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Abstract

Persistent homology is an important tool in non-linear data reduction. Its
sister theory, persistent cohomology, has attracted less attention in the
past years eventhough it has many advantages. Several literatures dealing
with theory and computations of persistent homology and cohomology
were surveyed. Reasons why cohomology has been neglected over time
are identified and, few possible solutions to the identified problems
are made available. Furthermore, using Ripserer, the computation of
persistent homology and cohomology using 2-sphere both manually and
computationally are carried out. In both cases, same result was obtained,
particularly in the computation of their barcodes which visibly revealed the
point where the two coincides. Conclusively, it is observed that persistent
cohomology is not only faster in computation than persistent homology, but
also uses less memory in a little time.

1 Introduction

With the recent increase in the volume, the variety and the dimensionality
of available data, then identifying, extracting, and exploiting their underlying
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structure have become an issue for fundamental importance for data analysis and
statistical learning (Making sense of data). The good news is Topological Data
Analysis (TDA) came as a viable field that profer viable solution to this problem.
TDA is a recent and fast growing field providing a set of new topological and
geometric tools to infer relevant features for possibly complex data. It proposes
new well founded mathematical theories and computational tools that can be used
independently or in combination with other data analysis and statistical learning
techniques. Below is the pipeline of TDA.

Figure 1: TDA Pipeline.
(Otter et al. 2017)

2 Some Applications of Persistent Homology and
Persistent Cohomology

In this section, we provide a brief survey of the different domains in
which topological data analysis, specifically persistent homology and persistent
cohomology has found their applications.

2.1 General applications of persistent homology

Homology is a notion in Algebraic Topology associating a sequence of abelian
groups or modules with a topological space. It can be very difficult to compute
the homology of arbitrary topological spaces. Hence, spaces are approximated by
combinatorial structures called SIMPLICIAL COMPLEXES for which homology
can be computed algorithmically.
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The idea of persistent homology has found application in several area of studies
including robotics [1], sensor networks [3, 7], and the analysis of different other
domains [8, 9, 13]. Several structures in material science has been analysed using
persistent homology. Nakamura et al. [19] proposed a methodology based on
persistent homology to describe Medium Range Order (MRO) in amorphous
solids. These experiments on crystalline, random and amorphous structures
showed the power of persistent diagrams to explain geometric structures in
single and many-body atomic configurations. For instance in glass materials, the
presence of characteristic curves in a function over the persistent diagram imply
presence of MRO. For crystalline solids, the periodic structure yielded a few island
supports in the persistence diagram with high multiplicity. The diagonal region
in this diagram corresponds to the secondary holes that represent distortion from
the primary holes. In fact, this paper provides strong evidence of the importance
of persistent diagrams in the analysis of material structures. In another work,
Hiraoka et al. [56] showed similar results where different states of matter where
distinguished using persistent diagrams. Thermal flunctuations and strains on
molecules were studied using persistent homology.

The authors of [23] identified the qualitative changes in time series using delay
embeddings and topological data analysis. This delay-variant embedding method
revealed multiple time - scale patterns in a time series. The authors also combined
these features with the kernel technique in machine learning algorithms to classify
the general time-series data. In another work, Perea and Harer [27] used a sliding
window based technique and persistence to compute periodicity of signals.

In computer vision, persistent homology was used for a wide array of
applications ranging from image segmentation [60] to shape characterization [6].
Carriere et al. [22] used persistent homology to estimate 3 dimensional (3D)
shape. They worked on generating stable signatures to describe compact smooth
surfaces in three dimensional euclidean space R3. Given a shape S, persistence was
calculated by growing geodesic balls for each point x ∈ S. The persistent diagrams
were vectorised by treating them as metric spaces using pairwise distances. Thus
for each shape, there exist a set of vectors, one for each point in the shape.

Earthline J. Math. Sci. Vol. 14 No. 2 (2024), 349-378



352 Busayo Adeyege Okediji

Multidimensional Scaling on these vectors showed that there are some continuity
between vectors with identical labels, which suggests that the signatures vary
continuously along the shape. It is these vectors that are in turn used as features
for machine learning. Results of classifying shape based on these signatures are
quite encouraging. In a similar application, Bonis et al. [10] used persistent
homology to estimate 3D shape poses. This work used the intervals obtained
in persistent homology as features for pooling in a bag-of-word approach. The
result obtained was far better than the state-of-the-art techniques as well. In
a work related to image analysis of medical data, Singh et al. [29] studied the
cell arrangement of microscopic images of breast cancer using topological data
analysis. They took the points and their corresponding weights as the individual
nucleus and its mass. Using this, the persistent homology of the Vietoris Rips
(VR) complex starting from a weighted point cloud was computed. Different
cancer type was classified and demonstrated that the topological features contain
useful complementary information to image - appearance based features that can
improve discriminatory performance of classifiers. Recently, Leon et al. [30] used
filters on gaits of human silhouettes to build simplicial complexes. They used these
complexes for gender classification. In another work, Aras et al. [5] used persistent
homology to analyse image tampering. They utilised the non uniformity in Local
Binary Pattern of images to build simplicial complexes. The number of connected
components in this simplicial complex were used for different threshold values
as features for their classifier. The results obtained showed that the persistent
homology sequence defines a discriminating criterion for the morphing attacks
(i.e. distinguishing morphed images from genuine ones).

There has been experiments on different kernels using persistence including
Sliced Wasserstein [21], persistence scale space [45], weighted Gaussian [62],
and persistence sheer kernels on Riemannian Manifold [53]. Some works used
persistent diagrams as features for machine learning classifiers by doing statistical
measure on the intervals. The authors of [15, 17] used the binding process
by collecting values at the grid point. Other works [16, 60] used the top ‘n’
intervals as features. Bubenik [12] introduced persistent landscapes which was
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subsequently used as feature vectors either through binning or as intensity maps
for neural networks. Recently the persistent diagrams has been represented using
a persistent surface function [2]. The persistent surface can be discretized by a
cartesian grid into image data. By the integration of persistent surface function
over each grid (or pixel), a persistent image function was obtained. These images
can in term be fed directly into classifiers.

In Bio-science, topological data analysis found applications in medical imaging
[26, 31], molecular architecture [33, 50], and genomics [14], among others.
Topological structures have also been used to analyse viruses. Emmett et al.
worked on influenza [47] to show a bimodality of distribution of intervals in the
persistent diagram. This bimodality indicated two scales of topological structure,
corresponding to intra-subtype (involving one HA subtype) and inter-subtype
(involving multiple HA subtypes) viral reassortments. These results on viruses
suggested that persistent homology can be used to study other forms of reticulate
evolution. Overall, this paper presented clear examples of topological structures
demonstrating different biological processes. In another work, Parida et al. [34]
used topological characteristics to detect subtle admixture in related populations.
In [36], gene expressions from peripheral blood data was used to build a model
based on TDA network model and discrete Morse theory to look into routes
of disease progression. Persistent homology has also been employed in [42] for
comparison of several weighted gene co-expression networks. Persistent Homology
was used to identify DNA copy number aberrations [4]. Their experiments found
a new amplification in 11q at the location of the progesterone receptor in the
Luminal A subtype. Seemann et al. [43] used persistent homology to identify
correlated patient samples in gene expression profiles. Their work focuses on the
H0 homology class which is used to partition the point cloud. The famous paper
by Nicolau et al. [38] identified a subgroup of breast cancers using topological data
analysis in gene expressions. Several works [40, 43] on use of machine learning
techniques on gene expression profile have shown promising results. Kong et al.
[61] used random forests to extract features for their Neural Network Architecture.
They investigated a problem similar to our ’Topo-relevant gene’ and the results
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show significant improvement. [58] analyzes gene expression data to classify cancer
types. Different techniques of supervised learning are used to understand genes
and classify cancer. The authors of [44] used machine learning to identify novel
diagnostic and prognostic markers and therapeutic targets for soft tissue sarcomas.
This work unveiled the overlap of three groups of tumors in their molecular profile.
The authors of [16] characterised proteins using persistent homology. The work
used amino acid molecules as points to build a Vietoris Rips (VR) filtration.
Based on this filtration, the authors chose a feature vector of length 13, based on
number, length, birth and death time, average, and summation of certain specific
intervals. This feature vector was used as input to supervise classification. This
work showed that the classification accuracy for protein structures was improved
even by choosing feature vectors naively without any statistical basis.

In another work [18], the authors used barcodes to describe the secondary
structure of proteins such as alpha helix and beta sheets. They also employed the
said barcodes to analyse protein elastic network models. Several works [40, 43]
on the use of machine learning techniques on gene expression profile have shown
promising results. Kong et al. [61] used random forests to extract features for
their Neural Network Architecture. A problem similar to ‘Topo-relevant gene’
was investigated and the results showed significant improvement. [58] analyzed
gene expression data to classify cancer types. Different techniques of supervised
learning were used to understand genes and classify cancer. The authors of [44]
used machine learning to identify novel diagnostic and prognostic markers and
therapeutic targets for soft tissue sarcomas. This work revealed the overlap of
three groups of tumors in their molecular profile.

The computation of representative cycles for homology groups with Z2 has
been extensively studied over the decades While a polynomial time algorithm
for computing an optimal basis for the first homology group H1 [39] was
proposed, finding an optimal basis for dimension greater than one and localizing
a homology class of any dimension were proved NP-hard [25]. There are few
works addressing the problem of finding representatives for persistent homology,
some of which computed an optimal cycle at the birth index of an interval but
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do not consider what actually died at the death index [48, 50]. Obayashi [46]
formalizes the computation of optimal representatives for a finite interval as an
integer programming problem. He advocated solving it with linear programs,
though the correctness is not necessarily guaranteed. Wu et al. [51] proposed
an algorithm for computing an optimal representative for a finite interval with a
worst-case complexity exponential to the cardinality of the persistence diagram.
Chambers et al.[23] proved that the localization problem over dimension one is
NP-hard when the given simplicial complex is a 2-manifold. Several other works
[11, 24, 35, 49] addressed variants of the two problems while considering special
input classes, alternative cycle measures, or coefficients for homology other than
Z2.

2.2 General applications of persistent cohomology

Cohomology is a sequence of Abelian groups associated to topological spaces and
is defined from a cochain complex. The idea of persistent cohomology has found
less applications in several area of studies. A lot of researchers prefered persistent
homology over persistent cohomology. Counting less on this, cohomology has been
applied in a certain little but effective capacity.

Chang and Guo [54] used persistent cohomology to extract data with
multicomponent heterogeneous information where it was inferred that non
geometric information can either be distributed globally or locally on the datasets
in the geometric sense and can properly be defined on topological spaces.
State Space discovery in the spatial representation system was evaluated using
persistent cohomology [63]. [64] presented Javaplex as a research software package
for computing persistent cohomology. It worked perfectly well until certain
cohomological operations (cup products, and the morse function) surfaced. Many
thanks to [55] who gave an improvement on this through the implementation of
ripser. In 2011 as well, the authors of [55] gave the equivalence of persistent
homology and persistent cohomology where duality was greatly executed. [65]
in 2022 constructed spherical coordiantes from persistent cohomology. Authors
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of [57] presented an approach to topological motion planning which is fully data
driven in nature and which relies solely on the knowledge of samples in the free
configuration space.

From the review above, it is obvious that persistent cohomology has gained
less attention from researchers. Some of the presumed reasons for this are listed
below.

• There is natural isomorphism that takes the persistent homology to
persistent cohomology but there is no such canonical isomorphism that takes
persistent cohomology to persistent homology.

• In terms of computations, the inadequate implementation of softwares which
appropraitely takes care of the cohomological operations, and those which allows
for clearing. However, the difference is not in the computation of their barcodes
(which is the same for homology and cohomology), but in computing the (co)cycles
which generate cohomology.

2.3 Suggested solution to the spotted problems

• By Universal Coefficient theorem, there is a natural isomorphism between
homology and cohomology. (Theorem 3.8) Injecting this on the isomorphism of
the barcodes, then the first problem proves solvable.

• Although there are many softwares (Plex, JavaPlex, PHAT, Dinoysus, ripser
and others) which naturally compute homology in a little time, but takes countless
hours before they could compute cohomology. The execution of Ripserer (a jula
app) is a goodnews that gives a lasting solution to this problem, much more that
it computes cohomology before homology in a little time with less memory, and
also allows for clearing which speeds up the computation of persistence.
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3 Persistent Theory

Persistence, as introduced by Edelsbrunner, Letscher, and Zomorodian [68] and
refined by Zomorodian and Carlsson [66] is the major response to the problems
of TDA. We shall give a brief overview of the theories, compute the persistent
homology and persistent cohomology of 2-sphere using the application of these
theories manually and computationally using Ripserer.

Definition 3.1. [66] The chain complex is the sequence of chain groups
connected by boundary homomorphism δp : Cp → Cp+1 such that Cp−1 ◦ Cp = 0.

Definition 3.2. [66] A p-chain c is a cycle if its boundary is empty, that is,
δc = 0. While a p-chain is a boundary if it is in the image of δp+1, that is, c = δd,
p ∈ Z. The p cycles form a group denoted by Zp, which is the kernel of the
boundary homomorphism δp. The p boundaries also form a group denoted by Bp
which is the image of the homomorphism.

Since δp ◦ δp+1(c) = 0, for every integer p and every (p+1)-chain, then Imδp+1

= Bp ⊆ Ker δp = Zp. That is, every p-boundary is also a p-cycle. Hence, the
pth homology group of K is the quotient group Hp(K) = Zp(k)

Bp(k) = Ker(δp)
Im(δp+1)

containing equivalence classes of k-cycles.

3.1 Persistent Homology [28, 66, 67]

Given a simplicial complex K, a FILTRATION of a SIMPLICIAL COMPLEX
K is a nested collection of subcomplexes k1 ≤ k2 ≤ k3 ≤ · · · ≤ km = k,
that is, a finite sequence of subcomplexes Kf = Kf : 0 ≤ a ≤ m of K such that
∅ = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km = K for (a, b) ∈ 0, · · · ,m such that a ≤ b.
The (a, b)-PERSISTENT p-homology group Ha,b

p (K) of simplicial complex K
consists of k cycles included from ζ(Ka) into ζ(Kb) modulo boundaries. Formally,
it can be defined as Ha,b

p (Kf ) = ImIa,b
p where Ia,b

p denotes the Linear map
between Hp(Ka) and Hp(Kb) induced by the inclusion of complexes between Ka

Earthline J. Math. Sci. Vol. 14 No. 2 (2024), 349-378



358 Busayo Adeyege Okediji

and Kb.

Generally, while HOMOLOGY captures CYCLES in a shape by factoring
out the boundary cycles, PERSISTENT HOMOLOGY allows for the
retrieval of cycles that are non boundary elements in a certain step of the
filtration and that will turn into BOUNDARIES. Also, homology define and
Count HOLES, but persistent homology measure HOLES. Although there are
several types of complexes, but for the purpose of this work, we shall restrict
ourselves to FILTERED CELL COMPLEXES, since we are interested in the
persistent topology of a filtered topological space which is a sequence X of cell
complexes X : X1 ⊂ X2 ⊂ · · ·Xn = X∞ where X1 is a vertex say (σ1). Each
complex is obtained from the previous one by adding a single cell: Xi = Xi−1∪σi.

3.2 Cohomology Theory

Definition 3.3. [55] A cochain complex is the sequence of chain groups
connected by coboundary homomorphism δp : Cp → Cp+1 such that Cp−1 ◦
Cp = 0.

Definition 3.4. [55] A p-cochain c is a cocycle if its coboundary is empty, that
is, δc = 0. While a p-cochain is a coboundary if it is in the image of δp+1, that is,
c = δd, p ∈ Z. The p cocycles form a group denoted by Zp, which is the kernel of
the coboundary homomorphism δp. The p coboundaries also form a group denoted
by Bp which is the image of the homomorphism.

Since δp ◦δp+1(c) = 0, for every integer p and every (p+1) chain, then Imδp+1

= Bp ⊆ coker δp = Zp. That is, every p-coboundary is also a p-cocycle. Hence,
the pth cohomology group of K is the quotient group Hp(K) = Zp(k)

Bp(k) =
coker(δp)
Im(δp+1)

containing equivalence classes of k-cocycles.
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3.3 Persistent Cohomology [55, 66, 69]

From Definition 3.2, it could be inferred that the (a, b)-PERSISTENT
p-cohomology group Hp

a,b(K) of simplicial complex K consists of k cocycles
included from ζ(Ka) into ζ(Kb) modulo coboundaries. Formally, it can be defined
as Hp

a,b(Kf ) = Im Ip
a,b where Ip

a,b denotes the linear map between Hp(Ka) and
Hp(Kb) induced by the inclusion of complexes between Ka and Kb.

3.4 Persistent Modules [13, 55]

An N-indexed persistence module over a field F is a sequence (v0, a0) of F vector
spaces Vk and linear maps ak defined for k ≥ 0. The map (a0 are not required to
satisfy (ak ◦ ak−1) = 0).

The four standard persistence modules (absolute homology, absolute
cohomology, relative homology and relative cohomology) in relation to the filtered
cell complexes are respectively given below.

(1) H∗(X) : H∗(X1)→ · · · → H∗(Xn−1)→ H∗(Xn)

(2) H∗(X) : H∗(X1)← · · · ← H∗(Xn−1)← H∗(Xn)

(3) H∗(X∞, X) : H∗(Xn)→ H∗(Xn, X1)→ · · · → H∗(Xn, Xn−1)

(4) H∗(X∞, X) : H∗(Xn)← H∗(Xn, X1)← · · · ← H∗(Xn, Xn−1)

Theorem 3.5. [68] Every pointwise finite dimensional (P.F.D) persistence
module V ∈ V ectR decomposes uniquely (up to isomorphism) into interval
persistence modules C(I). V ∼= ⊕C(I) where I ∈ B(V ) where B(V ) is a multiset
(that is, a set of objects with multiplicities) of intervals of the form [a, b) or (−∞,b)
for some a ∈ R, b ∈ R ∪ [+∞]. This B(V ) is called the BARCODE of V .

To every barcode, there is always an associated persistent diagram.

Lemma 3.6. [55, 65, 68] The persistence diagram (barcode) is the multi set of
ordered pairs [p, q] in the decomposition, or alternatively the multi set of half
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open intervals [ap, aq+1). Thus we write : Pers(H(X))= ([p1, q1], · · · ][pm, qm]
= ([ap1, aq1+1), · · · [apm, aqm+1) where 1 ≤ p ≤ q ≤ n for (Absolute Homology and
cohomology) and 0 ≤ p ≤ q ≤ n − 1 for (Relative Homology and Cohomology)
with the convention that a0 = −∞ and an+1 =∞.

Lemma 3.7. [55, 65, 68] Given a multi set of ordered pairs [p, q] in any
decomposition, the multi set of half open intervals [ap, aq+1), it is customary to
discards points for which ap = aq+1

Theorem 3.8. [55] Hk(X;K) ∼= Hom (Hk(X;K),K). There is a natural
isomorphism between homology and cohomology.

Proof. “Natural” implies that the induced maps Hk(Xi;K) → Hk(Xj ;K) and
Hk(Xi;K) → Hk(Xj ;K) are adjoint and hence have the same rank. Because
of the way the barcode is uniquely determined by dimensions and ranks, it
follows that the absolute homology and cohomology barcodes are the same. This
argument applies equally well to the relative barcodes.

Theorem 3.9. For all k, Pers(Hk(X)) = Pers(Hk(X)) : Pers(Hk(X∞, X)) =
Pers(Hk(X∞, X)).

In other words, Homology and Cohomology have IDENTICAL
BARCODES.

3.5 Persistence diagram for Absolute homology and Cohomology
for 2-sphere

For the cellular filtration of 2-sphere, there are six cells ( say (X1, X2, X3, X4, X5

and X6).

Writing this as a filtered cell complex, we have

X : X1 ⊂ X2 ⊂ X3 ⊂ X4 ⊂ X5 ⊂ X6 · · · (1)
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Now if we apply a homology functor H(−) to equation (1) above, we have

H(X) : H(X1) ⊂ H(X2) ⊂ H(X3) ⊂ H(X4) ⊂ H(X5) ⊂ H(X6) · · · (2)

where H(−) denote the k - dimensional homology Hk(−; k) or the total homology
H∗(−; k). Thus equation (2) above becomes a PERSISTENCE MODULE which
decomposes as a direct sum of interval modules. These are labelled by the ordered
pairs of integers [p, q] where 1 ≤ p ≤ q ≤ n.

The pair [p, q] indicates a feature which persists over the index set (p, · · · q)
we frequently interpret [p, q] as the half open real interval [ap, aq+1) with the
convention that an+1 = ∞, and so the persistence diagram or barcode for
ABSOLUTE HOMOLOGY is written as :

Pers(H(X)) = ([p1, q1], · · · [pm, qm]

which is equal to ([ap1, aq+1), · · · [apm, aqm+1)

Applying this to the cellular filtration of the 2-sphere, we thus have that
1 ≤ p ≤ q ≤ 6 and

Pers(H(X)) = [1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6],

[2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [3, 3], [3, 4], [3, 5], [3, 6],

[4, 4], [4, 5], [4, 6], [5, 5], [5, 6], [6, 6] · · · (3)

By Lemma 3.7, equation (3) thus becomes;

Pers(H(S)) = [1, 6]0, [2, 2]0, [4, 4]1, [6, 6]2 · · · (4)

Lemma 3.6 thus make equation(4) becomes

PersH(S) = [1, 6 + 1)0, [2, 2 + 1)0, [4, 4 + 1)1, [6, 6 + 1)2 · · · (5)

Going by the convention that an+1 =∞, equation(5) thus becomes;

Pers(H(S) = ([1,∞)0, [2, 3)0[4, 5)1, [6,∞)2)

Earthline J. Math. Sci. Vol. 14 No. 2 (2024), 349-378
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And so Pers(H∗(S) = [1, 6]0, [2, 2]0, [4, 4]1, [6, 6]2 which is equal to
([1,∞)0, [2, 3)0[4, 5)1, [6,∞)2

The subscript k in [p, q]k or [ap, aq+1)k indicates that the feature occurs
in k-dimensional homology. However, the persistence diagram for absolute
cohomology is a multiset of integer ordered pairs [p, q] with 1 ≤ p ≤ q ≤ n.

3.6 Persistence diagram for the Relative Homology and
Cohomology of 2-sphere

The persistence diagrams for relative homology and cohomology are multisets of
pairs [p, q] with 0 ≤ p ≤ q ≤ n − 1. In all cases, we interpret [p, q], as the
half open interval [ap, aq+1), with the convention that a0 = −∞ and an+1 = ∞.
Unlike absolute homology and cohomology whose interval range from 1 to n, the
interval for relative homology and cohomology ranges from 0 and n− 1. Since we
have six(6) cells for the cellular filtration of 2-sphere, then its interval for relative
(homology and cohomology) range from 0 and 5.

The persistent module for relative homology and cohomology of 2-sphere thus
becomes

Pers(H(X)) = [0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5],

[1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 2], [2, 3], [2, 4],

[2, 5][3, 3], [3, 4], [3, 5], [4, 4], [4, 5], [5, 5] · · · (6)

Now applying Lemma 3.7 to equation (6), we have

Pers(H∗(S6, S)) = [0, 0]0, [2, 2]1, [4, 4]2, [0, 5]2 · · · (7)

And by Lemma 3.6, equation (7) becomes

Pers(H∗(S6, S)) = [0, 0 + 1)0, [2, 2 + 1)1, [4, 4 + 1)2, [0, 5 + 1)2

So we have

Pers(H∗(S6,S)) = [0, 1)0, [2, 3)1, [4, 5)2, [0, 6)2 · · · (8)

http://www.earthlinepublishers.com



Persistent Homology and Persistent Cohomology : A Review 363

And so going by the convention that an+1 =∞ and a0 = −∞, equation (8) thus
becomes;

Pers(H∗(S6,S)) = ([−∞, 1)0, [2, 3)1[4, 5)2, [−∞, 6)2) · · · (9)

For instance at index 2, we note that there is a non trivial element of H1(S6, S2)
represented by any arc connecting the two points of S2. To be specific, the
homology class is [σ3] = [σ4]. This class varnishes in H1(S6, S3), and so it
generates the interval [2, 3) Looking vividly into (5) and (9), it is obvious that
there is a close relationship between the barcodes for absolute homology and
relative homology.

3.7 Computations using Ripserer

Ripserer is a pure Julia implementation of the Ripser algorithm for computations.
Much like Ripser, it uses several computational tricks to achieve its speed.
Among others, these include an implicit simplicial complex representation and
the clearing optimization. In terms of performance, Ripserer is very close to
Ripser, usually within around 30 percent. Ripserer’s strength performance-wise is
very sparse inputs, where it can sometimes outperforms Ripser. It also computes
critical simplices that Ripser will naturally skip. It enable researchers to access
state of algorithms for persistent homology, cohomology, hom complexes, filtered
simplicial complexes, filtered cell complexes, witness complex constructions, and
many more essential component of computational topology.

In terms of memory capacity and time usage, Ripserer is preferred over every
other software packages, in that, Ripserer computes using 152MB within 1.2
seconds. This does not only show that Ripserer has an efficient memory over
other software packages, but it also outperforms other codes by a factor of more
than 40 in computation time, and a factor of more than 15 in memory efficiency.
In short, it uses a little memory as possible and it is reasonable about computation
time. To add to these, Ripserer has support for coefficients in a prime field.
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The most interesting thing about Ripserer is that, it computes persistent
cohomology by default. However it computes homology and cohomology using
every form of complexes.

Our major aim is to obtain the persistence diagram(Barcodes) for both
persistent homology and cohomology, and establish from the diagram that both
have the same barcodes. The Ripserer codes for the computation of 2-Sphere
generates the following diagrams.

Figure 2: Scattered data.
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Figure 3: Persistence diagram for the data.

Figure 4: Persistence diagram for homology.
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Figure 5: Persistence diagram for cohomology.

4 Conclusion

This work gave an eye opener to a probable solution to the persistent problem of
the usage of cohomology. Over the years the usual way of computing cohomology
was majorly to compute homology first (by reducing the generated boundary
matrix to Smith Normal Form (SNF)), thereafter, obtain the cohomology (Which
is the transpose of the boundary matrix (Coboundary matrix)). But through our
review, it is clear that barcode isomorphism and universal coefficient theorem
negate the claim, and the implementation of Ripserer which naturally computes
cohomology before homology broke the archaic jinx, much more that persistent
cohomology is not only faster in computation than persistent homology, but also
uses less memory.
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Appendix

RIPSERER CODES FOR GENERATING THE PERSISTENCE
DIAGRAMS FOR HOMOLOGY AND COHOMOLOGY

• We start by loading some packages and generating some data.

Immediately after this command, there will be an output

• To obtain the persistence diagram, we give the command
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The persistence diagram thus pop up as the outage. The diagram tells us
that there is a persistent hole in the data, but tells us nothing about the location
of the hole. Ripserer provides several methods to locate it. We will start with
the simplest.

CRITICAL SIMPLICES

The first option is to find the death simplex of the interval. We start by
extracting the interval in question. Keep in mind that the diagrams are sorted
by persistence, so the last element will always be the most persistent. To obtain
this, we give the command;

There wil be an output too. In this output, it is noteworthy to emphasize
that the interval has two simplices attached to it, the birth simplex and the death
simplex. We can extract them with birth-simplex and death-simplex respectively.
To obtain each of these, we give the command;

Since a simplex acts just like an array of indices, so it can be used to index
into the data. To do this, we give the command;

• Ripserer also provides a Plots recipe for plotting simplices. It is invoked by
passing the simplex and the data to plot. Not that only the edges of the simplices
are plotted. To do this, we give the following command;
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After this command, we have a diagram as outage. The birth simplex is the
simplex that first connects the hole. The death simplex is the simplex that fills
the hole in, while the death simplex gives us a vague idea of where the hole is
located.

• Ripserer also computes the representative cocycles. By default, Ripserer
computes persistent cohomology. The resulting diagrams of persistent homology
and cohomology are the same, but computing cohomology is much more efficient.
When computing persistent cohomology, we can tell Ripserer to also compute
representative cocycles. This is controlled with the reps keyword argument, using
the command;

Regarding the output, notice that now, the interval also has a representative
attached. The representative is an array of pairs with simplex value, where the
value is the coefficient of the simplex. In reality, the type is different, but it acts
exactly the same as a Pair. Giving the following command;

We thus have our representative cocycles, which can be plotted in the same
way as a simplex. To do this, we give the command;
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Our output here is the persistence diagram of persistent cohomology. The
cocycle is a collection of 1-simplices that, if removed, would break the cycle in our
data set. This does not correspond to most people’s intuitive understanding of a
hole, but it can be useful in some situations. To find something more intuitive,
we have to look to homology and its representative cycles.

• Ripserer can also compute the representative cycle (for homology). It
supports two algorithms for computing representative cocycles. One is computing
persistent homology directly, and the other is involuted homology computation.
Involuted homology computes cohomology first and then uses its result to
recompute cycles. While this increases the running time somewhat, it is still
usually much more efficient than computing persistent homology directly. The
difference is especially large for filtrations where the number of simplices increases
quickly with dimension, such as Vietoris-Rips filtrations.

Involuted homology is computed by passing the argument alg=:involuted
to Ripserer. If we wanted direct homology computation, we would use
alg=:homology. The results for both cases are exactly the same. Note that
invoking homology also turns on reps for dimensions one and higher. To do this,
we give the following command;

If an interval with a representative is passed to plot, the representative is
plotted. To do this, we give the following command;

The output here gives the persistence diagram for persistent homology.
http://www.earthlinepublishers.com
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