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Abstract 

In the present paper, we define two new families ������, 
, �; � and ����∗ ��, 
, �; �� 

of holomorphic and �-fold symmetric bi-univalent functions associated with the 

Bazilevic starlike and convex functions in the open unit disk �. We find upper bounds for 

the first two Taylor-Maclaurin |����| and |�����| for functions in these families. 

Further, we point out several special cases for our results. 

1. Introduction 

Denote by � the family of functions � that are holomorphic in the open unit disk � = �� ∈ ℂ ∶ |�| < 1# and normalized by the conditions ��0� = �%�0� − 1 = 0 and 

having the form: 

���� = � + ( �)�)*
)+�  .                                                    �1.1� 

We also denote by - the subfamily of � consisting of functions satisfying (1.1) which 

are also univalent in �. 

A function � ∈ � is called starlike of order � �0 ≤ � < 1�, if 
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Re 1��%������� 2 > �,   �� ∈ ��. 
Singh [21] introduced and studied Bazilevic function that is the function � such that 

Re 1��45�′����������452 > 0,   �� ∈ �, 
 ≥ 0�. 
According to the Koebe one-quarter theorem (see [8]), every function � ∈ - has an 

inverse �4� which satisfies �4�8����9 = �, �� ∈ �� 

and �8�4��:�9 = :, ;|:| < <=���, <=��� ≥ 14?, 
where @�:� = �4��:� = : − ��:� + �2��� − �B�:B − �5��B − 5���B + �D�:D + ⋯.  �1.2� 

A function � ∈ � is said to be bi-univalent in � if both � and �4� are univalent in �. We 

denote by F the family of bi-univalent functions in � given by (1.1). For a brief history 

and interesting examples in the family Σ see the pioneering work on this subject by 

Srivastava et al. [24], which actually revived the study of bi-univalent functions in recent 

years. In a considerably large number of sequels to the aforementioned work of 

Srivastava et al. [24], several different sub families of the bi-univalent function family Σ 

were introduced and studied analogously by the many authors (see, for example, 

[2,3,5,11,15,18,22,27,28,30,33]). 

For each function � ∈ -, the function ℎ��� = I������
, �� ∈ �, � ∈ ℕ� is univalent 

and maps the unit disk � into a region with �-fold symmetry. A function is said to be �-

fold symmetric (see [12]) if it has the following normalized form: 

���� = � + ( ��)����)��*
)+� ,   �� ∈ �, � ∈ ℕ� .                        �1.3� 

We denote by -� the family of �-fold symmetric univalent functions in �, which are 

normalized by the series expansion (1.3). In fact, the functions in the family - are one-

fold symmetric. 
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In [25] Srivastava et al. defined �-fold symmetric bi-univalent functions analogues 

to the concept of �-fold symmetric univalent functions. They gave some important 

results, such as each function � ∈ F generates an �-fold symmetric bi-univalent function 

for each � ∈ ℕ. Furthermore, for the normalized form of � given by (1.3), they obtained 

the series expansion for �4� as follows: @�:� = : − ����:��� + L�� + 1������ − �����M:���� 

− N12 �� + 1��3� + 2�����B − �3� + 2���������� + �B���O :B��� + ⋯ ,   �1.4� 

where �4� = @. We denote by F� the family of �-fold symmetric bi-univalent functions 

in �. It is easily seen that for � = 1, the formula (1.4) coincides with the formula (1.2) of 

the family F. Some examples of �-fold symmetric bi-univalent functions are given as 

follows: 

P ��1 − ��Q R�  ,    S12 log P1 + ��1 − ��QW R�     and    L− log�1 − ���M R� 

with the corresponding inverse functions 

P :�1 + :�Q R�  ,     P[�\� − 1[�\� + 1Q R�    and   P[\� − 1[\� Q R�, 
respectively. 

Recently, many authors investigated bounds for various subfamilies of �-fold bi-

univalent functions (see [1,4,7,13,17,19,20,23,25,26,29,31,32]). 

In order to prove our main results, we require the following lemma. 

Lemma 1.1 [3]. If ℎ ∈ ], then |^)| ≤ 2 for each _ ∈ ℕ, where ] is the family of all � all functions ℎ holomorphic in � for which `[8ℎ���9 > 0,  �� ∈ ��, 
where ℎ��� = 1 + ^�� + ^��� + ⋯ ,   �� ∈ ��. 
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2. Coefficient Estimates for the Function Family abc��d , e , f; g� 

Definition 2.1. A function � ∈ F� given by (1.3) is said to be in the family ������, 
, �; � �0 ≤ � ≤ 1, 0 ≤ 
 ≤ 1, � ≥ 0; 0 <  ≤ 1, � ∈ ℕ,   �, : ∈ �� if it 

satisfies the following conditions: 

h�<@ i�
 i ��4j�%%���8��%���9�4j − 2k + �
�� + 1� + �� ��4j�%���8����9�4j + �1 − ���1 − 
� ����� kh 
< l2  ,      �� ∈ ��                                                           �2.1� 

and 

h�<@ i�
 i :�4j@%%�:�8:@%�:�9�4j − 2k + �
�� + 1� + �� :�4j@%�:�8@�:�9�4j + �1 − ���1 − 
� @�:�: kh 
< l2  ,     �: ∈ ��,                                                           �2.2�. 

where the function @ = �4� is given by (1.4). 

In particular, for one-fold symmetric bi-univalent functions, we denote the family ���R��, 
, �; � = �����, 
, �; �. 

Remark 2.1. It should be remarked that the families ��c���, 
, �; � and �����, 
, �; � are a generalization of well-known families consider earlier. These 

families are: 

(1) For 
 = 0, and � = 1, the class ������, 
, �; � reduce to the class m�,�n,o
 which 

was introduced by Eker [9]; 

(2) For 
 = 0, and � = � = 1, the class ������, 
, �; � reduce to the class ℋ�,�n  

which was introduced by Srivastava et al. [25]; 

(3) For 
 = 0  and � = 1, the class �����, 
, �; � reduce to the family ℬ�n�, �� 

which was given by Frasin and Aouf [10]; 

(4) For 
 = 0, and � = � = 1 the class �����, 
; � reduce to the class ℋ∑n which 

was investigated by Srivastava et al. [24]. 
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Theorem 2.1. Let � ∈ ������, 
, �; �  �0 ≤ � ≤ 1, 0 ≤ 
 ≤ 1, � ≥ 0; 0 <  ≤1, � ∈ ℕ, �, : ∈ �� be given by (1.3). Then |����| ≤ 2
st u�� + 1���
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1� +2�� − 1� ;�
��� + 1�� + �� �
�� + 1� + ���2� + ��? v+�1 − �L�
��� + 1�� + �� + �� + � − 1��� + 
� + 1M� t

       �2.3� 

and |�����| ≤ 4�� + 1��L�
��� + 1�� + �� + �� + � − 1��� + 
� + 1M� 

+ 2�
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1 .      �2.4� 

Proof. It follows from conditions (2.1) and (2.2) that 

i�
 i ��4j�%%���8��%���9�4j − 2k + �
�� + 1� + �� ��4j�%���8����9�4j + �1 − ���1 − 
� ����� k 

= Lw���Mn                                                                               �2.5� 

and 

i�
 i :�4j@%%�:�8:@%�:�9�4j − 2k + �
�� + 1� + �� :�4j@%�:�8@�:�9�4j + �1 − ���1 − 
� @�:�: k 

= Lx�:�Mn ,                                                                            �2.6� 

where @ = �4� and w, x in ] have the following series representations: w��� = 1 + w��� + w����� + wB��B� + ⋯                             �2.7� 

and x�:� = 1 + x�:� + x��:�� + xB�:B� + ⋯ .                      �2.8� 

Comparing the corresponding coefficients of (2.5) and (2.6) yields L�
��� + 1�� + �� + �� + � − 1��� + 
� + 1M����   = w� .           �2.9� L�
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1M����� 
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+�� − 1� N�
��� + 1�� + 12 �
�� + 1� + ���2� + ��O �����  

= w�� + � − 1�2 w�� ,                                                              �2.10� −L�
��� + 1�� + �� + �� + � − 1��� + 
� + 1M���� = x�            �2.11� 

and L�
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1M }�� + 1������ − ����� ~ 

+�� − 1� N�
��� + 1�� + 12 �
�� + 1� + ���2� + ��O �����  

= x�� + � − 1�2 x�� .                                                              �2.12� 

Making use of (2.9) and (2.11), we obtain w� = −x�                                                          �2.13� 

and 2L�
��� + 1�� + �� + �� + � − 1�8�� + 
� + 1������� = ��w�� + x�� �.     �2.14� 

Also, from (2.10), (2.12) and (2.14), we find that S�� + 1���
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1�+ 2�� − 1� P�
��� + 1�� + 12 �
�� + 1� + ���2� + ��QW �����  

= �w�� + x��� + � − 1�2 �w�� + x�� � 

= �w�� + x��� + � − 1�L�
��� + 1�� + �� + �� + � − 1��� + 
� + 1M� ����� . 
Therefore, we have ����� = ��w�� + x��� u�� + 1���
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1� +2�� − 1� ;�
��� + 1�� + �� �
�� + 1� + ���2� + ��? v+�1 − �L�
��� + 1�� + �� + �� + � − 1��� + 
� + 1M�

  .     �2.15� 
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Now, taking the absolute value of (2.15) and applying Lemma 1.1 for the coefficients w�� and x�� , we obtain |����| ≤ 2
st u�� + 1���
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1� +2�� − 1� ;�
��� + 1�� + �� �
�� + 1� + ���2� + ��? v+�1 − �L�
��� + 1�� + �� + �� + � − 1��� + 
� + 1M� t

 . 

This gives the desired estimate for |����| as asserted in (2.3). 

In order to find the bound on |�����|, by subtracting (2.12) from (2.10), we get L�
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1M�2����� − �� + 1������ � 

= �w�� − x��� + � − 1�2 �w�� − x�� �.                                �2.16� 

It follows from (2.13), (2.14) and (2.16) that 

����� = �� + 1���w�� + x�� �2L�
��� + 1�� + �� + �� + � − 1��� + 
� + 1M� 

+ �w�� − x���2L�
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1M .          �2.17� 

Taking the absolute value of (2.17) and applying Lemma 1.1 once again for the 

coefficients w�, w��, x� and x�� , we obtain 

|�����| ≤ 4�� + 1��L�
��� + 1�� + �� + �� + � − 1��� + 
� + 1M� 

+ 2�
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1  
which completes the proof of Theorem 2.1. 

Remark 2.2. In Theorem 2.1, if we choose 

(1) 
 = 0 and � = 1, then we obtain the results which was obtained by Eker L10 , Theorem 1M; 
(2) 
 = 0 and � = � = 1, then we obtain the results which were given by Srivastava 

et al. [25, Theorem 2]. 
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For one-fold symmetric bi-univalent functions, Theorem 2.1 reduces to the following 

corollary: 

Corollary 2.1. Let � ∈ �����, 
, �; ��0 ≤ � ≤ 1, 0 ≤ 
 ≤ 1, � ≥ 0; 0 <  ≤ 1� be 

given by (1.1). Then 

|��| ≤ 2
�h �2��
�9 + �� + �1 + ���� + 
� + 1� + 2�� − 1� ;4�
 + �� �
�� + 1� + ���2 + ��?�+�1 − �L�
�4 + �� + ��� + 
� + 1M� h . 

|�B| ≤ 8�L�
�4 + �� + ��� + 
� + 1M� + 2�
�9 + �� + �1 + ���� + 
� + 1 . 
Remark 2.3. In Corollary 2.1, if we choose 

(1) 
 = 0 and � = 1, then we obtain the results which was proven by Frasin and 

Aouf [10, Theorem 2.2]; 

(2) 
 = 0 and � = � = 1, then we have the results which was given by Srivastava et al. [25, Theorem 1]. 

 

3. Coefficient Estimates for the Function Family abc�∗ �d, e, f; �� 

Definition 3.1. A function � ∈ F� given by (1.3) is said to be in the family ����∗ ��, 
, �; �� �0 ≤ � ≤ 1, 0 ≤ 
 ≤ 1, � ≥ 0; 0 < � ≤ 1� if it satisfies the following 

conditions: 

`[ ��
 i ��4j�%%���8��%���9�4j − 2k + �
�� + 1� + �� ��4j�%���8����9�4j + �1 − ���1 − 
� ����� � > � ,     �3.1� 

and 

`[ ��
 i :�4j@%%�:�8:@%�:�9�4j − 2k + �
�� + 1� + �� :�4j@%�:�8@�:�9�4j + �1 − ���1 − 
� @�:�: � > � ,     �3.2� 

where the function @ = �4� is given by (1.4). 

In particular, for one-fold symmetric bi-univalent functions, we denote the family ���R∗ ��, 
, �; �� = ���∗��, 
, �; ��. 

Remark 3.1. It should be remarked that the families ����∗ ��, 
, �; �� and ���∗��, 
, �; �� are a generalization of well-known families consider earlier. These 
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families are: 

(1) For 
 = 0 and � = 1, the family ����∗ ��, 
, �; � reduce to the class m�,�o ��� 

which was introduced by Eker [9]; 

(2) For 
 = 1, and � = � = 1, the family ����∗ ��, 
, �; �� reduce to the family ℋ�,���� which was introduced by Srivastava et al. [25]; 

(3) For 
 = 0 and � = 1, the family ���∗��, 
, �; �� reduce to the family ℬ�∗��, �� 

which was given by Frasin and Aouf [10]; 

(4) For 
 = 0 and � = � = 1, the class ���∗��, 
, �; �� reduce to the class ℋ���� 

which was investigated by Srivastava et al. [24]. 

Theorem 3.1. Let � ∈ ����∗ ��, 
, �; �� 8�0 ≤ � ≤ 1, 0 ≤ 
 ≤ 1, � ≥ 0; 0 <  ≤ 1,� ∈ ℕ, �, : ∈ ��9, be given by (1.3). Then 

|����| ≤ 2s �1 − ��h�� + 1���
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1�+2�� − 1� ;�
��� + 1�� + �� �
�� + 1� + ���2� + ��? h   � 3.3� 

and |�����| ≤ 2�1 − ����� + 1�L�
��� + 1�� + �� + �� + � − 1��� + 
� + 1M� 

                              + 2�1 − ���
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1 .         �3.4� 

Proof. It follows from conditions (3.1) and (3.2) that there exist w, x ∈ ] such that 

i�
 i ��4j�%%���8��%���9�4j − 2k + �
�� + 1� + �� ��4j�%���8����9�4j + �1 − ���1 − 
� ����� k 

= � + �1 − ��w���                                                              �3.5� 

and 

i�
 i :�4j@%%�:�8:@%�:�9�4j − 2k + �
�� + 1� + �� :�4j@%�:�8@�:�9�4j + �1 − ���1 − 
� @�:�: k 

= � + �1 − ��x�:�,                                                             �3.6� 
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where w��� and x�:� have the forms (2.7) and (2.8), respectively. Equating coefficients 

(3.5) and (3.6) yields L�
��� + 1�� + �� + �� + � − 1��� + 
� + 1M���� = �1 − ��w� ,           �3.7� L�
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1M����� +�� − 1� N�
��� + 1�� + 12 �
�� + 1� + ���2� + ��O ����� = �1 − ��w�� ,   �3.8� −L�
��� + 1�� + �� + �� + � − 1��� + 
� + 1M���� = �1 − ��x�       �3.9� 

and L�
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1M }�� + 1������ − ����� ~+ �� − 1� N�
��� + 1�� + 12 �
�� + 1� + ���2� + ��O �����  

= �1 − ��x��.                                                                    �3.10� 

From (3.7) and (3.9), we get  w� = −x�                                                        �3.11� 

and 2L�
��� + 1�� + �� + �� + � − 1��� + 
� + 1M������ = �1 − ����w�� + x�� �.   �3.12� 

Adding (3.8) and (3.10), we obtain S�� + 1���
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1�
+ 2�� − 1� P�
��� + 1�� + 12 �
�� + 1� + ���2� + ��QW �����  

= �1 − ���w�� + x���.                                                     �3.13� 

Therefore, we have ����� = �1 − ���w�� + x����� + 1���
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1�+2�� − 1� ;�
��� + 1�� + �� �
�� + 1� + ���2� + ��?  . 
Applying Lemma 1.1 for the coefficients w�� and x�� , we obtain 
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|����| ≤ 2s �1 − ��h�� + 1���
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1�+2�� − 1� ;�
��� + 1�� + �� �
�� + 1� + ���2� + ��? h . 
This gives the desired estimate for |����| as asserted in (3.3). 

In order to find the bound on |�����|, by subtracting (3.10) from (3.8), we get L�
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1M�2����� − �� + 1������ � = �1 − ���w�� − x���, 
or equivalently ����� = � + 12 ����� + �1 − ���w�� − x���2L�
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1M. 
Upon substituting the value of �����  from (3.12), it follows that 

����� = �1 − ����� + 1��w�� + x�� �4L�
��� + 1�� + �� + �� + � − 1��� + 
� + 1M�                            
+ �1 − ���w�� − x���2L�
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1M. 

Applying Lemma 1.1 once again for the coefficients w�, w��, x� and x�� , we obtain |�����| ≤ 2�1 − ����� + 1�L�
��� + 1�� + �� + �� + � − 1��� + 
� + 1M�                               
+ 2�1 − ���
�4��� + 1� + � + 1� + �2� + � − 1��� + 
� + 1  

which completes the proof of Theorem 3.1. 

Remark 3.2. In Theorem 3.1, if we choose 

(1) 
 = 0 and � = 1, then we obtain the results which was obtained by Eker [9, 

Theorem 2]; 

(2) 
 = 0 and � = � = 1, then we obtain the results which were given by Srivastava 

et al. [25, Theorem 3]. 

For one-fold symmetric bi-univalent functions, Theorem 3.1 reduces to the following 

corollary: 
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Corollary 3.1. Let � ∈ ���∗��, 
, �; ���0 ≤ � < 1, 0 ≤ � ≤ 1, 0 ≤ 
 ≤ 1�, be given 

by (1.1). Then 

|����| ≤ 2s �1 − ��h 2��
�9 + �� + �1 + ���� + 
� + 1�+2�� − 1� ;4�
 + �� �
�� + 1� + ���2 + ��?h  
and |�B| ≤ 4�1 − ���L�
�4 + �� + ��� + 
� + 1M�  + 2�1 − ���
�9 + �� + �1 + ���� + 
� + 1 . 

Remark 3.3. In Corollary 3.1, if we choose 

(1) 
 = 0 and � = 1, then we obtain the results which was proven by Frasin and 

Aouf [10, Theorem 3.2]; 

(2) 
 = 0 and � = � = 1, then we have the results which was given by Srivastava et al. [24, Theorem 2]. 

4. Conclusion 

This work has introduced a new families ������, 
, �; � and ����∗ ��, 
, �; �� of F� for normalized holomorphic and �-fold symmetric bi-univalent functions associated 

with the Bazilevic starlike and convex functions and investigated the initial coefficient 

bounds |����| and |�����| for functions in each of these new families. 
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