤ 0.1 are reported in
Table 8. It is clear from the numerical result and comparison in Table 8 that the
HOCELMs2 is superior in terms of accuracy than the methods (p=5) in [51] and
methods (p=6) of [52].

Consider a non-linear stiff system,

y′1 = −10002y1 + 1000y22, y1 (0) = 1

y′2 = y1 − y2 (1 + y2) , y2 (0) = 1
, y(t) =

(
e−2t

e−t

)
, (37)

in [53].

The numerical results for Example 5 for various stepsizes h are presented in
Table 9. The results obtained in Table 9, indicate r that the HOCELMs for k = 2, 3

and 5 improves in accuracy than the GSDLMMEs3 [26], BVMs in [54], ECB2DFs
in [49] and BBDF8 in [55].
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Consider the linear problem in [23]

y′ =

 −21 19 −20

19 −21 20

40 −40 −40

 y, y(0) =

 1

0

−1

 ; (38)

y(t) =
1

2

 e−2t + e−40t (cos(40t) + sin(40t))

e−2t − e−40t (cos(40t) + sin(40t))

2e−40t (cos(40t)− sin(40t))

 .

Table 10 and 11 contains the maximum relative error max
1<i<3

| yi(t) − yi,h |
/(1+ | yi,h |) in the interval 0 < t ≤ 1 using HOCELMs for order 5 to 14. The
performance compares with generalized Adams methods GAMs of order 5,7 and
9 in [23]. It is seen from Table 10 and 11 that the scheme perform better and
conformed to the numerical order of convergence (rate). The rate is computed
from

rate = log2

(
max

1<i<3
| yi(t)− yi,h | /(1+ | yi,h |)

max
1<i<3

| yi(t)− yi,h
2
| /(1+ | yi,h

2
|)

)
,

i = 1(1)m, m = 3, 0 < t ≤ 1.

(39)

This rate in Table 10 and 11 is obtained from applying the SDBVMs with two
different step sizes h and h

2 . From which the rate is computed from the log of
the absolute value of the ratio of two errors at the output point t. Here yi(t) is
the exact solution at t since it is available for the ordinary differential equations
in Example 5. Consider the a scalar stiff problem recommended by Abdi and
Conte [56].

y′ =
y − cos(2πt)

σ
− 2πsin(2πt), y(0) = 1, 0 ≤ t ≤ 10.

The theoretical result is given as

y(t) = cos(2πt).

Using HOCELMs of order p = 6 on Example 5, we compare the results with the
OSASM in [57] and BBDM in [58]. From Table 13, the proposed method have the
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lowest number of step (NS) and also improved maximum absolute error (MAE).
Consider a non-linear stiff first-order system of ODEs [56].

y′1 = −10004y1 + 1000y42, y1 (0) = 1

y′2 = y1 − y2
(
1 + y32

)
, y2 (0) = 1

, y(t) =

(
e−4t

e−t

)
. (40)

Using HOCELMs of order p = 6 on Example 5, we compare the results with the
SDGLM in [56], OSASM in [57] and ode15s in [56]. However, it is clear From Table
14 that HOCELMs3 performs better than the compared methods. Here NFEVAL
denote the number of function evaluations.

Table 4: Results for Example 5 h = 0.09.

E2BD-Class2 E2BD-Class1 HOCELMs5
k=5, p=8 k=5, p=8 k=5, p=8

t | Error in y1 | | Error in y2 | | Error in y1 | | Error in y2 | | Error in y1 | | Error in y2 |

4.9 0.1× 10−10 0.1× 10−10 0.1× 10−10 0.1× 10−10 0.1× 10−16 0.1× 10−16

9 0.1× 10−12 0.1× 10−12 0.1× 10−12 0.1× 10−12 0.4× 10−19 0.1× 10−18

13.5 0.1× 10−15 0.1× 10−15 0.8× 10−11 0.6× 10−11 0.5× 10−22 0.5× 10−21

18 0.1× 10−17 0.1× 10−17 0.1× 10−11 0.1× 10−11 0.4× 10−23 0.1× 10−23

Table 5: Results for Example 5 h = 0.01.

T yi ECBBDFs4 [49] HOCELMs2 ECBBDFs5 [49] HOCELMs3
order 5 order 5 order 6 order 6

y1 0.128× 10−16 0.124× 10−17 0.407× 10−17 0.111× 10−17

1 y2 0.117× 10−15 0.351× 10−17 0.222× 10−17 0.165× 10−17

y1 0.108× 10−20 0.203× 10−21 0.108× 10−20 0.474× 10−21

10 y2 0.162× 10−19 0.142× 10−20 0.407× 10−21 0.115× 10−20

y1 0.724× 10−24 0.381× 10−25 0.207× 10−25 0.289× 10−25

20 y2 0.529× 10−23 0.381× 10−25 0.290× 10−25 0.000
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Table 6: Absolute errors for Example 5, using error yi =| yi − y(ti) |, i = 1, 2,
h = 0.0001.

T yi Ismail etal [50] ECBBDFs5 [49] HOCELMs3

y1 3.64920× 10−7 2.32895× 10−7 2.32895× 10−7

5 y2 7.670023× 10−7 5.027468× 10−7 5.027468× 10−7

y1 2.45035× 10−7 1.70086× 10−8 1.70086× 10−8

10 y2 4.94295× 10−7 3.70518× 10−8 3.70518× 10−8

Table 7: Absolute errors for Example 5, using error yi =| yi − y(ti) |, i = 1, 2,
h = 0.1.

T yi ECBBDFs4 [49] HOCELMs2 ECBBDFs5 [49] HOCELMs3
order 5 order 5 order 6 order 6

y1 4.924191× 10−5 9.1734× 10−4 3.163426× 10−4 2.58944× 10−7

5 y2 5.274907× 10−7 5.16607× 10−7 6.6107427× 10−7 5.85455× 10−7

y1 1.763163× 10−4 1.51971× 10−6 2.005234× 10−4 2.37629× 10−7

10 y2 1.252704× 10−7 3.78203× 10−8 1.373470× 10−7 5.02685× 10−8
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Table 8: Numerical results for Example 5, error y =| y − y(t) |, h = 0.01.

T HOCELMs2 [51] [52]
error y error y error y

0.01 1.671× 10−7 2.829× 10−7 1.558× 10−6

0.02 1.721× 10−8 4.045× 10−7 2.399× 10−6

0.03 6.580× 10−8 4.472× 10−7 2.830× 10−6

0.04 1.724× 10−8 4.509× 10−7 3.020× 10−6

0.05 3.360× 10−8 4.356× 10−7 3.069× 10−6

0.06 1.469× 10−8 4.117× 10−7 3.034× 10−6

0.07 2.069× 10−8 3.846× 10−7 2.951× 10−6

0.08 1.216× 10−8 3.572× 10−7 2.840× 10−6

0.09 1.441× 10−8 3.307× 10−7 2.717× 10−6

0.10 1.007× 10−8 3.058× 10−7 2.588× 10−6
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Table 9: Absolute errors for Example 5

Method p N h Error y1 Error y2

HOCELMs2 5 50 0.02 1.02× 10−14 8.55× 10−15

BVM [54] 5 50 0.02 3.20× 10−12 3.02× 10−12

GSDLMMEs [?] 5 50 0.02 3.07× 10−13 1.17× 10−13

HOCELMs2 5 1000 0.01 2.17× 10−21 5.85× 10−17

ECBBDFs4 [49] 5 1000 0.01 3.13× 10−17 3.45× 10−13

HOCELMs3 6 500 0.02 1.86× 10−22 2.05× 10−18

ECBBDFs5 [49] 6 500 0.02 1.33× 10−20 1.35× 10−16

Wu-Xia [53] 6 500 0.002 2.56× 10−14 8.02× 10−8

HOCELMs5 8 20 0.02 4.71× 10−16 2.77× 10−16

BBDF8 [55] 8 20 0.02 4.56× 10−13 6.26× 10−13

Wu-Xia [53] 8 500 0.002 2.56× 10−7 8.01× 10−8

HOCELMs5 8 1000 0.01 2.89× 10−23 3.18× 10−19

BBDF8 [55] 8 1000 0.01 6.64× 10−20 2.39× 10−13

Wu-Xia [53] 8 10000 0.001 5.54× 10−16 6.09× 10−12
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Table 10: A comparison of method for Example 5.

h GAMs rate GAMs rate GAMs rate
k = 4, p = 5 k = 6, p = 7 k = 8, p = 9

0.05 2.249× 10−1 - 1.266× 10−1 - 8.308× 10−2 -
0.025 4.413× 10−2 3.31 1.449× 10−2 2.40 8.392× 10−3 2.92
0.0125 6.490× 10−3 3.21 1.508× 10−3 5.71 9.097× 10−4 7.75
0.00625 8.859× 10−4 5.05 1.114× 10−4 7.27 2.749× 10−5 7.37
0.003125 9.881× 10−5 5.59 4.877× 10−6 7.46 5.694× 10−7 9.16

h HOCELMs2 rate HOCELMs3 rate HOCELMs4 rate
k = 2, p = 5 k = 3, p = 6 k = 4, p = 7

0.05 3.102× 10−2 - 2.460× 10−2 - 1.051× 10−2 -
0.025 3.614× 10−3 3.10 1.800× 10−3 3.8 5.833× 10−4 4.17
0.0125 1.487× 10−4 4.60 4.537× 10−5 5.31 1.032× 10−5 5.82
0.00625 4.614× 10−6 5.01 7.391× 10−7 5.94 7.470× 10−8 7.11
0.003125 1.412× 10−7 5.03 1.146× 10−8 6.01 4.773× 10−10 7.29
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Table 11: A comparison of method for Example 5.

h HOCELMs5 rate HOCELMs6 rate HOCELMs7 rate
k = 5, p = 8 k = 6, p = 9 k = 7, p = 10

0.05 5.781× 10−3 - 3.620× 10−2 - 6.704× 10−3 -
0.025 1.508× 10−4 5.26 7.200× 10−4 5.65 4.402× 10−5 7.25
0.0125 1.725× 10−6 6.45 3.142× 10−6 7.84 2.253× 10−7 7.61
0.00625 5.906× 10−9 8.19 5.847× 10−9 9.07 2.458× 10−10 9.84
0.003125 1.712× 10−11 8.43 9.873× 10−12 9.21 2.164× 10−13 10.15

h HOCELMs5 rate HOCELMs6 rate HOCELMs7 rate
k = 8, p = 11 k = 9, p = 12 k = 10, p = 13

0.05 1.600× 10−3 - 1.254× 10−3 - 1.004× 10−3 -
0.025 6.577× 10−6 7.91 8.238× 10−6 7.26 2.832× 10−6 8.47
0.0125 1.920× 10−8 8.42 6.013× 10−9 10.42 1.195× 10−9 11.21
0.00625 1.246× 10−11 10.59 1.136× 10−12 12.37 1.735× 10−13 12.75
0.003125 6.754× 10−15 10.85 2.587× 10−16 12.10 2.104× 10−17 13.01

Table 12: Continuation of Table 11.

h HOCELMs5 rate
k = 11, p = 14

0.05 1.000× 10−3 -
0.025 3.284× 10−6 8.25
0.0125 9.022× 10−10 11.83
0.00625 4.760× 10−14 14.21
0.003125 3.431× 10−18 13.76
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Table 13: A comparison of methods for Example 5 with MAXAE=max | y(t)−yh |,
h = 10−2, σ = 10−3, 0 ≤ t ≤ 10.

Method p ATOL NS MAXAE ATOL NS MAXAE

HOCELMs3 6 10−4 48 2.1296× 10−8 10−6 144 7.2218× 10−10

OSASM 6 10−4 64 3.2142× 10−7 10−6 159 6.1606× 10−9

BBDM 6 10−4 116 1.5439× 10−6 10−6 398 3.1184× 10−8

Table 14: A comparison of methods for Example 5, MAXRE=max
1<i<2

| (yi(t)−
yi,h)/yi(t) |, h = 10−3.

ATOL Method p NS NFEVAL MAXRE

10−6 HOCELMs3 6 20 120 2.1296× 10−12

10−6 OSASM 6 25 125 3.8579× 10−10

10−6 BBDM 6 23 136 5.0000× 10−5

10−6 ode15s 88 122 6.6300× 10−6

10−8 HOCELMs3 6 37 222 2.1296× 10−13

10−8 OSASM 6 45 225 4.6893× 10−11

10−8 BBDM 6 37 230 3.8400× 10−6

10−8 ode15s 159 224 2.0000× 10−8

6 Concluding Remarks

A new schemes of HOCELMs (7) for integrating stiff system of ODEs has been
considered. The continuous schemes is self-starting and possesses good accuracy.
This continuous methods is A-stable up to order fourteen (see Table 1). The
well-known IVPs considered indicate that the new continuous schemes performs
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better in term of accuracy than some known schemes in the literature. (see Tables
13 to 9 , Fig 2).
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