Earthline Journal of Mathematical Sciences
http://www.earthlinepublishers.com

Volume 1, Number 1, 2019, Pages 63-90
https://doi.org/10.34198/ejms.1119.6390

On the Modified Optimal Investment Strategy for Annuity Contracts
under the Constant Elasticity of Variance (CEV) Model

K. N. C. Njoku' and B. O. Osu’

! Department of Mathematics, Imo State University, Owerri, Imo State, Nigeria

2 Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria

Abstract

In this work, the optimal pension wealth investment strategy during the decumulation
phase, in a defined contribution (DC) pension scheme is constructed. The pension plan
member is allowed to invest in a risk free and a risky asset, under the constant elasticity of
variance (CEV) model. The explicit solution of the constant relative risk aversion
(CRRA) and constant absolute risk aversion (CARA) utility functions are obtained, using
Legendre transform, dual theory, and change of variable methods. It is established herein
that the elastic parameter, 3, say, must not necessarily be equal to one ( # 1). A theorem
is constructed and proved on the wealth investment strategy. Observations and significant
results are made and obtained, respectively in the comparison of our various utility

functions and some previous results in literature.

1. Introduction

There are two major designs of pension plan, namely, the defined benefit (DB)
pension, and the defined contribution (DC) pension plan. As the names implies, in that of
the DB, the benefits of the plan member are defined, and the sponsor bears the financial
risk. Whereas, in the DC pension plan, the contributions are defined, the retirement
benefits depends on the contributions and the investment returns, and the contributors
(the plan members) bears the financial risk. Recently, the DC pension has taken
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dominance over the DB pension plan in the pension scheme, since DC pension plan is
fully funded, which makes it easier for the plan managers (Pension Fund Administrators
(PFAs’)) and the Pension Fund Custodians (PFCs’) to invest equitably in the market, and
also makes it easier for the plan members to receive their retirement benefit as and when
due.

Investment strategies of the contributions, which in turn is a strong determinant of
the investment returns vis-a-vis the benefits of the contributors at retirement must be
given optimum attention. Recent publications in economic journals and other reputable
mathematics and science journals have brought to light, variety of methods of optimizing
investment strategies and returns. For instance, some researchers have made various
contributions in this direction, particularly, in DC Pension Plan. Cairns et al. [4] did a
work on, “stochastic life styling: optimal dynamic asset allocation for defined
contribution pension plans. In their work, various properties and characteristics of the
optimal asset allocation strategy, both with and without the presence of non-hedge able
salary risk were discussed. The significance of alternative optimal strategy by pension
providers was established. Wang and Chen [15] investigated a defined contribution (DC)
pension plan investment problem during the accumulation phase under the multi-period
mean-variance criterion. Mwanakatwe et al. [14] analysed the optimal investment
strategies for a DC pension fund under the Hull-White interest rate model. Under this
model, the pension fund manager can invest capital in the bank account, stock index, and
real estates. More so, Battocchio and Menoncin [2] studied optimal pension management

in a stochastic framework, they came out with a significant result.

In order to deal with optimal investment strategy, the need for maximization of the
expected utility of the terminal wealth became necessary. Example, the Constant
Relative Risk Aversion (CRRA) utility function, and (or) the Constant Absolute Risk
Aversion (CARA) utility function were used to maximize the terminal wealth. Cairns et
al. [4], Gao [8], Boulier et al. [3], Deelstra et al. [7], and Xiao et al. [16] used CRRA to
maximize terminal wealth. However, Gao [10] used the CRRA and the CARA to
maximize terminal wealth, and this triggered our research. Ours is a modification of his
work, by considering different categories of contributors, with some other additional
assumptions made. Our task in this work is to establish, with a theorem the fact that the

elastic parameter 3 # 1, which is lacking in his work. We used a similar approach in

obtaining some of our results.
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1.1. Preliminaries

We start with a complete and frictionless financial market that is continuously open

over the fixed time interval [0, T], for T > 0, representing the retirement time of any

plan member.

We assume that the market is composed of the risk-free asset (cash), and risky asset

(stock). Let (Q, F, P) be a complete probability space, where Q is a real space and P is
a probability measure, {w,(t), w,(t)} are two standard unorthogonal Brownian motions,
{F,(¢), F5(¢)} are right continuous filtrations whose information are generated by the two
standard Brownian motions {w(t), w,(¢)}, whose sources of uncertainties are

respectively to the stock market and time evolution.
2. Methodology

2.1. Hamilton-Jacobi-Bellman (HJB) equation

Assume we represent u = u, as the strategy and we define the utility attained by the

contributor from a given state y at time ¢ as

@ (t. r. y) = EJUY ()2 r(e) = 7, ¥(r) = 5], (2.1.1)
where ¢ is the time, r is the short interest rate and y is the wealth. Our interest here is to

find the optimal value function
ot, r, y) = Sup,,(t, r, y) (2.1.2)
and the optimal strategy u® = uYD such that
(pug(t, r,y) =@t r, ). (2.1.3)
2.2. Legendre transformation

The Legendre transform and dual theory help to transform the nonlinear partial
differential equation that is formed due to (2.1.1), to a linear partial differential equation.

Theorem 2.2. (Jonsson and Sircar [11]) Let f : R" — R be a convex function for

z > 0. Then the Legendre transform is defined as
L(z) = max ,{f(y) = 2}, 2.2.1)

where L(z) is the Legendre dual of f(y).
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Since f(y) is convex, from Theorem 2.2 we defined the Legendre transform
fp(t, r,z)=Sup{@t, r,y)—zy:0<y<ow}, 0<t<T (2.2.2)
where fp is the dual of ¢ and z > 0 is the dual variable of x.

The value of y where this optimum is attained is denoted by A(t, r, z) so that
W, r,z2) =inf{y: @t r.y)2 2y + @t r. 2)}, 0<i<T. (2.2.3)

The functions & and fp are closely related and can be referred to as the dual of ¢. These

functions are related as follows

o, r, z) = @, r, h) - zh, (2.2.4)

where
it r2)=y, @, =z h=-0, (2.2.5)
At terminal time, 7, we denote
U(z) = Sup{U(y) =2y :0< y <T}, and @(z) = Sup{y:U(y) 2 2y + U(2)}-
As aresult
oz) =U7(z). (2.2.6)
where ¢ is the inverse of the marginal utility U and note that o7, r, y) = U(y).

At terminal time 7, we can define
W(T, r,y) =inf 5o y 1 U(y) 2 2y + @lt, v, 2)} and @, 1, 2) = Sup,5o{U(y) - 23}
sothat (T, r, z) = U (2).
3. The Model

This session introduces the financial market and proposes the optimization problems
in the decumulation phase.

3.1. The financial market

Here, we consider a financial market that consists of a risk-free asset (i.e., cash in the

bank) and a risky asset (stock).
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Let the risk-free asset, C;, say, at any positive time, #, evolve thus;
dC; = rC.dt, (3.1.1)
where r represents constant rate of interest.
Next, we denote the price of the risky asset (stock) at any positive time, #, by S;, as
in Gao [10], Akpanibah et al. [1], and Njoku et al. [12] thus;
ds, = uS,dt + kSP*aw,, (3.1.2)
where [ (U > r) represents the instantaneous rate of return on stock, B (B < 0) is the
elastic constant parameter, k is a constant, kS tB represents the instantaneous volatility.
Let {W,; t = 0} denote a standard Brownian motion, defined on a probability space,

(Q, F, P), where F ={F,} is an augmented filtration generated by the Brownian

motion.
3.2. Model assumption

Consistent with the Nigerian Pension Reform Act of 2004 [13], we make the

following assumptions
(a) The pension scheme accumulates wealth.
(b) There are different categories of contributions.
(c) The contributions will not willingly withdraw from the scheme.
(d) Payments are made to the retirees.

(e) An accumulated amount is paid to the next-of-kin of the dead contributors, at the

instance of death by any contributor(s).

(f) A certain amount is retained from the payment made to the families of dead

contributors, by the pension managers (i.e., management fee).
3.3. Model formation (i.e., the optimization program)

The fund accruing from the contributors can be invested in both bank and stock.
Particularly, the fund to be invested by the fund manager is the surplus, which is the fund
that is available after each period of routine disbursements. That is, let the contribution

process be
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dy =(1+86;)C;4dt (3.3.1)
and the payment process
dj = b;qdt + (aj41 —N) dW,. (3.3.2)
Then the surplus
dP = dy — dj = (1 + 8;) Cyaydt = [bysydr + (a4 — 1) dW]
= (Civ1 +0;Cixy = bjy) dt = (aj4 —N)dW,. (3.3.3)

Therefore our task here is to construct an optimal investment strategy for the assets for
the remaining periods after retirement, to enable us maximize the expected utility at each
retirement period.

Without loss of generality, the pension wealth is denoted by Y(¢f) at any time

0<t<T<T+ N, and it evolves stochastically, thus:

das dC,
dy(t) = MSY(t)S_t +(1- MS)Y(t)TZ +(Ci1 +6,Ciqy —byyy)dr

t t
= (aj+1 —n)dw;, (3.3.4)

i=0,1,..,n—1and 6, =0,6;, =1,0, =2, ..., 6; (an integer) = staff loading, where;
a;+1 > 0 represents various amount that is paid to the next-of-kin of the dead
contributors, b;1; > 0 represents various amount paid to retired contributors, c;1; >0

represents various amount contributed, ) is the service charge deducted from the a; ..

However, relevant to the provisions of the Nigerian Pension Reform Act of 2004
[13], on the eligibility condition for signing up on the pension scheme, by both
government and private sectors, we have;

ds dcC,
dy(r) = MsY(f)S—l +(1- Ms)Y(f)Tt +(Civ1 +8;Cixy = bjny)
t t

- (aj+; —n)dW,, (3.3.5)
i=4,5 .,n-1 and 64 =4,085 =5,04 =6, ..,6, =n (a positive integer) = staff
loading.

Assuming, b;yy = Cj +14Ci41; 17 <1y, and r; represents discounted interest,
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then

a5 .

ar(e) = uy () (1—uS)Y(t)%+(6i—rd)C,-Hdt—(a,-H—r])dWS, (3.3.6)

t t

i=4,5.,n-1 and 64 =4,085=5,04=6,..,0, =n, 6; >0 (integer) = staff
loading.

Taking into (3.1.1), (3.1.2) and (3.3.6), one obtains the wealth process
dy (1) = u,Y(t)[udt + kSPaW, ]+ (1 = u, ) Y(£) rdt + (6; = 1)) Cjpydt = (a1 — 1) AW,
= u,Y(¢)pdt + u,Y (@) kSPaw, + Y (1) rdt +u Y (t) rdt + (0; = 1)) Cypydt
= (aj+1 —Nn)dW;
= W, Y(O)u+Y () r —uY(t)r +(8; = ry)Ciay)dt +u Y (t) kSPaW,
— (aj+1 —n)aw, (3.3.7)

i=4,5.,n-1 and 04, =4,05=5,064=6,..,0, =n, 6, >0 (integer) = staff
loading.

Based on the wealth process in (3.3.7), the pension manager seeks a strategy, u,D,

which maximizes the utility function, such that u = max E(U(Y(T))), Ou(t). Where

u(*) is an increasing concave utility function, which satisfies the Inada conditions;

U'(+) =0, and U'(0) = +o0 (cf. Gao [10]).
4. Applying the Associated HJB Equation to Maximize Equation (3.3.7)

Applying the associated HJB to (3.3.7), one obtains
1
o, + uSP, + Y(t)[us(p. -r)+ r]q)y +(6; - rd)Ci+1¢y + EkZSZB+2(I)SS

122,228 1 B 1 B
+5USY k=S, —EqusY(t)kS ai19 +50(yusY(t)kS no

1 1 1
+ E (ai+1 - rl)2¢yy + E aykZSBi—ZY(Z)usq)sy - E aykSBHaqu)sy
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+ %aykSBHr]q)sy = 0. 4.1)

O

To obtain the optimal value u,

we differentiate (4.1) with respect to u
12 2p+2 1 2
b, +Ush, + (ei - rd)ci+l¢y +Ek S P+ by +5(ai+1 _n) ¢yy

1 1
- 5 aykSB+1ai+1¢sy + 5 aykSBan)sy

YOy =r) o, +udr (k3P

1 1
+sup =~ ayuy Y (1) kSPaj 0,y + avuksPn,, =0, 4.2)

Ug

+ %aykszJ'zY(t) ughyy

so that
O_ Oyaey _am _ (w-r) & ay by
Dug = 22 = 5
2v(e)kSP 2v(r)kSP  Y(r)k2S7B b,y 2v(r)sP? 0,
— 0= ay(gis1—n) __(R-r) 9y _ ay D‘bsy (4.3)

(1) kSP Y(e)k2S7R by 2v(r)SPT2 0y,

Putting back (4.3) into (4.2) gives;

0, +usd + [Y(t) F (0 = rg) Cray + Y —;I)Cécgﬂ - n)}by

1 ay)?kS%(a;q —n) _ aykSP (a4 -
+Ek252[3+2¢ss +ob, J{( Y) iazﬂ n) _ay (2611+1 n) by

CW=n’07 avl-r)e,e,  K2s%5(ay)’
2k25%Pp 25P2 80,

0, (4.4)

i=4,5 ..,n-1,r<r; and 64 =4,065=5,66=6,..,6,=n,6,_;,=n-1,6; >0
(integer) = staff loading, and

1 3
o =2 (a1 = n)* + Z(av)z(a,-ﬂ -n)*. (4.5)
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Having seen that stochastic control problem described in the previous session has been

converted to a nonlinear PDE, our next tax is to solve for ¢ in (4.4) and subsequently

substitute it into (4.3), to enable us obtain the optimal wealth investment strategy (i.e.,

the control strategy). In order to achieve this, we use employ the services of the Dual

theory and Legendre transformation.

5. Transforming (4.4) into its Dual and Applying Legendre Transformation

Here, we transform the nonlinear second order partial differential equation (4.4) into

a linear PDE, using the Dual theory and Legendre transformations in Gao [10], that is;

(py:Zand(p[=€|:)t9(ps:Ep_s'9(pss=€|:)SS_A ’(pyy:A_’(pyS_ -

Z Z (pZZ

Putting (5.1) into (4.4)

B, + s, + [Y(r)r (8= rg) Crat + % (are1 - n)} :

1 2.2p+2 c
+—k2s -
2 ¢SS ¢ZZ
_ (GV)ZkSZ(aiH -n) _ aykSBH(aHl -n) &
4 2 ¢'zz

L) 26 - ay(k - r) @ + (ay)*k>s* 05, _ 0
“ 2SB_2 * 8 q)zz ’

(Ap?z -1 __(Apsz.

(5.1)

(5.2)

i:4,5,...,n—l,r<rd and 64 =4,65=5,96=6,...,9n=n,6n_1=n—1,6i>0

(integer) = staff loading, and ¢| = %(aiﬂ -n)? + %(ay)z(aiﬂ -n)%

Taking y = h = —fpz into (5.2), and differentiating with respect to z, we obtain

ay(u = r) (a4 —n)

hl‘ + uShs - rzhz -rh — (9, - rd)CH_l -
2ksP

1. 2.0p+2 cih
+5kS‘3 hgy + ===

Z
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o | @)’k (a0 — ) _ aykSP* (g — ) By _avu-r)
4 2 h 2sP2 °

4

(T A (et S (el S

QsB2 BT agE T 2 00p ¢

L (?K2s* hohy _ (ayP ks nn

2z =,
8 h, 8h?
where
1 3
a = E(aiﬂ - rl)z + g(O‘Y)Z(“HI - n)z’
with,
O_ C‘Y(ai+1 -n) < ay
ug = (u-r) - —— %
: 2Y (1) ksP 0. 2v() P27
0_ oy(g+ —n) 2 ay
= L (u-r)—-—————h,.
T 2y(r) ksP ( )hz 2r(1)sP72

6. Test for Some Utility Functions

(5.3)

(5.4)

(5.5)

Here, we seek to obtain the explicit solutions for the CRRA and CARA utility

functions, using change of variable method.
6.1. Explicit solution to the CRRA utility
Following Gao [10] and Zhang and Rong [5], we use
1

h(t, s, z) = zP I p<L p#0.

Let us conjecture a solution to (5.3), thus

1

h(t, s, 2) = 2P Vg(t, s) +alt); a(T) = 0; g(T, 5) = 1.

(6.1.1)

(6.1.2)

Now, obtaining the various first and second partial derivatives with respect to ¢, s, z, we

have
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P — T b
ht = gtzp_l + a'(t); hs = gsZp_l; hz = l—gp Zp_l 5 /’lss = gsszp_l;
1 |
— - 2 -
hsz = 8 zP 1 ;hzz - ( p)zg p- - 0. 6.13)
- (1-p)

Putting (6.1.2) and (6.1.3) into (5.3), we obtain

1
gz () gl ST e rale) = (0 = ) Cin
4
.
_ ay(p - r) (aBi+1 -n) + lk2s28+2gsszp—l + a(2-p) 1
2ks 2 g 2

_ (oy)*ks* (a1 =) _ avksP (a4 =) | g,(1- p)z
4 2 g

1

1 — 1
_oy(u-r) L av(u-r)e? T (-r)Pe o
g2 &8st F B2 2 2B <
2s 257%(1 - p) k“sP(1 - p)

1
| e
L=’ -p)e o1 (ay) N
2k2s28(l - p) 8

1
20442 p-l(y _ 2
_ksTgsz 8(2 p) (@) _ (6.1.4)
g

1
Factoring out terms that depend on z? ~!and z, and the ones that is independent of

either of the two mentioned, we split (6.1.4) into three, thus

w@—mw—wfwﬂqﬂ—wm‘g%ﬂ‘m:a < 6.15)
)
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(Gy)zksziai+l -n) _ Grksl3+1(u _27’) (ai+1 -n) gs(lg_ ) =0, g#0 (6.1.6)

and

rg 1.2 op+2 g
+ + -rg+—k t—
8¢ U'Sgs 1- rg 7 s 8 ss C1(2—p)
_ar(w-r)e,, avu-r)e, _ (W-r)e
25P~2 252[3—2(1 -p) kzszﬁ(l -p)

N2 2,242 242
W-r) 2-pls (V) k575 K585 vy =0, g %0, (6.17)

+
2k25%B(1 - p)? 8 8¢

Solving (6.1.5) at the boundary condition, a(7T) = 0, we obtain the continuous annuity of

duration, T —t, yields

a(t) = -1 = 1J¢7"[(8; = rg) Ciua 2k + ayug(a;+y — )], (6.1.8)
where a(t) = [T —1][(8; — ;) C;412k + ayu,(a;+; —n)], and ¢~ are the so called
continuous annuity of duration 7 —¢, and the continuous technical rate, respectively.

From (6.1.6), we propose the following

Proposition 6.1.1. Let, (2) dw,dw, = %cxydt; % #1 (b) B # 1. Then

(ay)zksz(;liﬂ -n)’ _ O‘YkSBJrl(Zai+1 -n) | &= p) =0; p<l. (6.1.9)
8

Proof. Suppose, for contradiction, 3 =1, % =1. We observe that either of the

following two cases arises

Case 1: —gS(l ~p)
8

=0= p=1=0 p <1, by definition of p in (6.1.1).

(@) ks*(@in =1)* _ avksPHaz —n) _ aws® _ g
4 2 2 '

Case 2:




On the Modified Optimal Investment Strategy for Annuity Contracts ... 75

ay_l

But s’ :sBH, whenever 5" satisfied by the supposition above — [3 =1

whenever % =1, by law of indices. But by Proposition 6.1.1, dw.dw, = %O(ydt
= ay - dwgdw, #1 =0, contradicting the assumption that % =1.

Hence, the proposition holds, and this completes the proof.

Corollary 6.1.1. The correlation between stock and time, represented, dw,dw; is

(of
equal to 1, thereby making 7\/ =1, holds only if stock attains its maximum yield at every

increase in time, which is not realistic.

Lastly, solving (6.1.7), observe firstly that the equation contains some variable
coefficients, s, s2[3+2, s_ZB, s_(B_z), and this makes obtaining solution somewhat

difficult. However, in order to overcome this difficulty, we employ the services of power

transformation and change of variable technique as in Cox et al. [6].

Assuming
gt )= (. ) j=s7" (6.1.10)
such that
g = i gy = 2Bs P g0 = ap2 2O e op(op + 1) s 2B £ (61
then putting (6.1.10) and (6.1.11) into (6.1.7), gives

1
c(2-p)

r
1-

fi = W2Bff; + pf—nf+#2§ﬁﬁ+k%us+0n+- Of

+ (u - r)24[3.] th _ (u ; r) 4[3.] Df[
ays ays“(1-p)

_ 2 _ 2 _ . 2n2 2
I L i s BN REY
K21 - p) 2k%(1- p)

where sB = % CF.
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Following Proposition 6.1.1, we observe that some cases may arise in (6.1.12),
B=0,B<1, provided p 20, p <1.

Case 1: B =0 (i.e., the GBM case), yields

P L e 2= 2-p) | s
R s RIS S s cxw 2 I

B<-1, p#£0. (6.1.13)
Next, we find the solution of (6.1.13), using the structure below
£, j) = AQ) PO A(T) =1, BT) =0 = £, = AP0 T 4 () B, jeB0 T (6.1.14)

Putting (6.1.14) into (6.1.13) yields

AV N2(~ .
i"'B,j*‘ r 1 _(m-r) +(|J- r)-(2 p)J:O’ 6.1.15)

Alr) 1-p a-p) K2(1-p)  2k*(1-p)?

where sP = % [k is re-substituted and j = 5B,

Observe that we can further split (6.1.15) by separating the terms that depends on j,
thus

g+ B=2-p) _ (6.1.16)
26%(1 - p)?
and
A o1 _ -y = 0. (6.1.17)
A) 1-p al2-p) K*(1-p)

Solving (6.1.16) at the initial condition B(T') = 0, yields

B(r) =T -1] (MJ (6.1.18)

231 - p))

where 4 =ug +r.



On the Modified Optimal Investment Strategy for Annuity Contracts ... 77

Next, we solve (6.1.17) at initial condition A(T) = 1, yields

r l_us2

L_—r+ -p) 2 }[T—t]
Ay = L'7P APl K (=p) , p#£0, p<-l, (6.1.19)

where Y = ug +r.

Taking into (6.1.18), (6.1.19) and (6.1.14), we have

r 1 “% +“%(2_1’)J}[T_l]

£t ) =i1-p ' Cl(Z_P)_k2(l—p) 262(1-p)

(6.1.20)

In this sequel, we state;

Theorem 6.1. Let equations (6.1.2), (6.1.8), (6.1.10) and (6.1.20) hold. Then the
optimal wealth investment made in stock is given as

2 2 .
23 | 1w +us(2—p)1}T_
WDz i =) oy ooy L-p QTeEn e e L
' 2Y(r) k s

Proof. Taking into (6.1.8), (6.1.10), (6.1.20) and (6.1.2), we have

R {r_r_'_ 1 ug +“3(2_1’)J}[T_l]

I-p  a(2-p) k2(1-p) 243(1-p)

— 7" [2k(8; = rg) Civy + Oy (@i — )T 1] (6.1.21)
Differentiating (6.1.21) w.r.t. s and z, yields
hy =0 (6.1.22)

and

2 2(n_ ,
1 r —r+ 1 _ Uy +”‘s(2 p)J [T-t]

— 1 |7
o= L e lie alen) BR0ep) 2200 T (603

Therefore, taking into (6.22), (6.23) and (5.5), thus

40 = ay(ai+1 —n)
S 2Y (1) k
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2 2 .
2p=3 | P _ .4 L u +“s(2_[’)1 [T-1]

—uy(p-1)z Py I-p  «a(2-p) k2(1-p) 2k*(1-p) ’ (6.1.24)

where ¢; = %(aiﬂ -n)* + %(ay)z(am ~1n)?, as required.

6.2. Explicit solution for the CARA utility

Suppose, the plan number takes an exponential utility function

Uly)=-—e ¥, ¢g>0. (6.2.1)

The decision maker’s absolute risk aversion, presented in (6.2.1) is constant, and is
called CARA utility.

Combining h(T, s, z) = (U')™'(z) and (6.2.1) above, we have

WT, s, z) = 1 hz. (6.2.2)
q

Let us now conjecture a solution to (5.3), thus

WT, s, ) = —é [h(1) (hz + m(t, 5))] + a(t) 6.2.3)

such that A(T) =1; a(T) = 0; m(T, s) = 0.

Obtaining the first, second and mixt derivative of (6.2.3) with respectto t, s, z

b = =L e, )+ b m ]+ @)y = =L s = =2,
q q q

b(t 1
h,, = Lz); hy = =—b(t)mg; h

fod =0. (6.2.4)
qz q

SZ
Putting (6.2.4) into (5.3) yields

b'(t)Inz +b'(t) m(t, s) + b(t)m, +a'(t) g — wsb(t) my + r2b(t) +rb(t)In z
q

ay(u = r)(a;41 —N) .

+rb(t)m(t, s) +ra(t)q = (8; =7)Ci1q = -
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k25 2B*2p(1)

g’ N (ay)?ks?(az4; - 1) 2
2 T 22() 4

msq

_ayksP N ag =) g2+ YW= V)b)m (- V)2 2b(0) | (= v)*b(0)

2 ’ 25P~2 kzszﬁq 2k 25%B

+ k2s4mszb(t) q2

2 (ay)* =o. (6.2.5)
Z

Splitting (6.2.5) into three in order to remove dependency on In z, ¢ and h(t) gives

b'(r) + rb(r) = 0, (6.2.6)
a'(t) + ra(t) - (8, = ry) Cjsy — ay( = r) (‘é"” L) (6.2.7)
2ks
and
. 2 2B+2
M + mt —_ usms +E + rm(l” S) —ks—mss
b(r)
cadt | @)’ksP@n -n) ok e -n) L ay( - r)m,
2,2 Sq msq B_2
b 4 2 2s
-2 — )2 2.4 22
- (”2 ;) S (u 5 rz) ¢ K ’qu (ay)? = 0. (6.2.8)
ks Bq 2k%s%R 8z

Solving (6.2.6) at the initial condition, b(T') = 1, we have
b(t) = "7, (6.2.9)

Next, solving (6.2.7) at the initial condition, a(T) = 0, we have

alt) = V| [ [2k(8; = 14) Cisy + ayug (a4 — )] dt
2k

_ J.ng [Zk(el - I‘d)CH.lZZ GVML(ai+1 - r])] dT:| (6.2.10)

More so, to solve (6.2.8), observe that (6.2.8) contains the coefficients,
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s_(B_Z), s_ZB, sBH, s2. Therefore, we assume that

m(t, s) = f(¢, v) Ov = 5728, (6.2.11)

Obtaining the first and second derivative of (6.2.11) with respect to ¢, s, yields
— — -2p-1 — —-43-2
m = fimg = =2Bs P f,md = ap?s T 2

m

= 2B(2B +1)s P2, +apZs P2y, (6.2.12)

AN

Putting (6.2.11), and (6.2.12) into (6.2.8), and assuming that |1 = u; + r, since the stock

appreciates instantaneously

' 4
LAOIP fo+20up +r)Byf, + =+ 1f —K2B(2B +1) f, - 2k2B2vf,, + —11
q

b(7) 22b(r)?
2 (0 2 2
_ (@) ks{airy =) avf, + avks P(agy - n)af, - GWéEVfV - uLz v
2 s kq 2k
2 402 2.2
LN v 7 _ o, (6.2.13)
2z

We also conjecture a solution of (6.2.13), thus
£z, v) = A(t) + B(t)v; A(T) =0, B(r) =0, (6.2.14)

= f, = A@t) + B(t)v: £, = B(t): £ = 00 £} = B2(2). (6.2.15)

Putting (6.2.15) and (6.2.14) into (6.2.13)

LAOK, + A +Bv+2u; +r)pvB()+ =
TG0+ B # 7+ B 2+ BB+
() + Ble)v) - kBB + 1) B() + Z;’;:)Z (0 sl =)

2 2
—_— D a B

+ ayks P(a;4y - 1) gB(r) - VZEFV Ble) - ”2;" ' 2MkL2 ’

N

2 402 2.2
% B2() = 0. (6.2.16)
2z
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But from (6.2.6)
b—(t) =-r. (6.2.17)
b(r)
Putting (6.2.17) into (6.2.16), gives
4
A + By +2(uy, + r)ByB(r) + = - k7B + 1) B() + 51—
q 7°b* (1)
2 _ - - ~
- (GV) ks(;l+1 r]) qu(t) + aykS_B(ai+1 - r])qB(t) — aylé—elBVB(t)
s
2 2 402 2
S, G KSR 2y g (6.2.18)

2k? 277
Some cases may arise (3 =0 or 3 <0)

Case 1: (3 = 0 (i.e., the Geometric Brownian Motion (GBM)), (6.2.18) becomes

~ =z aqt (ay)*ks(ai - )

At +BtV+_+ 2,2 - qvg(t)+ayk(ai+l _n)qé(t)
9 z°b(r) 2
2
—”—sz = 0. (6.2.19)
2k

Factoring out terms that depend on v and splitting (6.2.19)

4
A + 124 G4

+ ayk(a;4 —n)gB(1) =0,

q 22t
A(T)=0,B(T)=0,b(T)=1,4>0 (6.2.20)
and
) L 2
B, - (ay)~ks(a;4; —n) B(r) - UL |, =0
2 2k
2 R 2 _
= Et _ (GV) kS(;lHl I’]) qB(l‘) _u_LZ =0,q >0, B(T) =0, s = s(t). (6.2.21)
2k
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Equivalently
dB ~ ~
o P(t)B =0(t), ¢ >0, B(T)=0, s = s(t) (6.2.22)
where
2 _ 2

Solving (6.2.22), at B(T) = 0, using integrating factor method

_(@y)*k(a;+1-n) (av)*k(ai+1-n)
E(t) —, Zqu‘s(T)dtuTIZJ2 eflqjs(t)dtdt
2

(ay)zk(aiﬂ_n)qj s(T)dr

—|e 2 dar |. (6.2.24)

Putting back (6.2.24) into (6.2.20) and solving at A(T) = 0, gives
A= J' w(T)dT + j w(t) dr. (6.2.25)
Theorem 6.2. Let (6.2.9), (6.2.10) and (6.2.3) hold. Then the optimal wealth invested
in stock for the CARA utility function is given by

40 = ay(a;+; —n) )
2y (r) kSP

ay 1d Eg—(av)zkw,-ﬂ-n)qjs(z)dz I V) k(a1 =) [ S(T)dT dT}.
2v(r)SP~2 g ds

Proof. Taking into (6.2.9), (6.2.10) and (6.2.3), we obtain our expected utility

function, thus

Wi, s, 2) = ‘ﬂer”-ﬂ (2 + (s, 5) |

+ e—rz“ o't [2k(8; - rd)Ci+12']: ayuy (a;41 = N)] dr
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_ J-erT [Zk(el - rd)Ci+1 + GWL(ai+l B r])] dT:| (6226)
2k
But,
m(t, s) = f(t,v) = A@t) + B(t)v; v=s5sP =1, (6.2.27)

since 3 =0, satisfied by the assumption of case 1 and by combining, (6.2.24), (6.2.25)
and (6.2.27), we have

(@)’ k(@ =n) ¢
m(t, s) = IW(T) dT _Iw(t) dt + e 2 qj (t) at

2 (ay)*k(a;41-n) s (ay)*k(a;41-n) s
oL j p 2 g Ot _ j P 2 J @r (6.2.28)
2%

Now, returning (6.2.28) to (6.2.26) yields

_(ay)zk(aiﬂ_n)qj s(t) dr

h(t, s, z) = -1 e"T=1)| In ¢ +IW(T) dr - j w(t)dt + e 2
q
(ay)*k(a;41-n) (ay)*k(ar+1-n)
Dul%z J‘ezlflfs(’)dldt —jezquS(T)deT
2k

N e—rrUert [2k(8; = ry) Cia1 + Qyuy (a;41 = 1)) g

2k
_ J‘erz [2k(8; = 74) Cis1 + Oyug (@41 — )] dT}. (6.2.29)
2k
In order to obtain the optimal strategy in (5.5), we shall firstly, obtain hg and h,, and
this yields
y0= @i =) oy ) v
27 (¢) kSP 2v (1) sP
_ 200, _ 20—
Dl_di(f (ay)? k(a4 r])qJ'S(t)dtjf(ay) k(a4 ”)qu(T)deTj, (6.2.30)
q ds

where, g > 0.
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Equivalently,
o i - r — o
_ O¥(@i4 Bn) S e
2Y (¢) kS 2Y(1) S
oL di [ (@) k(e ) qf () dr | o) k(g =) af S(T)dT de, 6231)
q as

where ¢ >0, L =uy +r.

7. Sensitivity Analysis
From (6.2.29) and (6.2.31), if we set ay = 0, that is, saying that stock and time have

orthogonal relationship, then the satisfaction of the contributors is reduced to (7.1)
below, and the optimal investment made in stock will reduce to the product of
instantaneous stock returns and the instantaneous continuous technical rate, we have,

respectively

st o]

+e—rt[j rt [2k z+1]d j T [2k(9
2k

2k dT} (7.1)

and,
u =y 071, (72)

Again, suppose, no money is paid to the next-of-kin of the dead contributors, that is,

setting a;4+; —N = 0, and this yields, respectively

R

—rt rt [2k z+1] T [2k(9 i+1] :| 7
+e [ j 2k dt j 2k dT (1.3)
and,
wP=g, -0 -9 BliU de (7.4)
2Y(r)SP~2 q ds
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Equivalently,

W=, =0 WY gl opy), (1.5)
2y () sP2 ¢

Then, from (7.1) and (7.3), we see that when stock and time have orthogonal relationship
and when no money was paid to the next-of-kin of the dead contributors, we have the
same level of satisfaction on the contributors. However, both have significant effect on
the satisfaction of the contributors when there is orthogonal relationship between stock
and time, and also when payments are made to the next-of-kin of the dead contributors.
More so, there is a significant effect on the investment made in stock.

From (6.1.21) and (6.1.24), if we set ay = 0, that is, saying that stock and time have

orthogonal relationship, then the satisfaction of the contributors will reduce to (7.6), but

has significant negative effect on the optimal investment made in stock, and we have

1 {r_r_'_ L ”% +”3(2_P)J}[T_l]
Wt s, 2) = 277\ I-p  «a(2-p) K*(1-p) 2k*(1-p)
=07 [2k(8; = rg) Cin [T — 1] (7.6)
and,
2p-3 {rp_ﬁ L +u3(2-p)j}[T_t]
u?: u(p-1)z P I-p  «a(2-p) K2(-p) 2&%(1-p) a7

Again, suppose, no money is paid to the next-of-kin of the dead contributors, that is,

setting a;4+; — N = 0, and this yields, respectively

! L—i" 1 - ug M%(Z—p)j _
hlt, s, z) = zl"lg[l‘l’ Ta=p) R20-p) " 2%2(1-p) }[T f]
_f_rl[Zk(ei _rd)ci+1][T _[] (78)

and
1 2

. _ ug +M3(2_P)J} _
I=p  al2-p) K¥2(1-p) 2k*(1-p) -

(7.9)
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Then, from (7.6) and (7.8), we see that when stock and time have orthogonal relationship
and when no money was paid to the next-of-kin of the dead contributors, we have the
same level of satisfaction on the contributors. However, both have significant effect on
the satisfaction of the contributors when there is orthogonal relationship between stock
and time, and also when payments are made to the next-of-kin of the dead contributors.

From (7.7) and (7.9), we observe that the introduction of the orthogonal relationship
between stock and time, and the nonpayment of benefits to the next-of-kin of the dead
contributors have a negative significant effect on the money invested in stock. However,
both introductions have the same negative effect (i.e., a decline in stock investment) on
the investment made in stock.

8. Numerical Illustration

A numerical example of the proposed model was given to demonstrate the dynamic
behaviour of a DC pension fund and optimal investment strategy. Nigeria-National
Pension Fund Administration (NNPFA) real data was used to illustrate the efficiency of
the proposed model. The parameters used are summarized in Table 1, for T = 35.
t =0,5,10, 15, 20, 25, 30, 35 with i =4,5,..,n—-1and 64 =4,65 =5,084 =6, ...,
6, =n

n

Table 1. Parameters and their respective values.

Name of parameter Symbol used Values
Constant rate of interest r 0.02
Expected stock returns U 0.10
Instantaneous stock returns ug =uy, 0.07
Stock volatility k 0.55
Risk aversion pP=9q 0.50
Rate of contribution Ty 0.075
Management fee n 0.025
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Results
Figure 1 describes the investment strategy for the CRRA utility function under the

constant elasticity of variance (CEV) model using (6.1.21) when ¢; = %(aiﬂ - r])2

+§(O(y)2(a,-+1 - r])z, Jj= K_ZB, B=0= j=1. It shows that the stock price has

significant effect on the optimal investment made in stock.

Figure 1. Investment strategy under CEV using (6.1.21).

Figure 2 shows the influence instantaneous stock returns on the optimal investment
. . . 1 3
strategies using (6.1.24) with ¢; = E(aiﬂ -n)? + g(O(y)2 (a;+41 —N)%, Y(r) = 1000. It

reveals that the optimal investment policies increase with time. That is, as the time
passes on, investment in riskless asset decreases. Results suggest that the pension fund
manager maintains diversifying the portfolio by investing more in stock since the optimal

investment strategies in risky assets increase with time.

Figure 2. Influence of instantaneous stock returns on the optimal investment strategies.
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Figure 3 describes the investment strategy for the CARA utility function under the
constant elasticity of variance (CEV) model using (6.2.26). It shows that increase in the
interest rate volatility decreases the optimal investment strategy; this tells the pension
fund manager to invest more in a riskless asset to hedge risk.

Figure 3. Investment strategy under CEV using (6.1.26).

Figure 4 presents the impact of instantaneous stock returns on the optimal investment
strategies. It points out that as instantaneous stock returns increase the optimal
investment strategies decreases.

‘
~_ AR

AON\S? YA
"‘\"_\ ‘ ‘F“i‘ =

Figure 4. Influence of instantaneous stock returns on the optimal investment strategies
using (6.2.30).

9. Conclusion

We studied and modified the optimal investment strategy for annuity contract under
the constant elasticity of variance as in literature to show that the elastic parameter takes

values other than unity. We also constructed the optimal pension wealth investment
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strategy during the decumulation phase, in a defined contribution (DC) pension scheme

and obtained the explicit solution of the constant relative risk aversion (CRRA) and

constant absolute risk aversion (CARA) utility functions.
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