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Abstract

In this paper, a new distribution is proposed by a mixture of two
distributions; Exponential and Exponential-Rama the proposed distribution
is referred to as the Double XRama distribution. It is flexible in modeling
lifetime data. The properties of the XRama distribution were derived and an
analysis of the behaviour was conducted. The mathematical properties which
include moments, the shape of the distribution, Quantile function, hazard
function, survival function, stochastic ordering, mean deviation, Bonferroni
and Lorenz curve, order statistic, and Renyi entropy have been studied. From
the results, the proposed model competes favorably among the members of
the XRama class of distributions.

1 Introduction

One parameter distributions in the class of Lindley which is commonly derived
from a component mixture of two or more heavy-tailed distributions are littered
in the statistical literature. Among them is the Sujatha distribution by [1].
Modification of probability models since its inception has expanded the field
of probability distribution hence creating more distributions that are useful
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in explaining complex situations that classical distributions such as Normal
distribution, Ch-Square, Gamma, Weibull, and Exponential could not explain.
Today, the literature is rich with models that are suited to engineering, medical and
biomedical, stock and financial records, agriculture, and commerce applications,
finance, and epidemiology. Since the work of [2], who first used mixing
proportion of Gamma and Exponential distributions, the statistical literature
has been flooded with research items with this method. Some of the articles
extended the two-component mixture to three while others are four and five
components. One, interesting thing about these classes of distributions is the
ease of deriving them and often some of them have closed-form quantile functions
lending them to many applications and aiding the generation of data. Very
popular among these classes is the work by [3] who combine Exponential with
scale parameter θ and Gamma distribution with shape parameter 2 and scale
parameter θ. The mixing proportion p = θ2

θ2+1
. This distribution has attracted

many modifications such as Power Shanker by [4] which handles polynomial
data. It is a two-parameter distribution with an additional parameter α which
accounts for the shape of the distribution. There is also a weighted power
Shanker by [5]. This model attached weight to the random variable that assumes
the power Shanker distribution. The new distribution has three parameters,
the third c being the weight parameter. [6] proposed the extended Lomax
distribution named McDonald distribution having five parameters hence exhibiting
some complexities in mathematical manipulations. [7] proposed three heavy-tailed
models based on the Student’s t distribution with its scale parameter randomized
that model financial data. [8] introduced and studied a new family of continuous
distributions called KumaraswamyWeibull-generated family of distributions which
is an extension of the Weibull-G family of probability distributions proposed by [9].
[2] was the first to explore a two-component distribution to obtain a one-parameter
distribution called Lindley distribution using Exponential distribution with scale
parameter θ and a Gamma distribution having shape parameter 2 and scale
parameter θ with mixing proportion p = θ

θ+1 . [10] proposed the alpha power
transformed power Lindley distribution, a generalization of the power Lindley
distribution that provides a better fit. An extension of the Lindley distribution
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which offers a more flexible model for lifetime data was introduced by [11].
[12] derived a one-parameter distribution called Pranav distribution from two
distributions namely Exponential distribution with scale parameter θ and Gamma
distribution having shape parameter 4 and scale parameter θ. [13] introduced a
two-parameter lifetime distribution named, ’Shukla distribution’ which includes
several one-parameter lifetime distributions. A new one-parameter lifetime
distribution named Sujatha Distribution with an increasing hazard rate for
modeling lifetime data was suggested by [1]. [14] studied a one-parameter lifetime
distribution named Ishita distribution based on a two-component mixture of an
Exponential distribution having a shape parameter θ and a Gamma distribution
having a shape parameter 3 and scale parameter θ with mixing proportion
θ3

θ3+2
. [15] studied a one-parameter lifetime distribution named Akash distribution

based on a two-component mixture of an Exponential distribution having a shape
parameter θ and a Gamma distribution having a shape parameter 2 and scale
parameter θ with mixing proportion θ

θ+1 . [16] studied a one-parameter lifetime
distribution named Rani distribution based on a two-component mixture of an
Exponential distribution having a shape parameter θ and a Gamma distribution
having a shape parameter 5 and scale parameter θ with mixing proportion
θ5

θ5+24
. [17] studied a one-parameter lifetime distribution named Rama distribution

based on a two-component mixture of an Exponential distribution having a shape
parameter θ and a Gamma distribution having a shape parameter 4 and scale
parameter θ with mixing proportion θ3

θ3+6
. [18] studied a one-parameter lifetime

distribution named XGamma distribution based on a two-component mixture of
an Exponential distribution having a shape parameter θ and a Gamma distribution
having a shape parameter 3 and scale parameter θ with mixing proportion θ

θ+1 .
[19] studied a one-parameter lifetime distribution named Aradhana distribution
based on a two-component mixture of an Exponential distribution having a shape
parameter θ and a Gamma distribution having a shape parameter 2 and scale
parameter θ with mixing proportion 1

θ+1 . [3] studied a one-parameter lifetime
distribution named Shanker based on a two-component mixture of an Exponential
distribution having a shape [20] parameter θ and a Gamma distribution having
a shape parameter 2 and scale parameter θ with mixing proportion θ2

θ2+1
. Other
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related works are [13], [21], [19], [22], [23], [24], [12], [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36], [37], [38], [27], [39], [40], [41] and [42].

The rest of this article is in the following sequence of arrangement. In Section
2, the proposed model is discussed, and Section 3 is dedicated to the derivation
of the important characteristics. In Section 4, applications to lifetime data are
done while a discussion of results is done in Section 5. The article is concluded in
Section 6.

2 The Proposed Method

The work of [24] extended the Rama distribution by providing a mixture of the
exponential and Rama distributions. The extension is referred to as the XRama
distribution.

The new proposition in this study called the Double XRama distribution is
obtained similarly by combining the exponential distribution with scale parameter
θ and the XRama distribution. The mixing proportion is the same as that of the
XRama distribution.

Let X ∼ Double XRama (θ), then the pdf and cdf are respectively

f(x) =
θ4

(θ3 + 6)3
[
θ6 + 18θ3 + 108 + 36x3

]
e−θx; x > 0, θ > 0 (1)

and
F (x) = 1−

{
1 +

1

(θ3 + 6)3
36xθ

[
6 + 3xθ + θ2x2

]}
e−θx. (2)

The survival and hazard rate functions are respectively

S(x) =

{
1 +

1

(θ3 + 6)3
36xθ

[
6 + 3xθ + θ2x2

]}
e−θx (3)

and

hrf(x) =
θ4
(
108 + 36x3 + 18θ3 + θ6

)
216xθ + 108x2θ2 + 36x3θ3 + (6 + θ3)3

. (4)
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The limiting values of the Double XRama hazard function are

lim
x→0

hrf(x) =
θ4
(
108 + 18θ3 + θ6

)
(6 + θ3)3

and lim
x→∞

hrf(x) = θ.

This limiting behavior of the hazard function at a glance shows that it is a strictly
increasing function.

The plots are displayed in the Figures 1, 2, 5, and 6 below
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Figure 1: pdf of Double XRama
distribution.
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Figure 2: cdf of Double XRama
distribution.
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Figure 3: Survival function of Double
XRama distribution.
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Figure 4: Hazard function of Double
XRama distribution.
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3 Distributional Properties of Double XRama
Distribution

In this section, we derive the basic distributional properties of the proposed model.

3.1 Moments of Double XRama

Let X be a continuous random variable ∼ f(x), the rth crude moment is generally
defined as

µ
′
r = E(X) =

∫ ∞
0

xrf(x) dx.

Given that

f(x) =
θ4

(θ3 + 6)3
[
θ6 + 18θ3 + 108 + 36x3

]
e−θx; x > 0, θ > 0. (5)

The rth moment of the Double XRama is given as

µ
′
r =

rθ−r
(

36r (11 + r (6 + r)) +
(
6 + θ3

)3)
Γr

(6 + θ3)3
; r = 1, 2, · · · (6)

The first, second, third, and fourth crude moments are obtained by replacing
r with 1, 2, 3 and 4 in the rth crude moment. That is;

µ =
θ4
(
864
θ5

+ 108
θ2

+ 18θ + θ4
)

(6 + θ3)3
, µ

′
2 =

θ4
(
36 + 4320

θ6
+ 216

θ3
+ 2θ3

)
(6 + θ3)3

,

µ
′
3 =

6
(
4320 + 108θ3 + 18θ6 + θ9

)
θ3 (6 + θ3)3

, µ
′
4 =

24
(
7560 + 108θ3 + 18θ6 + θ9

)
θ4 (6 + θ3)3

.

(7)

3.2 The variance of Double XRama

The variance of a random variable is one important measure of dispersion in a set
of observations. Its generic definition is σ2 = EX2 − (EX)2.
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But

E(X) =
θ4
(
864
θ5

+ 108
θ2

+ 18θ + θ4
)

(6 + θ3)3
; E(X2) =

θ4
(
36 + 4320

θ6
+ 216

θ3
+ 2θ3

)
(6 + θ3)3

. (8)

Therefore;

σ2 =
θ4
(
36 + 43206

θ6
+ 216

θ3
+ 2θ3

)
(6 + θ3)3

−

[
θ4
(
864
θ5

+ 108
θ2

+ 18θ + θ4
)

(6 + θ3)3

]2
. (9)

Further simplification gives

σ2 =
−θ2

(
864 + 108θ3 + 18θ6 + θ9

)2
+ 24

(
6 + θ3

)3 (
7560 + 108θ3 + 18θ6 + θ9

)
θ4 (6 + θ3)6

.

(10)

3.3 Skewness of Double XRama

Skewness is a measure of departure from normality. Depending on the index, a
distribution is either left-skewed or right-skewed.

Skewness(x) =
6
(
4320 + 108θ3 + 18θ6 + θ9

)
θ3 (6 + θ3)3

(
−θ2(864+108θ3+θ9)2+24(6+θ3)3(7560+108θ3+18θ6+θ9)

θ4(6+θ3)6

) 3
2

.

(11)

3.4 Kurtosis of Double XRama

Kurtosis =
24θ4

(
6 + θ3

)3 (
7560 + 108θ3 + 18θ6 + θ9

)(
θ2 (864 + 108θ3 + 18θ6 + θ9)

2 − 24 (6 + θ3)
3

(7560 + 108θ3 + 18θ6 + θ9)
)2 .
(12)
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3.5 Coefficient of Variation of Double XRama

C.V =

θ
(
6 + θ3

)3√−θ2(864+108θ3+18θ6+θ9)2+24(6+θ3)3(7560+108θ3+18θ6+θ9)

θ4(6+θ3)6

(864 + 108θ3 + 18θ6 + θ9)
. (13)

3.6 Moment Generating Function of Double XRama

Then the Moment Generating Function (MGF)

E(etx) =

∫ ∞
0

etxf(x)dx (14)

E(etx) =

∫ ∞
0

etx
[

θ4

(θ3 + 6)3
[
θ6 + 18θ3 + 108 + 36x3

]
e−θx

]
dx (15)

hence

E(etx) =
θ4
(

216− (x− θ)3
(
108 + 18θ6 + θ6

))
(x− θ)4 (6 + θ3)3

. (16)

3.7 Characteristics Function of Double XRama

E(eitx) =

∫ ∞
0

eitx
[

θ4

(θ3 + 6)3
[
θ6 + 18θ3 + 108 + 36x3

]
e−θx

]
dx (17)

hence

E(eitx) =
θ4
(

216− (ix− θ)3
(
108 + 18θ6 + θ6

))
(ix− θ)4 (6 + θ3)3

. (18)

3.8 Odd Function for Double XRama

OddFunction = −1 +
exθ

1 + (36xθ(6+3xθ+x2θ2))

(6+θ3)3

. (19)
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3.9 Stress Strength Reliability of Double XRama

Let X ∼ DXR(θ1) be the stress variable and Y ∼ DXR(θ2) be the strength
variable. Then, the reliability of the system can be expressed as

R(X < Y ) =
1

(6 + θ31)(θ1 + θ2)6
(θ2(θ1 + θ2)

2(θ1(864 + 108θ31 + 18θ61 + θ91)

+ 3θ21(12 + θ31)(36 + 6θ31 + θ61)θ2 + 3θ1(288 + 108θ31 + 18θ61 + θ91)θ22

+ (6 + θ31)3θ32)− 1

6 + θ32)3
36xθ2θ

4
1(6θ21(6 + θ31)3

+ 3θ1(1728 + 11θ31(108 + 18θ31 + θ61))θ2 + 2(4104

+ 37θ31(108 + 18θ31 + θ61))θ22

+ 84θ21(108 + 18θ31 + θ61)θ31 + 48θ1(108 + 18θ31 + θ61)θ42

+ 11(108 + 18θ31 + θ61)θ52)).

(20)

3.10 Mean Residual Function for Double XRama

−864− θ
(
648x+ 216x2θ + 36 (3 + x) θ2 + 18θ5 + θ8

)
θ
(
−216xθ − 108x2θ2 − 36x3θ3 − (6− θ3)3

) . (21)

3.11 Bonferroni and Lorenz curve

Bonferroni and Lorenz’s curve has applications not only in Economics but also
in reliability analysis, demography, medicine, and insurance. Bonferroni curve is
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defined as:

B(p) =
1

pµ

∫ q

0
xf(x)dx =

1

p
(
864
θ5

+ 108
θ2

+ 18θ + θ4
)

×
(
θ4γ(2, q) + 18θγ(2, q) +

108γ(2, q)

θ2
+

36γ(2, q)

θ6

)
,

L(p) =
1

µ

∫ q

0
xf(x)dx =

1(
864
θ5

+ 108
θ2

+ 18θ + θ4
)

×
(
θ4γ(2, q) + 18θγ(2, q) +

108γ(2, q)

θ2
+

36γ(2, q)

θ6

)
.

(22)
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Figure 5: Bonferroni and Lorenz Curve
of Double XRama distribution.
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Double XRama distribution.

3.12 Stochastic ordering of Double XRama distribution

A random variable X is said to be smaller than another random variable Y in
the stochastic order (X ≤st Y ) if FY (x) ≥ FY (x) ∀x; Hazard order (X ≤hr Y ) if
hX(x) ≥ hy(x) ∀x; Mean residual life order (X ≤mrl Y ) if mX(x) ≥ mY (x) ∀x;
Likelihood ratio order (X ≤lr Y ) if fX(x)

fY (y) decreases in x.
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This implies that X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y ⇒ X ≤mrl Y.

Theorem 3.1. Let X ∼ DoubleXRama(θ1) and Y ∼ DoubleXRama(θ2). If
θ1 ≥ θ2, then X ≤lr Y hence X ≤lr Y hence X ≤hr Y , X ≤mrl Y and X ≤st Y.

fx(x)

fy(x)
=

θ41

(θ31+6)
3

[
θ61 + 18θ31 + 108 + 36x3

]
e−θ1x

θ42

(θ32+6)
3

[
θ62 + 18θ32 + 108 + 36x3

]
e−θ2x

=
θ41(θ32 + 6)3(θ61 + 18θ31 + 36θ31 + 108)

θ42(θ31 + 6)3(θ62 + 18θ32 + 36θ32 + 108)
e(θ2−θ1)x.

(23)

Taking a natural log of the ratio will yield

ln
fx(x)

fy(x)
= ln

θ41(θ32 + 6)3

θ42(θ31 + 6)3
+ ln

(θ61 + 18θ31 + 36θ31 + 108)

(θ62 + 18θ32 + 36θ32 + 108)
+ (θ2 − θ1)x. (24)

Differentiating the natural log of the ratio w.r.t x will result

= −θ1 + θ2 −
108x2

(
18θ31 + θ61 − θ32

(
18 + θ32

))(
36 (3 + x3) + 18θ31 + θ61

) (
36 (3 + x3) + 18θ32 + θ62

) . (25)

If θ2 ≥ θ1, d
dx ln

fx(x)
fy(x)

≤ 0, and fx(x,θ1)
fy(x,θ2)

is (CHECK!!!) in x.

3.13 Maximum Likelihood Function

Let (X1, X2, .., Xn) be random variables of double Double XRama. Then the
Maximum Likelihood Function is given as

`(f(x;θ)) =
n∏
i=1

θ4

(θ3 + 6)3
[
θ6 + 18θ3 + 108 + 36x3

]
e−θx

=
θ4n

(θ3 + 6)3n

n∏
i=1

[
θ6 + 18θ3 + 108 + 36x3

]
e−θ

∑n
i=0 xi .

(26)

Taking the log of the above function

ψ = 4nlnθ − 3nln(θ3 + 6)− θ
n∑
i=0

xi +
n∑
i=0

(
θ6 + 18θ3 + 108 + 36x3

)
.
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Differentiating ψ w.r.t θ and equating to zero

dψ

dθ
=

4n

θ
− 9θ2n

(θ3 + 6)
−

n∑
i=0

xi +
6θ5 + 53θ3

θ6 + 18θ3 + 108 + 36x3
. (27)

3.14 Renyi Entropy

Entropy is the quantity of uncertainty or randomness in a system. It is an
information measure for non-negative ω 6= 1. The Reny Entropy for Double
XRama distributed random variable X is

Rw(x) =
1

1− ω
log

∫ ∞
0

f(w)ωdx

=
1

1− ω
log

∫ ∞
0

{
θ4

(θ3 + 6)3
[
θ6 + 18θ3 + 108 + 36x3

]
e−θx

}ω
dx

=
1

1− ω
log

θ4ω

(θ3 + 6)3ω

∫ ∞
0

[
θ6 + 18θ3 + 108 + 36x3

]ω
e−θωxdx.

(28)

Let (θ6 + 18θ3 + 108) = a, 36x3 = b and ω = n. Then using binomial expansion,
we have;

Rw(x) =
1

1− ω
log

θ4ω

(θ3 + 6)3ω

∫ ∞
0

ω∑
j=0

(
ω

j

)
(θ6 + 18θ3 + 108)j(36x3)ω−je−θωxdx

=
1

1− ω
log

θ4ω

(θ3 + 6)3ω

ω∑
j=0

(
ω

j

)
(θ6 + 18θ3 + 108)j36ω−j

∫ ∞
0

x3ω−3je−θωx

=
1

1− ω
log

θ4ω

(θ3 + 6)3ω

ω∑
j=0

(
ω

j

)
(θ6 + 18θ3 + 108)j36ω−j

Γ3ω−3j+1

(θω)3ω−3j+1

=
1

1− ω
log

θω3j−1

(θ3 + 6)3ω

ω∑
j=0

(
ω

j

)
(θ6 + 18θ3 + 108)j36ω−j

(3ω − 3j)!

ω3ω−3j+1
.

3.15 Order Statistics

Suppose X1, X2, ..., Xn is a random sample of Xr; r = (1, 2, ..., n) are the rth order
statistics obtained by arranging Xr in ascending order of magnitude 3 X1 ≤ X2 ≤
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... ≤ Xr where X1 is the smallest of all variable and Xr is the largest of all variable,
then the pdf of the rth order statistics is given by

fr:n(x) =
n!

(r − 1)!(n− r)!
f(x)(F (x))r−1(1− F (x))n−r

the pdf of rth order statistics of Double XRama is given as:

fr:n(X) =
n!

(r − 1)!(n− r)!
θ4

(θ3 + 6)3
(θ6 + 18θ3 + 108 + 36x3)e−θx

×
(

1−
{

1 +
1

(θ3 + 6)3
36xθ(6 + 3xθ + θ2x2)

}
e−θx

)r−1
×
({

1 +
1

(θ3 + 6)3
36xθ(6 + 3xθ + θ2x2)

}
e−θx

)n−r (29)

pdf of minimum order is obtained by setting r = 1

f1:n(x) =
nθ4

(θ3 + 6)3
(θ6 + 18θ3 + 108 + 36x3)e−θx (30)

×
({

1 +
1

(θ3 + 6)3
36xθ(6 + 3xθ + θ2x2)

}
e−θx

)n−1
(31)

pdf of maximum order is obtained by setting r = n

fn:n(x) =
nθ4

(θ3 + 6)3
(θ6 + 18θ3 + 108 + 36x3)e−θx (32)

×
(

1−
{

1 +
1

(θ3 + 6)3
36xθ(6 + 3xθ + θ2x2)

}
e−θx

)n−1
. (33)

4 Applications

In this section, we present the applications of the proposed model to two-lifetime
datasets.

The first application is on rainfall data reported at the Los Angeles Civic
Center from 1943 to 2018 in March studied by [29].

Earthline J. Math. Sci. Vol. 14 No. 3 (2024), 477-500
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Table 1: Rainfall data reported at the Los Angeles Civic Center from 1943 to
2018 in March.
4.55 2.47 3.43 3.66 0.79 3.07 1.40 0.87 0.44 6.14 0.48 2.99 0.56 1.02 5.30 0.31 0.57
1.10 2.78 1.79 2.49 0.53 2.5 3.34 1.49 2.36 0.53 2.70 3.78 4.83 1.81 1.89 8.02 5.85
4.79 4.10 3.54 8.37 0.28 1.29 5.27 0.95 0.26 0.81 0.17 5.92 7.12 2.74 1.86 6.98 2.16
4.06 1.24 2.82 1.17 0.32 4.32 1.47 2.14 2.87 0.05 0.01 0.35 0.48 3.96 1.75 0.54 1.18
0.87 1.60 0.09 2.69

Table 2: Metrics of Model performance and fitness for the rainfall data.
Dist. NLL AIC CAIC BIC HQIC W ∗ A∗ K-S P-value θ̂ std.err
DXR 135.42 272.841 272.898 275.117 273.747 0.291 0.208 0.054 0.9842 1.0984 0.0532
DOJE 153.92 309.830 309.887 312.107 310.737 0.345 1.971 0.184 0.0150 2.3715 0.0823
Lindley 135.82 273.630 273.687 275.907 274.537 0.026 0.170 0.080 0.7469 0.6547 0.5683
Akash 136.42 274.838 274.895 277.114 275.744 0.031 0.210 0.089 0.6172 0.9650 0.0633
Pranav 137.63 277.267 277.324 279.543 278.173 0.068 0.433 0.083 0.7073 1.2761 0.0592
CJ 136.3 274.596 274.653 276.872 275.502 0.030 0.204 0.090 0.5999 0.9463 0.0718
Rama 138.63 279.261 279.319 281.538 280.168 0.077 0.483 0.104 0.4206 1.3029 0.0689
XRama 136 273.998 274.055 276.275 274.905 0.047 0.309 0.062 0.9426 1.1725 0.0590

The second application is on vinyl chloride data (g/L) from ground-water
monitoring wells that are located in clean-up-gradient areas studied by [43] and
[28].

Table 3: vinyl chloride data (g/L) from ground-water monitoring wells.
5.1 1.2 1.3 0.6 0.5 2.4 0.5 1.1 8.0 0.8 0.4 0.6 0.9 0.4 2.0 0.5 5.3
3.2 2.7 2.9 2.5 2.3 1.0 0.2 0.1 0.1 1.8 0.9 2.0 4.0 6.8 1.2 0.4 0.2

Dist. NLL AIC CAIC BIC HQIC W ∗ A∗ K-S P-value θ̂ std.err
DXR 56.49 114.978 115.103 116.505 115.499 0.084 0.547 0.104 0.8551 1.2419 0.8805
DOJE 67.888 137.752 137.877 139.278 138.272 0.384 2.176 0.225 0.0642 2.6644 0.1268
Lindley 56.3 114.607 114.732 116.134 115.128 0.063 0.405 0.133 0.5878 0.8238 0.1054
Akash 57.57 117.149 117.274 118.676 117.670 0.099 0.630 0.156 0.3758 1.1656 0.1126
Pranav 58.34 118.672 118.797 120.198 119.192 0.136 0.847 0.146 0.4606 1.4664 0.0980
CJ 57.93 117.854 117.979 119.38 118.374 0.103 0.655 0.178 0.2303 1.1645 0.1321
Rama 59.34 120.683 120.808 122.210 121.204 0.154 0.952 0.177 0.2383 1.5310 0.1176
XRama 57.28 116.556 116.681 118.082 117.077 0.111 0.703 0.127 0.6465 1.3490 0.0984
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Figure 7: Density, cdf, survival and TTT plots of rainfall data.

5 Discussion of Results

The mixture of two distributions namely exponential and XRama birthed
a member in the Lindley class of distribution, now known as Double
XRama distribution. The distribution statistical properties namely moments
variance, skewness, kurtosis, coefficient of variation, Moment generating function,
characteristics function, odd function, and Stress-strength reliability function were
derived and discussed. Analysis of lifetime data using data namely rainfall at Los
Angeles Civic Center from 1943 to 2018 in March was conducted. We compared the
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Figure 8: pp plots of the rainfall data.

proposed double XRama distribution with other Lindley class of distribution which
included; DOJE, Lindley, Akash, PRANAV, Chris-Jerry, Rama, and XRama.
Having compared them we found the DXR to be of best fit in most cases and
of course, followed by the XRama then the Rama distribution the DXR had the
lowest NLL. This shows that this model assumes lesser loss with respect to its
parameters as opposed to the other distributions. Of course, XRama came close
as followed by Rama due to their common similarities as to being birthed from
a direct parent. Comparing the outcome of the p-value. DXR came up with
the highest p-value of 0.9842 compared to other distributions. In essence, this
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Figure 9: Density, cdf, surv and TTT plots of vinyl chloride data.

proves that DXR has a higher probability of supporting the null hypothesis in
the given data observe how the DXR performed better across the measures of the
fitness model with respect to the next data application on Vinyl chloride(g/L)
from groundwater monitoring wells that are located in clean-up gradient areas
studied by [43] and [28]. See Table 3. It is observed that DXR shows the same
level of competence in performance, being the best fit to all measures of fitness
model in the respective data. Taking a close look at the pp-plots of vinyl Chloride
in Figure 6, it is observed that DXR has the finest line of best fit accompanied by
the mothering distribution XRama.
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Figure 10: pp plots of vinyl chloride data.

6 Conclusion

The proposed Double XRama distribution is birthed from parent distributions;
Exponential and XRama. Its mathematical statistical properties for this
distribution were derived. It is no contingency that DXR came out with the
prime competence on all measures of the fitness model even when compared
with the real-life data set, it has been presented to show the application and
goodness of fit of the two-parameter double XRama distribution with other Lindley
class of distribution which included; DOJE, Lindley, Akash, Pranav, Chris-Jerry,
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Rama, XRama. The results suggest that the Double Xrama presents a prominent
substitute when modeling some varieties of lifetime data. Over time, various
families of probability distributions have been examined for analyzing different
real-life data. Developing further extension of existing models by introducing
additional parameter(s) or other forms of transformation has proven to advance
the flexibility and applicability of the attendant models. On this note, it
is recommended that the Double XRama distribution be modified either by
developing a two-parameter Double XRama, power-transformed Double XRama,
Exponentiated Double XRama, or Invers Double XRama. This will inadvertently
improve the Double XRama and further enrich the statistical literature.
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