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Abstract 

Age-structured mathematical model of diphtheria infection has been formulated with 

specific epidemiological classes such as ��, susceptible infant at time � (0-1years), ��, 

susceptible school children population at time �, �, vaccination population at time �, �, 
exposed population at time �, ��, asymptomatic infection population at time �, ��, 
symptomatic infection population at time �, �	, detected infectious humans at time � 

(asymptomatic and symptomatic) population through testing, 
, recovered population at 

time �. It was established through theorems and proofs that the model is 

epidemiologically meaningful, and that all its state variables are positive (non-negative) 

at time � > 0 in the domain ℘, and that the domain ℘ is indeed bounded. Using the next 

generation matrix, the reproduction ratio 
� of the system was determined. Using 

dynamical system theory, it was established that the system is locally stable. A matrix-

theoretic method was used in the construction of an appropriate Lyapunov function for 

the global stability analysis of the formulated model, and also established that the system 

is globally asymptotically stable if 
� ≤ 1 and unstable otherwise. 

1. Introduction 

Diphtheria is a bacterial infectious disease that can lead to severe complications such 

as respiratory failure, heart problems and even deaths if it is not detected early. This 

infection that mostly affects the throat and the nose can be prevented by vaccination. 
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Case-fatality occurs only in places where there is poor sanitation condition and 

inadequate vaccination coverage as a result of low resources [1,2,3]  

There is a report of outbreak of diphtheria infection in Nigeria with confirmed cases 

in Kano and Lagos but that of Yobe and Osun is under observation. The report indicates 

that case fatality rate is at 18.5% occurring in areas that were not adequately covered in 

terms of vaccination [4]. This report has emphasised the role of vaccination and herd 

immunity, impact of vaccination coverage and sensitisation (media coverage) and effect 

of complacency in controlling the spread of infectious disease, as demonstrated by 

[5,6,7]. In countries where there is low income, inadequate vaccination coverage and 

poor sanitation conditions case fatality rate among untreated and unvaccinated population 

is high. Diphtheria vaccination coverage estimate in Nigeria have been in the decline. 

Because of the outbreak of COV-19 and unavailability of vaccines, vaccination rate 

declined from 86% in 2019 to 81% in 2021 and now 56%, which grossly suboptimal in 

Nigeria [4].  

The control of this infection is based mainly on prevention, by ensuring high 

population immunity. Secondary infection should be prevented by the rapid investigation 

of close contacts to ensure prompt treatment of those infected. To avoid a rise in the 

number of confirmed cases and related death and guarantee community protection, the 

national vaccination coverage of 80-86% should be sustained [8]. 

To effectively contend the spread of diphtheria, different control measures, such as 

isolation of patient, maintenance of one meter between patients, keeping patient care 

areas with good ventilation, the use mask that is medically prepared and cover any 

wound/lesions on patient’s body by patient who may have to move out of the isolation 

areas, population subgroup such as young children under five years of age, school 

children, elderly who are at greater risk and have close contact with diphtheria infection 

and health workers should highly prioritized with treatment and vaccination, 

epidemiological surveillance ensuring early detection of diphtheria outbreak, 

administering antitoxin to neutralize the toxin and antibiotics to kill the bacteria, reducing 

complication and mortality should be implemented [8].  

Mathematical models over the years have become a veritable tool in the hand of 

mathematicians and epidemiologist in studying, understanding, describing and analysing 

the dynamics of infectious diseases [9,10,11,12,13,14,15,16]. Apart from understanding 

the dynamics of infections, mathematical models such as [17,18,19] have given good 

insight in real life problems, it analysis have been of immense benefit in decision making. 
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Some mathematical models such as [20,21] has been formulated for the transmission 

dynamics of diphtheria, which correctly describe the decreasing trend of diphtheria cases 

and predicted the diphtheria outbreak patterns that may occur in the near future. Finds 

parameters that gives contribution endemic and non-endemic conditions 

The work under consideration is aimed at presenting an age-structure deterministic 

mathematical model of the transmission dynamics of diphtheria infection in Nigeria in to 

investigate the impact of some of the control measures recommended by WHO on the 

spread of diphtheria infection, in targeting the infants, school children and the elderly 

who are mostly prone to the diphtheria infection, through contact tracing to mitigate and 

reduce the spread of diphtheria in the population. 

The research is expected to discuss the feasibility of using age-structured 

deterministic model of the transmission dynamics diphtheria to assess the development of 

control measures adopted in 2023 diphtheria epidemic outbreak in Nigeria. 

 

Figure 1: Schematic flowchart of transmission dynamics of diphtheria. 

2. Model Formulation 

2.1. Assumptions 

1. The control of diphtheria is based on primary prevention of disease by ensuring 

high population immunity of the infant ((0-1 year) and school children by 

vaccination. 
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2. Isolation of detected cases (that is confirmed cases are not allowed to interact 

with the population freely. 

3. Epidemiological surveillance ensuring early detection through contact tracing is 

carried out. 

4. Secondary prevention spread by the rapid investigation of close contacts to 

ensure prompt treatment of the infected. 

5. The total population of human at time � under consideration denoted by �� is 

split into mutually exclusive sub-population of ��, susceptible infant at time � (0-

1 years), ��, susceptible school children population at time �, �, vaccination 

population at time �, �, exposed population at time �, ��, asymptomatic infection 

population at time �, ��, symptomatic infection populationat time �, 
, recovered 

population at time �. �	 , detected infectious humans at time � (asymptomatic and 

symptomatic) population through testing, 

��  =  ��  + ��  + � + � +  �� +  �� + 
 + �	. 
2.2. State variables  

�� −The total population of human at time � under consideration,  

�� − Susceptible infant at time � (0-1years), 

�� − Susceptible school children population at time �, 

� −Vaccination population at time �, 

� − Exposed population at time �, 

��  − Asymptomatic infection population at time �, 

�� − Symptomatic infection population at time �,  

�	 − Detected infectious humans at time � (asymptomatic and symptomatic) 

population through testing, 


 − Recovered population at time �. 

2.3. Parameters 

�� − progress rate from exposed to ��, asymptomatic infection population  



Age Structured Deterministic Model of Diphtheria Infection 

Earthline J. Math. Sci. Vol. 14 No. 3 (2024), 391-404 

395

�� − progress rate efrom exposed to ��, symptomatic infection population 

, − fraction of new infection that are ��, asymptomatic  
1 − , − fraction of new infection that are ��, symptomatic  
/� − effective transmission rate from �� 

/� − effective transmission rate from �� 

1� − vaccination coverage for �� 

1� − vaccination coverage for �� 

2 − vaccine ef3icacy  
4 − maturity rate from �� to �� 

5 − per capita birth rate of humans  
21� − immunization rate in �� 

21� − immunization rate in �� 

8� − detection rate (via contact tracing ) for �� 

8� − detection rate (via contact tracing ) for �� 

; − death due to infection  
< − natural death rate 

=� − the recovery rate of �� 

=� − the recovery rate of �� 

=> − the recovery rate of �	 

?�(�)  =  /�(���� + ����)
�� − �	  

?�(�)  =  /�(���� + ����)
�� − �	  

2.4. Model equations  

Using the above described state variables and parameters together with the schematic 

diagram in Figure 1, the model of the diphtheria infection transmission dynamics results 
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in the following system of deterministic non-linear first order differential equations  

@��@�  = 5�� −  /�(���� + ����)
�� − �	 �� − 21��� − 4�� −  <��             (2.1) 

@��@�  =  4�� −  /�(���� + ����)
�� − �	 �� − 21��� −  <��                         (2.2) 

@�
@�  = 21��� +  21���  −  <�                                                                (2.3) 

@�
@�  =  /�(���� + ����)

�� − �	 �� + /�(���� + ����)
�� − �	 ��  − ��,� − ��(1 − ,)� −  <�  (2.4) 

@��@�  =  ��,� − =��� − 8��� − <�� − ;��                                         (2.5) 

@��@�  =  ��(1 − ,)� −  =��� − 8��� − <�� − ;��                             (2.6) 

@

@�  = =��� +  =��� + =>�	  −  <
                                                   (2.7) 

@�	@�  =  8��� + 8��� − =>�	 − <�	 − ;�	                                       (2.8) 

 

3. Analysis of the Model 

This section seeks to study qualitatively the dynamical properties of the Diphtheria 

model (2.1)-(2.8). 

3.1. Basic properties of the model 

Before the model (2.1)-(2.8) is epidemiologically meaningful, it is important to show 

that all its state variables are positive (non-negative) at all time � > 0 in the domain ℘, 

and that the domain ℘ is indeed bounded. This shall be done through the following 

theorems and proves. 

Theorem 3.1. Let the initial data of the model (2.1)-(2.8) be given as ��(0) ≥ 0,
��(0) ≥ 0, �(0) ≥ 0, �(0) ≥ 0, ��(0) ≥ 0, ��(0) ≥ 0, 
(0) ≥ 0, �	(0) ≥ 0. Then the 

solutions ��, ��, �, �, ��, ��, 
, �	 of the model (2.1)-(2.8) are non-negative ∀ � > 0. 
Proof. Let �� = JKLM� > 0: �� > 0, �� > 0, � > 0, � > 0,  �� > 0, �� > 0, 
 > 0,

�	 > 0 ∈ [0, �]R. Thus, �� > 0. 
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We have from (2.1)  
@��@�  = 5�� − /�(���� + ����)

�� − �	 �� − 21��� − 4�� − <�� 

@��@�  = 5�� − (?�� + 21� + 4 +  <)��     where ?�(�)  =  /�(���� + ����)
�� − �	  

which can be re-written as  

@��@� + (?�� + 21� + 4 +  <)��   = 5�� 

so that  

��(�)  =  ST(UVWXYZWX[X \)] ^ 5��
]

_
ST(UVWXYZWX[X \)`@J > 0. 

Similarly, it can be shown that: �� > 0, � > 0, � > 0, �� > 0, �� > 0, 
 > 0, �	 > 0.  
Theorem 3.2. The domain ℘ =  M(��, ��, �, �, ��, ��, 
, �	) a ℜXc : �� ≤  ��(0)R is 

positively-invariant for the model (2.1)-(2.8) and attracts all positive solutions of the 

model. 

Proof. Adding all the equation of the model (2.1)-(2.8), we have  

@��@� = 5�� − <�� − <�� − d� − <� − <� − <�� − ;�� − <�� − ;�� − <�	 − ;�	 − <
  
e = minM<. d, ;R 

@��@�  ≤  5�� −  e�� =  f��, f = 5 − e 

@��@�  ≤   f��, 
^ @����  ≤ ^ f@� 

��(�)  =  ��(0)Sg] 

��(�) approaches ��(0) as �  → ∞ ∀ 5 < e. 
Hence, the domain ℘ attracts all solutions in ℜXc . 
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3.2. Local asymptotic stability of the disease free equilibrium of the model (2.1)-(2.8)  

By setting the right hand side of the model equation (2.1)-(2.8) to zero (0), the DFE 

of (2.1)-(2.8) is obtained as follows  

k_ =  (��_, ��_, �_, �_, ��_, ��_, 
_, �	_) 

=  (��(0), ��(0), 0, 0, 0, 0, 0, 0). 
The local stability equilibrium of the DFE k_ can be established by the use of next 

generation matrix method on the system (2.1)-(2.8) as in [1,2]. Hence, the transmission 

matrix l and the transition matrix of the system (2.1)-(2.8) is given respectively as 

follows:  

l( �, ��, ��, �	) =  
















 β+βσβ+βσ

0000

0000

0000

0)21(2)21(10

 

�( �, ��, ��, �	)

=  




















η+α+γθ−θ−
η+α+θ+γδ−σ−

η+α+θ+γδσ−
α+δ−σ+δσ

10

020)1(

0011

000)1(

21

22

1

21

.

 

From [1,2], it follows that the basic reproduction number denoted by 
� is obtained as 


� = ���,(/� + /�)
((��, + ��(1 − ,) +  <)(8� + =� + < + ;)

+ ���(1 − ,)(/� + /�)
((��, + ��(1 − ,) +  <)(8� + =� + < + ;) 

or  


� = (/� + /�) m ���,
((��, + ��(1 − ,) +  <)(8� + =� + < + ;)

+ ���(1 − ,)
((��, + ��(1 − ,) +  <)(8� + =� + < + ;)n. 
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In the light of the above, the following theorem with proof is hereby claimed. 

Theorem 3.3. The DFE, χ_, of the model (2.1)-(2.8) is locally asymptotically stable 

(LAS) if 
� < 1, and unstable if 
� > 1. 

Proof. The local stability of the model (2.1)-(2.8) is analysed by the Jacobian matrix 

of the system (2.1)-(2.8) evaluated at the disease-free equilibrium 

χ_ =  (��(0), ��(0), 0, 0, 0, 0, 0, 0), given by 

p(�� , ��, �, �, ��, ��, 
, �	) =  

































α−γγγ
η+α+γ−θθ

η+α+θ+γ−δ−σ
η+α+θ+γ−δσ

α+σ−
α+ω−ετετ

α+ετ−ρ
α+ρ+ετ−

321

321

222

111

1

2

2

1

0000

0)(0000

00(0)1(000

000)(000

0000)(000

00000)(

000000)(

0000000)(

 

The eigenvalues are given by ?� = −(21� + 4 + <), ?� = −(21� + <), ?> = −(d + <), 

?q = −(�� + <), ?r = −(=� + 8� + < + ;), ?s = −(=� + 8� + < + ;), ?t =
−(=> + < + ;), ?c = −<. 

Using methods from dynamical system theory [5, 22, 23], it is established that all the 

eigenvalues of the system (2.1)-(2.8), have negative real parts, hence the system (2.1)-

(2.8) is locally asymptotically stable. 

3.3 Global asymptotic stability (GAS) of the disease free equilibrium (DFE) of the 

model (2.1)-(2.8) 

In this section, the Lyapunov function is constructed to study the global stability of 

(2.1)-(2.8). Following [24], the matrix theoretic method shall be used as a guide in the 

construction of the Lyapunov function. 

Let L = ( �, ��, ��, �	)u be the diseases component and v =  (�� , ��, �, 
, )u the non-

disease component. Given that the initial condition, ��(0) ≥ 0, ��(0) ≥ 0, �(0) ≥ 0,
�(0) ≥ 0, ��(0) ≥ 0, ��(0) ≥ 0, 
(0) ≥ 0, �	(0) ≥ 0 in Theorem 3.1 above, the feasible 

region ℘ is defined as ℘ =  M(�� , ��, �, �, ��, ��, 
, �	) a ℜXc : �� ≤  ��(0)R. The disease 

free equilibrium of the model (2.1)-(2.8) is χ_ =  (��(0), ��(0), 0, 0, 0, 0, 0, 0). The basic 

reproduction number is given by the spectral radius of l�T� to be 
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� =  4(l�T�) = (/� + /�) m ���,
(��, + ��(1 − ,) + <)w=�XxW + < + ;y

+ ���(1 − ,)
(��, + ��(1 − ,) + <)(=� + 8� + < + ;)n. 

Using the left eigenvector of the nonnegative matrix l�T� to obtain zu , zu�T� is 

derived as  

{u�T� =  |m 1
��, + ��(1 − ,) + <

��((��, + �� + <) − ,) 
(��� − ���), + ���


�n
+ ��,

(��, + ��(1 − ,) + <)w=�XxW + < + ;y , 1
=�XxW + < + ;} 

which is the Lyapunov function of (2.1)-(2.8), hence the following theorem is needed to 

establish the Global Asymptotic Stability (GAS) of the system (2.1)-(2.8). 

Theorem 3.4. The disease free equilibrium of the model (2.1)-(2.8) is globally 

asymptotically stable in ℘ =  M(�� , ��, �, �, ��, ��, 
, �	) a ℜXc : �� ≤  ��(0) R, if 
�  ≤ 1. 
Proof. Let  

~ = {u�T�L =   m 1
��, + ��(1 − ,) + <

��((��, + �� + <) − ,) 
(��� − ���), + ���


�n �
+ ��,

(��, + ��(1 − ,) + <)w=�XxW + < + ;y � +  ��=�XxW + < + ; 

be a Lyapunov function of the model (2.1)-(2.8) on 

℘ =  M(��, ��, �, �, ��, ��, 
, �	) a ℜXc : �� ≤ ��(0)R, with 
� < 1 and �(L. v) ≥ 0. Then 

by differentiating along the solution of (2.1)-(2.8), that is, the time derivative gives  

~� = {u�T�L�  .  
When the expressions for the derivatives, ��  and ���  from (2.1)-(2.8), is substituted into the 

Lyapunov derivative, ~� , and carrying out some algebraic manipulations, given that 

L�  =  (� − l)� − �(L, v) the following is obtained  

~� = {u�T�L� = {u�T�M(� − l)� − �(L, v)R 

~� = {u�T�L� = {u�T�(� − l)� − {u�T��(L, v) 
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~� = (
� − 1){u� − {u�T��(L, v) 

~� = (
� − 1){uL − {u�T��(L, v) 

~� = (
� − 1)(��� + �)
− 1

��, + ��(1 − ,) + <
��((��, + �� + <) − ,) 

(��� − ���), + ���

� m/�(���� + ����)

�� − �	 ��

+ /�(���� + ����)
�� − �	 ���

− ��,
(��, + ��(1 − ,) + <)w=�XxW + < + ;y m/�(���� + ����)

�� − �	
��

+ /�(���� + ����)
�� − �	 ��� − ��,�

=�XxW + < + ;. 

Thus it follows that ~�  ≤ 0 if 
� ≤ 1. If 
� =  1, then ~�  =  0 if and only if �� = �� =
� = 0. Therefore every solution trajectory of the equations in the model (2.1)-(2.8) 

converges to the largest compart invariant set � = M(�� , ��, �, �, ��, ��, 
, �	)R and the 

only point in � is the disease free equilibrium. Then by LaSalle’s invariant principle in 

[23, 25, 26], χ_ is globally asymptotically stable in ℘ if 
� ≤ 1. That is every solution 

trajectory of equation in the model (2.1)-(2.8) approaches χ_ as � → ∞. 

4. Summary/Conclusion 

This work considered and formulated an age-structured mathematical model of 

diphtheria infection with specific epidemiological classes such as ��, susceptible infant at 

time � (0-1years), ��, susceptible school children population at time �, �, vaccination 

population at time �, �, exposed population at time �, ��, asymptomatic infection 

population at time �, ��, symptomatic infection population at time �, �	, detected 

infectious humans at time � (asymptomatic and symptomatic) population through testing, 


, recovered population at time �. It was established through theorems and proofs that the 

model (2.1)-(2.8) is epidemiologically meaningful, and that all its state variables are 

positive (non-negative) at time � > 0 in the domain ℘, and that the domain ℘ is indeed 

bounded.  

 Using dynamical system theory, it was established that the system is locally stable. 

A matrix-theoretic method was used in the construction of an appropriate Lyapunov 

function 
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~ = {u�T�L =   m 1
��, + ��(1 − ,) + <

��((��, + �� + <) − ,) 
(��� − ���), + ���


�n �
+ ��,

(��, + ��(1 − ,) + <)w=�XxW + < + ;y � + ��=�XxW + < + ; 

for the global stability analysis of the of the formulated model. Using the next generation 

matrix, the reproduction ratio 
� of the system was determined to be  


� = (/� + /�) m ���,
((��, + ��(1 − ,) +  <)(8� + =� + < + ;)

+ ���(1 − ,)
((��, + ��(1 − ,) +  <)(8� + =� + < + ;)n 

and also established that the system is globally asymptotically stable if 
� ≤ 1 and 

unstable otherwise. 
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