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Abstract

In this work, we investigate some subclasses of bi-univalent and regular
functions associated with Horadam polynomials in the open unit disk U =

{ς ∈ C : |ς| < 1}. For functions that belong to these subclasses, we find
bounds on their initial coefficients. The functional problem of Fekete-Szegö
is also examined. Along with presenting some new results, we also talk about
pertinent connections to earlier findings.

1 Introduction

Suppose that A denote the class of regular functions g of the form

g(ς) = ς +
∞∑
j=2

djς
j , ς ∈ U, (1.1)
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where U is an open unit disk {ς ∈ C : |ς| < 1} with C representing the
set of complex numbers. The sets of real and natural numbers are R and
N := {1, 2, 3, ...} = N0\{0}, respectively. A subset of A that consists of univalent
functions in U is denoted by S. An inverse of every function g in S is given by
(see [6])

}(w) = g−1(w) = w − d2w
2 + (2d2

2 − d3)w
3 − (5d3

2 − 5d2d3 + d4)w
4 + ..., (1.2)

satisfying }(g(ς)) = ς and g(}(w)) = w, |w| < r0(g), r0(g) ≥ 1/4, ς, w ∈ U.

If U ⊂ g(U) and if g and } = g−1 are both univalent in U, then a function g
of A is bi-univalent in U. The set of bi-univalent functions in U determined by
(1.1) is denoted by σ. 1

2 log
(

1+ς
1−ς

)
,−log(1 − ς), and ς

1−ς indicate a few of the σ
family’s functions. The Koebe function, however, is not a member of the σ family.
Further functions in S, like ς − ς2

2 and ς
1−ς2 are not elements of σ family.

Coefficient-related studies for members of the σ family started in the 1970s.
After looking at the σ family, Lewin [15] asserted that |d2| < 1.51 for the elements
of σ. It was demonstrated in [3] that for members of σ, |d2| <

√
2. Studies

related to coefficients for functions ∈ σ were later found by Tan [28]. In [4], the
authors examined starlike and convex subclasses of σ. As evidenced by studies
[5, 9, 10, 21, 29], the last ten years have seen an increase in the study of bounds
related to initial coefficients for elements belonging to particular subfamilies of σ.

The current focus is on functions that fall into specific σ subfamilies that
are subordinate to a known special polynomials. Numerous researchers have
discovered intriguing findings regarding coefficient estimates and Fekete-Szegö
functional |d3 − ξd2

2|, ξ ∈ R, for individuals belonging to specific subfamilies of σ
subordinate to a known special polynomials. For more information about these
one can see [1,2,11,18,23,24,26,27,30,31]. One such polynomials that has drawn
attention from researchers is the Horadam polynomials.

Horadam polynomials are studied by Hörçum and Koçer [12, 13] and are
denoted by Hj(κ) (or Hj(κ, δ, κ ; %, ϑ)). They are expressed in terms of the
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recurrence relation given by

Hj(κ) = %κHj−1(κ) + ϑHj−2(κ), H1(κ) = δ, H2(κ) = κκ, (1.3)

where j ∈ N\{1, 2} and κ, %, ϑ, δ, κ ∈ R. H3(κ) = %κκ2 + ϑδ is evident from
(1.3). As per [12], the sequence Hj(κ), where j ∈ N, has the following generating
function:

H(κ, ς) :=
∞∑
j=1

Hj(κ)ςj−1 =
(κ− δ%)κς + δ

1− %κς − ϑς2
, (1.4)

where R(ς) 6= κ, κ ∈ R, and ς ∈ C.

For specific choices of δ, κ, %, and ϑ, the Horadam polynomial Hj(κ, δ, κ ; %, ϑ)
reduces to several polynomials (for details see [23]).

For z1, z2∈ A regular in U, we say that z1 is subordinate to z2, if there is a
function ψ(ς) of Schwarz, which is regular in U with ψ(0) = 0 and |ψ(ς)| < 1

(ς ∈ U), such that z1(ς) = z2(ψ(ς)), ς ∈ U. This principle is indicated as z1 ≺ z2

or z1(ς) ≺ z2(ς) (ς ∈ U) . In particular, if z2 ∈ S, then

z1(ς) ≺ z2(ς) ⇔ z1(0) = z2(0) and z1(U) ⊂ z2(U).

Motivated by the previously mentioned trends in coefficient-related
investigations as well as the Fekete-Szegö issue [8] on particular subfamilies of
σ, we explore two new subfamilies of σ linked with Horadam polynomials Hj(κ)
as in (1.3), namely STτσ(β, ν,κ) and SYτ

σ(β, γ, µ,κ). Unless otherwise indicated,
the inverse functions g−1(w) = }(w) as in (1.2) and H(κ, ς) as in (1.4) are used in
this paper.

Definition 1.1. The class STτσ(β, ν,κ), τ ≥ 1, β ∈ C − {0}, ν ≥ 0, andκ ∈ R
contains all the functions g ∈ σ given by (1.1), if

1 +
1

β

[
ν

(
[(ςg′(ς))′]τ

g′(ς)

)
+ (1− ν)

(
ς(g′(ς))τ

g(ς)

)
− 1

]
≺ H(κ, ς) + 1− δ, ς ∈ U,

and

1 +
1

β

[
ν

(
[(w}′(w))′]τ

}′(w)

)
+ (1− ν)

(
w(}′(w))τ

}(w)

)
− 1

]
≺ H(κ, w) + 1− δ, w ∈ U.
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We designate the class of τ−pseudo-ν-bi-starlike functions subordinate to
Horadam polynomials as Sτ

σ(ν,κ) = STτσ(1, ν,κ). τ−pseudo-bi-starlike function
family Pτ

σ(κ) ≡ STτσ(1, 0,κ) subordinate to Horadam polynomials was examined
in [1] and the family ST1

σ(1, ν,κ) ≡ Fσ(ν,κ) was explored in [16].

Definition 1.2. The class SYτ
σ(β, γ, µ,κ), τ ≥ 1, 0 ≤ γ ≤ 1, β ∈ C − {0}, µ ≥

γ, andκ ∈ R contains all the functions g ∈ σ given by (1.1), if

1 +
1

β

(
µς2g′′(ς) + ς(g′(ς))τ

γςg′(ς) + (1− γ)g(ς)
− 1

)
≺ H(κ, ς) + 1− δ, ς ∈ U

and

1 +
1

β

(
µw2}′′(w) + ω(}′(w))τ

γw}′(w) + (1− γ)}(w)
− 1

)
≺ H(κ, w) + 1− δ, w ∈ U.

For specific choices of µ and γ, the family SYτ
σ(β, γ, µ,κ) contains many

existing subfamilies of σ in addition to several new ones, as shown below:

1. Kτσ(β, µ,κ) ≡ SYτ
σ(β, 0, µ,κ), τ ≥ 1, µ ≥ 0, β ∈ C − {0}, andκ ∈ R, is the

class of functions g ∈ σ satisfying

1 +
1

β

(
µς2g′′(ς) + ς(g′(ς))τ

g(ς)
− 1

)
≺ H(κ, ς) + 1− δ, ς ∈ U

and

1 +
1

β

(
µw2}′′(w) + ω(}′(w))τ

}(w)
− 1

)
≺ H(κ, w) + 1− δ, w ∈ U.

When β = 1, the class Kτσ(1, µ,κ) was considered by Shammaky et al. [18].

2. Jτσ(β, µ,κ) ≡ SYτ
σ(β, 1, µ,κ), τ ≥ 1, µ ≥ 1, β ∈ C − {0}, andκ ∈ R, is the

class of functions g ∈ σ satisfying

1 +
1

β

[
(g′(ς))τ−1

(
1 + µ

(
ςg′′(ς)

(g′(ς))τ

))
− 1

]
≺ H(κ, ς) + 1− δ, ς ∈ U

and

1 +
1

β

[
(}′(w))τ−1

(
1 + µ

(
w}′′(w)
(}′(w))τ

))
− 1

]
≺ H(κ, w) + 1− δ, w ∈ U.
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3. Lτσ(β, γ,κ) ≡ SYτ
σ(β, γ, 1,κ), τ ≥ 1, 0 ≤ γ ≤ 1, β ∈ C−{0}, andκ ∈ R, is the

family of functions g ∈ σ satisfying

1 +
1

β

[
ς2g′′(ς) + ς(g′(ς))τ

γςg′(ς) + (1− γ)g(ς)
− 1

]
≺ H(κ, ς) + 1− δ, ς ∈ U

and

1 +
1

β

[
w2}′′(w) + w(}′(w))τ

γw}′(w) + (1− γ)}(w)
− 1

]
≺ H(κ, w) + 1− δ, ∈ U.

It is observed that i)Kτσ(β, 1,κ) ≡ Lτσ(β, 0,κ), β ∈ C− {0}, τ ≥ 1, andκ ∈ R.
ii) Jτσ(β, 1,κ) ≡ Lτσ(β, 1,κ), β ∈ C− {0}, τ ≥ 1, andκ ∈ R. iii) Magesh et al. [16]
looked at the class K1

σ(1, µ,κ), µ ≥ 0, and κ ∈ R. iv) Srivastava et al. [21] studied
the family K1

σ(1, 0,κ) ≡ S∗σ(κ),κ ∈ R for µ = 0 and τ = 1.

For functions in STτσ(β, ν,κ), we find estimates for |d2|, |d3|, and |d3−ξd2
2|, ξ ∈

R in Section 2. For functions in SYτ
σ(β, γ, µ,κ), we derive the upper bounds for

|d2|, |d3|, and |d3 − ξd2
2|, ξ ∈ R in Section 3. Presentations of intriguing outcomes

and pertinent links to the established findings are made.

2 The Function Class STτσ(β, ν,κ)

For g ∈ STτσ(β, ν,κ), the class specified in the Section 1, we first find the coefficient
related estimates.

Theorem 2.1. Let ξ ∈ R, κ ∈ R, τ ≥ 1, β ∈ C − {0}, and ν ≥ 0. If
g ∈ STτσ(β, ν,κ), then

|d2| ≤ |β||κκ|

√
|κκ|

|(τ(6ν + 1)(τ − 1) + ν + τ2)β(κκ)2 − (ν + 1)2(2τ − 1)2(%κκ2 + ϑδ)|
,

(2.1)

|d3| ≤ |β|
[

|β|(κκ)2

(ν + 1)2(τ − 1)2
+

|κκ|
(2ν + 1)(3τ − 1)

]
(2.2)
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and

|d3 − ξd2
2|

≤


|β||κκ|

(2ν+1)(3τ−1) ; |1− ξ| ≤ J
|β|2|κκ|3 |1−ξ|

|(τ(6ν+1)(τ−1)+ν+τ2)β(κκ)2−(ν+1)2(2τ−1)2(%κκ2+ϑδ)| ; |1− ξ| ≥ J ,

(2.3)

where

J =

∣∣∣∣(τ(6ν + 1)(τ − 1) + ν + τ2)βκ2κ2 − (ν + 1)2(2τ − 1)2(%κκ2 + ϑδ)

(2ν + 1)(3τ − 1)βκ2κ2

∣∣∣∣ . (2.4)

Proof. Let g ∈ STτσ(β, ν,κ). Then, we get

1 +
1

β

[
ν

(
[(ςg′(ς))′]τ

g′(ς)

)
+ (1− ν)

(
ς(g′(ς))τ

g(ς)

)
− 1

]
= H(κ,m(ς)) + 1− δ, ς ∈ U

(2.5)
and

1+
1

β

[
ν

(
[(w}′(w))′]τ

}′(w)

)
+ (1− ν)

(
w(}′(w))τ

}(w)

)
− 1

]
= H(κ, n(w))+1−δ, w ∈ U,

(2.6)
where

m(ς) = m1ς +m2ς
2 +m3ς

3 + ..., and n(w) = n1w + n2w
2 + n3w

3 + ..., (2.7)

are some regular functions that have the property that |m(ς)| < 1 and |n(w)| <
1, ς, w ∈ U. Additionally, It is known that

|mi| ≤ 1 and |ni| ≤ 1 (i ∈ N). (2.8)

Using (1.4) and (2.5)-(2.7), it is evident that

1 +
1

β

[
ν

(
[(ςg′(ς))′]τ

g′(ς)

)
+ (1− ν)

(
ς(g′(ς))τ

g(ς)

)
− 1

]
=

1−δ+H1(κ)+H2(κ)m(ς)+H3(κ)m2(ς)+... (2.9)

and
1 +

1

β

[
ν

(
[(w}′(w))′]τ

}′(w)

)
+ (1− ν)

(
w(}′(w))τ

}(w)

)
− 1

]
=
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1− δ + H1(κ) + H2(κ)n(w) + H3(κ)n2(w) + ... .

(2.10)
We determine from (2.9) and (2.10), in light of (1.3), that

1 +
1

β

[
ν

(
[(ςg′(ς))′]τ

g′(ς)

)
+ (1− ν)

(
ς(g′(ς))τ

g(ς)

)
− 1

]
=

1+H2(κ)m1ς+[H2(κ)m2+H3(κ)m2
1]ς

2+... (2.11)

and
1 +

1

β

[
ν

(
[(w}′(w))′]τ

}′(w)

)
+ (1− ν)

(
w(}′(w))τ

}(w)

)
− 1

]
=

1 + H2(κ)n1w + [H2(κ)n2 + H3(κ)n2
1]w

2 + ... .

(2.12)
Consequently, by contrasting the corresponding coefficients in (2.11) and (2.12),
we get

(ν + 1)(2τ − 1)d2 = βH2(κ)m1, (2.13)

(2ν + 1)(3τ − 1)d3 + (3ν + 1)(2τ2 − 4τ + 1)d2
2 = β[H2(κ)m2 + H3(κ)m2

1], (2.14)

− (ν + 1)(2τ − 1) d2 = βH2(κ)n1 (2.15)

and

(2ν+1)(3τ−1)(2d2
2−d3)+(3ν+1)(2τ2−4τ+1)d2

2 = β[H2(κ)n2+H3(κ)n2
1]. (2.16)

From (2.13) and (2.15), we get
m1 = −n1 (2.17)

and also
2(ν + 1)2(2τ − 1)2d2

2 = β2(m2
1 + n2

1)(H2(κ))2. (2.18)

We add (2.14) and (2.16) to obtain the bound on |d2|:

2(τ(6ν + 1)(τ − 1) + ν + τ2)d2
2 = βH2(κ)(m2 + n2) + βH3(κ)(m2

1 + n2
1). (2.19)

Putting the value of m2
1 + n2

1 from (2.18) in (2.19), we get

d2
2 =

β2H3
2(κ)(m2 + n2)

2
[
(τ(6ν + 1)(τ − 1) + ν + τ2)βH2

2(κ)− (ν + 12)(2τ − 1)2H3(κ)
] . (2.20)

Earthline J. Math. Sci. Vol. 14 No. 3 (2024), 443-457
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We obtain (2.1) by applying (2.8) for m2 and n2.

We subtract (2.16) from (2.14) to obtain the bound on |d3|.

d3 = d2
2 +

βH2(κ)(m2 − n2)

2(2ν + 1)(3τ − 1)
. (2.21)

From (2.17), (2.18) and (2.21) it follows that

d3 =
β2H2

2(κ)(m2
1 + n2

1)

2(ν + 1)2(2τ − 1)2
+
βH2(κ)(m2 − n2)

2(2ν + 1)(3τ − 1)
.

We obtain (2.2) by applying (2.8) for the coefficients m1, m2, n1 and n2.

Lastly, we use the values of d2
2 and d3 from (2.20) and (2.21), respectively, to

compute the bound on |d3 − ξd2
2|. Thus, we have

|d3 − ξd2
2| =

|β||H2(κ)|
2

∣∣∣∣( 1

(2ν + 1)(3τ − 1)
+ B(ξ,κ)

)
m2

−
(

1

(2ν + 1)(3τ − 1)
− B(ξ,κ)

)
n2

∣∣∣∣ ,
where

B(ξ,κ) = (1− ξ)βH2
2(κ)[

(τ(6ν + 1)(τ − 1) + ν + τ2)βH2
2(κ)− (ν + 12)(2τ − 1)2H3(κ)

] .
Clearly

|d3 − ξd2
2| ≤


|β||H2(κ)|

(2ν+1)(3τ−1) ; 0 ≤ |B(ξ,κ)| ≤ 1
(2ν+1)(3τ−1)

|β||H2(κ)||B(ξ,κ)| ; |B(ξ,κ)| ≥ 1
(2ν+1)(3τ−1) ,

which leads us to (2.3) where J is as in (2.4).

Remark 2.1. i) Using β = 1 and ν = 0 in the above theorem, we obtain Theorem
2.1 in [1]. Additionally, we can obtain the results in [20, Corollary 1 and Corollary
3] by allowing τ = 1. ii) A result in [16, Theorem 2.2] is obtained by taking
β = τ = 1 in Theorem 2.1. Additionally, by allowing ν = 1, we obtain Corollary
2.3 in [16], which is also expressed as Corollary 1 in [17].
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3 The Function Class SYτ
σ(β, γ, µ,κ)

The coefficient bounds for the functions g ∈ SYτ
σ(β, γ, µ,κ) discussed in Section

1 are provided in this section. Since this proof is fairly similar to Theorem 2.1, it
is excluded.

Theorem 3.1. Let ξ ∈ R,κ ∈ R, τ ≥ 1, µ ≥ γ, β ∈ C − {0}, and 0 ≤ γ ≤ 1. If
g ∈ SYτ

σ(β, γ, µ,κ), then

|d2| ≤

|β||κκ|

√
|κκ|

|(γ2 − 2γ(µ+ τ) + 4µ+ τ(2τ − 1))β(κκ)2 − (2(µ+ τ)− γ − 1)2(%κκ2 + ϑδ)|
,

|d3| ≤ |β|
[

|κκ|
3(2µ+ τ)− 2γ − 1

+
|β|(κκ)2

(2(τ + µ)− γ − 1)2

]
and

|d3 − ξd2
2|

≤


|β||κκ|

3(2µ+τ)−2γ−1 ; |1− ξ| ≤ Q
|β|2|κκ|3 |1−ξ|

|(γ2−2γ(µ+τ)+4µ+τ(2τ−1))β(κκ)2−(2(τ+µ)−2γ−1)2(%κκ2+ϑδ)| ; |1− ξ| ≥ Q,

where

Q =

∣∣∣∣(γ2 − 2γ(µ+ τ) + 4µ+ τ(2τ − 1))βb2κ2 − (2(τ + µ)− γ − 1)2(%bκ2 + ϑδ)

(3(2µ+ τ)− 2γ − 1)βb2κ2

∣∣∣∣ .
Remark 3.1. i) When β = 1, Theorem 3.1 agrees with Corollary 2 in [18]. ii)
When β = τ = 1, Theorem 3.1 coincides with a result [16, Theorem 2.1].

Theorem 3.1 would produce the following when γ = 0:

Corollary 3.1. Let ξ ∈ R,κ ∈ R, τ ≥ 1, µ ≥ 0, and β ∈ C − {0}. If g ∈
SKτσ(β, µ,κ), then

|d2| ≤ |β||κκ|

√
|κκ|

|(4µ+ τ(2τ − 1))β(κκ)2 − (2(µ+ τ)− 1)2(%κκ2 + ϑδ)|
,

Earthline J. Math. Sci. Vol. 14 No. 3 (2024), 443-457
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|d3| ≤ |β|
[

|κκ|
3(2µ+ τ)− 1

+
|β|κ2κ2

(2(µ+ τ)− 1)2

]
and

|d3 − ξd2
2|

≤


|β||κκ|

3(2µ+τ)−1 ; |1− ξ| ≤ Q1

|β|2|κκ|3 |1−ξ|
|(4µ+τ(2τ−1))β(κκ)2−(2(µ+τ)−1)2(%κκ2+ϑδ)| ; |1− ξ| ≥ Q1,

where

Q1 =

∣∣∣∣(4µ+ τ(2τ − 1))βb2κ2 − (2(µ+ τ)− 1)2(%bκ2 + ϑδ)

(3(2µ+ τ)− 1)βb2κ2

∣∣∣∣ .
Remark 3.2. When β = 1, µ = γ = 0, Theorem 3.1 agrees with a finding in [1,
Theorem 2.1]. Furthermore, we arrive at the outcomes in [20, Corollaries 1 and
3], by allowing τ = 1.

Theorem 3.1 would produce the following when γ = 1:

Corollary 3.2. Let ξ ∈ R,κ ∈ R, µ ≥ 1, β ∈ C − {0}, and τ ≥ 1. If
g ∈ KτΣ(β, µ,κ) ≡ SYτ

Σ(1, µ,κ), then

|d2| ≤ |β||κx|

√
|κx|

|(2µ+ 2τ2 − 3τ + 1)β(κκ)2 − 4(µ+ τ − 1)2(%κκ2 + ϑδ)|
,

|d3| ≤ |β|
[

|κκ|
3(2µ+ τ − 1)

+
|β|(κκ)2

4(µ+ τ − 1)2

]
and

|d3 − ξd2
2| ≤


|β|κκ|

3(2µ+τ−1) ; |1− ξ| ≤ Q2

|β|2|κκ|3 |1−ξ|
|(2µ+2τ2−3τ+1)β(κκ)2−4(µ+τ−1)2(%κκ2+ϑδ)| ; |1− ξ| ≥ Q2,

where Q2 =
1

3(τ + 2µ− 1)

∣∣∣∣2µ+ 2τ2 − 3τ + 1− 4(τ + µ− 1)2
(
%κκ2 + ϑδ

βκ2κ2

)∣∣∣∣ .
Remark 3.3. In Corollary 3.2, if we allow β = τ = 1, we get the outcome
in [25, Corollary 2.2].
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Theorem 3.1 would produce the following when µ = 1:

Corollary 3.3. Let ξ ∈ R,κ ∈ R, 0 ≤ γ ≤ 1, β ∈ C − {0}, and τ ≥ 1. If g ∈
LτΣ(β,κ, γ) ≡ SYτ

Σ(κ, β, γ, 1), then

|d2| ≤ |β||κκ|

√
|κκ|

|((1− γ)2 + 3− τ + 2τ(τ − γ))β(κκ)2 − (2τ + 1− γ)2(%κκ2 + ϑδ)|
,

|d3| ≤ |β|
[

|κκ|
3τ + 5− 2γ

+
|β|(κκ)2

(2τ + 1− γ)2

]
and

|d3 − ξd2
2| ≤


|β||κκ|

3τ+5−2γ ; |1− ξ| ≤ Q3

|β|2|κκ|3 |1−ξ|
|((1−γ)2+3−τ+2τ(τ−γ))β(κκ)2−(2τ+1−γ)2(%κκ2+ϑδ)| ; |1− ξ| ≥ Q3,

where

Q3 =
1

3τ + 5− 2γ

∣∣∣∣((1− γ)2 + 3− τ + 2τ(τ − γ))− (2τ + 1− γ)2
(
%κκ2 + ϑδ

βκ2κ2

)∣∣∣∣ .
Remark 3.4. By letting γ = τ = β = 1 in the above corollary, we arrive at a
result in [16, Corollary 2.3]. Orhan et al. [17] also express this result as Corollary
1.

4 Conclusion

The upper bounds of |d2| and |d3| for functions belonging to the introduced
subfamilies of σ linked with Horadam polynomials are obtained, in the present
paper. Additionally, for functions in these subfamilies, we have determined the
Fekete-Szegö problem |d3− ξd2

2|, ξ ∈ R. By adjusting the parameters in Theorems
2.1 and 3.1, we have highlighted a number of implications. Additionally, pertinent
links to the current findings are found. The open problem is to estimate the
bound of |dj |, (j ∈ R/{1, 2, 3}) for the subfamilies studied in this article. Many
researchers may be motivated to concentrate on a variety of recent publications,
such as the i) operators on fractional q-calculus [19], ii) q-derivative and q-integral
operators [7, 14,22], based on the subfamilies this investigation examines.
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