
Earthline Journal of Mathematical Sciences
E-ISSN: 2581-8147
Volume 14, Number 2, 2024, Pages 191-203
https://doi.org/10.34198/ejms.14224.191203

Monotonicity and Convexity Properties and Some
Inequalities Involving En,p(x)

Ahmed Yakubu*, Musah Sulemana and Iddrisu Mohammed Katali

Department of Mathematics, Faculty of Physical Sciences, University for Development Studies,

Nyankpala Campus, P. O. Box TL1350, Tamale, N/R, Ghana

e-mail: ahmed.yakubu@uds.edu.gh*

Abstract

In this paper, we established some monotonicity and convexity properties
of the p-analogue of the exponential integral function. The increasing and
decreasing, positive and negative, and convexity and concavity properties
of the function were established and proved. Complete monotonicity of the
function was also considered.

1 Introduction and Preliminaries

Some special functions have some formulae and identities which are employed by
many mathematicians, engineers and physicists. These functions have several uses
in pure mathematics and are applied in areas like fluid dynamics, solutions of wave
equations, heat conduction, communication system, nonlinear wave propagation,
electromagnetic theory, quantum mechanics, approximation theory, probability
theory, and electric circuit theory, among others [1].
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The focus of this paper is on the classical exponential integral function defined
by Schloemich in [2] as

En(x) =

∫ ∞
1

t−ne−tx dt x > 0, n ∈ N, (1.1)

and the i-th derivative of (1.1) is given by

E(i)
n (x) = (−1)i

∫ ∞
1

ti−ne−xtdt, i ∈ N0. (1.2)

This special function has been investigated in diverse ways (see [3], [4], [5], [6], [7],
[8], [9], [12] and the related references therein).

The p-analogue of the exponential integral function, En,p (x) is defined for
x > 0, p > 1 and n ∈ N0 by [10]

En,p (x) =

∫ p

1
t−nA−xtp dt, (1.3)

and the i-th derivative of (1.3) is given by [11]

E(i)
n,p (x) =

(
lnA−1p

)i ∫ p

1
ti−nA−xtp dt, (1.4)

where, En,p (x) −→ En (x) as p −→∞, Ap = (1+ 1
p)
p and E(i)

n,p (x) −→ E
(i)
n (x) as

p −→∞.

The objective of this paper is to establish some monotonicity and convexity
properties of the p-analogue of the exponential integral function. The increasing
and decreasing, positive and negative, and convexity and concavity properties of
the function are established and proved. Complete monotonicity of the function
is also considered. Additionally, some new inequalities which involve En,p (x) are
established.

We begin with the following well known results( see for instance [13], [14], [15]
or [16]).

Definition 1.1. (Convexity) A function f : I −→ R is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (1.5)
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holds for all x, y ∈ I and λ ∈ (0, 1). If in (1.5) we have strict inequality, then f
is said to be strictly convex. If the inequalities are reversed, then f is said to be
concave [17].

Lemma 1.2. (Convexity) Let f : (a, b) −→ R and for any x ∈ (a, b) suppose there
exists a second derivative f ′′

(x). The function f(x) is convex on (a, b) if and only
if for each x ∈ (a, b) we have f ′′

(x) ≥ 0. If f ′′
(x) > 0 for each x ∈ (a, b), then f

is strictly convex on (a, b).

Clearly, according to Definition 1.1 and Lemma 1.2 we have that the function
f(x) is concave on (a, b) if and only if f ′′

(x) ≤ 0, for all x ∈ (a, b).

Definition 1.3. (Log-convexity) A function f : I −→ R+ is said to be logarithmic
convex or in short log-convex if ln f is convex on I. That is if

ln f(λx+ (1− λ)y) ≤ λ ln f(x) + (1− λ) ln f(y) (1.6)

or equivalently
f(λx+ (1− λ)y) ≤ (f(x))λ(f(y))1−λ (1.7)

holds for each x, y ∈ I and λ ∈ (0, 1) [18].

Definition 1.4. (Complete Monotonicity) A function f : I −→ R is said to be
completely monotonic on I if f has a derivative of all order on I and

(−1)kf (k)(x) ≥ 0 (1.8)

holds for x ∈ I and k ∈ N [19].

Definition 1.5. (Arithmetic-mean/Geometric-mean Inequality) The AM-GM
inequality is sometimes called the Cauchy inequality (1821):

x1 + ...+ xn
n

≥ (x1...xn)
1
n (1.9)

for all xk > 0 [20].

The results are presented in the following section.
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2 Main Results

Theorem 2.1. Let n ∈ N0, p > 1 and i ∈ N. Then the function En,p (x) has the
properties:
(a) En,p (x) is strictly decreasing;
(b) E(i)

n,p (x) is positive and strictly decreasing if i is even;
(c) E(i)

n,p (x) is negative and strictly increasing if i is odd;
(d) E(i)

n,p (x) is strictly convex if i is even;
(e) E(i)

n,p (x) is strictly concave if i is odd;
for x > 0.

Proof. Using (1.3), we have

E
′
n,p (x) = − lnAp

∫ p

1
t1−nA−xtp dt < 0, (2.1)

which completes the proof of (a). Similarly, using (1.4) for even i, we have

E(i)
n,p (x) = (−1)i (lnAp)i

∫ p

1
ti−nA−xtp dt > 0 (2.2)

which shows that E(i)
n,p (x) is positive for even i. Next for even i, we have

(E(i)
n,p (x))

′
= E(i+1)

n,p (x) = (−1)i+1 (lnAp)
i+1
∫ p

1
ti+1−nA−xtp dt < 0 (2.3)

which shows that E(i)
n,p (x) is strictly decreasing. This completes the proof of (b).

By similar procedure the results yields (c). Furthermore by (1.4), we have

(E(i)
n,p (x))

′′
= E(i+2)

n,p (x) = (−1)i+2 (lnAp)
i+2
∫ p

1
ti+2−nA−xtp dt > 0 (2.4)

for even i. This yields (d). By a similarly procedure also yields (e).

Theorem 2.2. The function En,p (x) is strictly completely monotonic for all n ∈
N0, p > 1, i ∈ N and x > 0.
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Proof. Using (1.4), we have

(−1)iE(i)
n,p (x) = (−1)i

(
lnA−1p

)i ∫ p

1
ti−nA−xtp dt

= (−1)2i (lnAp)i
∫ p

1
ti−nA−xtp dt

> 0.

This completes the proof.

Theorem 2.3. The function E(r)
n,p (x) is strictly completely monotonic if r ∈ N0 is

even and −E(r)
n,p (x) is strictly completely monotonic if r ∈ N0 is odd respectively

for x > 0.

Proof. Using (1.4), we have

(−1)iE(r+i)
n,p (x) = (−1)i

(
lnA−1p

)r+i ∫ p

1
tr+i−nA−xtp dt

= (−1)r+2i (lnAp)
r+i
∫ p

1
tr+i−nA−xtp dt

= Q(x).

Q(x) > 0 if r is even and Q(x) < 0 if r is odd. This completes the proof.

Theorem 2.4. The function En,p (x) satisfies the inequality∣∣∣∣E( i
η
+ j
µ
)

n,p

(
x

η
+
y

µ

)∣∣∣∣ ≤ ∣∣∣E(i)
n,p(x)

∣∣∣ 1η ∣∣∣E(j)
n,p(y)

∣∣∣ 1µ , (2.5)

for η > 1, x, y > 0, i, j ∈ N and 1
η +

1
µ = 1.

Proof. Using (1.4) and Hölder’s inequality for integrals, we have
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∣∣∣∣E( i
η
+ j
µ
)

n,p

(
x
η + y

µ

)∣∣∣∣
=
(
lnA−1p

) i
η
+ j
µ

∫ p

1
t
( i
η
+ j
µ
)−n

A
−(x

η
+ y
µ
)t

p dt

=
(
lnA−1p

) i
η
+ j
µ

∫ p

1
t
( i
η
+ j
µ
)−n( 1

η
+ 1
µ
)
A
−(x

η
+ y
µ
)t

p dt

=
(
lnA−1p

) i
η
+ j
µ

∫ p

1
t
i
η
−n
ηA
−xt
η

p t
j
µ
−n
µA
− yt
µ

p dt

≤
(
lnA−1p

) i
η
(
lnA−1p

) j
µ

(∫ p

1

(
t
i
η
−n
ηA
−xt
η

p

)η
dt

) 1
η
(∫ p

1

(
t
j
µ
−n
µA
− yt
µ

p

)µ
dt

) 1
µ

=

((
lnA−1p

)i ∫ p

1
ti−nA−xtp dt

) 1
η
((

lnA−1p
)j ∫ p

1
tj−nA−ytp dt

) 1
µ

=
∣∣∣E(i)

n,p(x)
∣∣∣ 1η ∣∣∣E(j)

n,p(y)
∣∣∣ 1µ .

This completes the proof.

Remark. When i = j is even in (2.5), then En,p (x) satisfies the inequality

E(i)
n,p

(
x

η
+
y

µ

)
≤
(
E(i)
n,p(x)

) 1
η
(
E(i)
n,p(y)

) 1
µ
, (2.6)

which implies that the function E(i)
n,p(x) is logarithmically convex for even i.

If i = 0 in (2.6), then we have

En,p

(
x

η
+
y

µ

)
≤ (En,p(x))

1
η (En,p(y))

1
µ , (2.7)

which implies that the function En,p(x) is logarithmically convex.

Substituting η = µ = 2, x = y and j = i+ 2 in (2.5), we have the Turan-type
inequality ∣∣∣E(i+1)

n,p (x)
∣∣∣2 ≤ ∣∣∣E(i+2)

n,p (x)
∣∣∣ ∣∣∣E(i)

n,p(x)
∣∣∣ . (2.8)

Remark. The log-convexity of En,p (x) implies that
(a) E′′

n,p (x)En,p (x) > [E
′
n,p (x)]

2, x > 0

(b) The function E
′
n,p(x)

En,p(x)
is increasing for x > 0.
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Corollary 2.5. The function En,p (x) satisfies the inequalities

[En,p (x+ y)]2 ≤ En,p (x)En,p (y) , (2.9)

and

En,p (x+ y) ≤ En,p (x) + En,p (y) , (2.10)

hold for x, y > 0 and n ∈ N0.

Proof. Since En,p (x) is decreasing, we have

En,p (x+ y) ≤ En,p
(
x+ y

2

)
.

Substituting η = µ = 2 in (2.7) , we have

En,p

(
x+ y

2

)
≤
√
En,p (x)En,p (y) (2.11)

which implies

En,p (x+ y) ≤
√
En,p (x)En,p (y)

and that completes the proof of (2.9). Next, by the Arithmetic Meam-Geometric
Mean inequality, we have

En,p (x+ y) ≤
√
En,p (x)En,p (y) ≤

En,p (x)

2
+
En,p (y)

2
≤ En,p (x) + En,p (y),

which completes the proof of (2.10).

Theorem 2.6. The function En,p (x) satisfies the inequality

1 <
En,p (ω)

En,p (ω + 1)
<
En,p (ω − 1)

En,p (ω)
, (2.12)

for ω > 1 and n ∈ N0.
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Proof. Since En,p (x) is decreasing, we have

En,p (ω + 1) < En,p (ω)

which implies

1 <
En,p (ω)

En,p (ω + 1)
.

Substituting x = ω − 1 and y = ω + 1 in (2.11) gives

E2
n,p (ω) < En,p (ω − 1)En,p (ω + 1) ,

which can be written as

En,p (ω)

En,p (ω + 1)
<
En,p (ω − 1)

En,p (ω)
,

and this completes the proof for (2.12).

Theorem 2.7. Let a > 0, p > 1, n ∈ N0. Then the function

ψ(x) = axEn,p (x) (2.13)

is log-convex for x > 0.

Proof. Let x > 0, y > 0, η > 1 and 1
η + 1

µ = 1. Since the function En,p (x) is
log-convex, we have

ψ

(
x

η
+
y

µ

)
= a

x
η
+ y
µEn,p

(
x

η
+
y

µ

)
≤ a

x
η
+ y
µ [En,p (x)]

1
η [En,p (y)]

1
µ

= [axEn,p (x)]
1
η [ayEn,p (y)]

1
µ

= [ψ(x)]
1
η [ψ(y)]

1
µ .

This completes the proof.

Remark. Theorem 2.7 was motivated by Theorem 2.9 of [21].
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Theorem 2.8. The function En,p (x) satisfies the inequalities

[E(i)
n,p (xy)]

2 ≤ E(i)
n,p (x)E

(i)
n,p (y) , (2.14)

for x ≥ 1, y ≥ 1, and n ∈ N0.

Proof. Since x ≥ 1 and y ≥ 1, then xy ≥ x and xy ≥ y. If i is even, by Theorem
2.1, E(i)

n,p (x) is positive and decreasing. Then we have

0 < E(i)
n,p (xy) ≤ E(i)

n,p (x)

and

0 < E(i)
n,p (xy) ≤ E(i)

n,p (y)

for x, y ≥ 1, so
[E(i)

n,p (xy)]
2 ≤ E(i)

n,p (x)E
(i)
n,p (y) .

Also, if i is odd, E(i)
n,p (x) is negative and increasing by Theorem 2.1, then

E(i)
n,p (x) ≤ E(i)

n,p (xy) < 0

and

E(i)
n,p (y) ≤ E(i)

n,p (xy) < 0

for x, y ≥ 1, so
[E(i)

n,p (xy)]
2 ≤ E(i)

n,p (x)E
(i)
n,p (y) .

This completes the proof.

Theorem 2.9. Let a > 1, p > 1, n ∈ N0. Then the function

h(x) =
[En,p (x+ 1)]a

En,p (ax+ 1)
(2.15)

is decreasing for x > 0 and

En,p (ay + 1)

En,p (ax+ 1)
≥
[
En,p (y + 1)

En,p (x+ 1)

]a
(2.16)

holds for 0 < x ≤ y.
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Proof. Let 0 < x ≤ y and

f(x) = lnh(x) = a lnEn,p (x+ 1)− lnEn,p (ax+ 1) .

Then

f
′
(x) = a

E
′
n,p (x+ 1)

En,p (x+ 1)
− a

E
′
n,p (ax+ 1)

En,p (ax+ 1)

= a

[
E

′
n,p (x+ 1)

En,p (x+ 1)
−
E

′
n,p (ax+ 1)

En,p (ax+ 1)

]
≤ 0

which means f(x) is decreasing and as a result, h(x) is also decreasing. Then for
0 < x ≤ y, we have h(x) ≥ h(y) which when rearranged gives (2.16).

Theorem 2.10. Let p > 1, n ∈ N0. Then the inequality,

En,p (x)En,p (y) ≤ (1− n)−1(p1−n − 1)En,p (x+ y) . (2.17)

for x > 0, y > 0.

Proof. Let g(x, y) = En,p(x)En,p(y)
En,p(x+y)

and f(x, y) = ln g(x, y). That is

f(x, y) = lnEn,p (x) + lnEn,p (y)− lnEn,p (x+ y) .

Then, for a fixed y, we have

δ

δx
f(x, y) =

E
′
n,p (x)

En,p (x)
−
E

′
n,p (x+ y)

En,p (x+ y)
≤ 0

which means f(x, y) is decreasing in terms of x and as a result, g(x, y) is also
decreasing in terms of x. Then for x = 0, we have

g(x, y) ≤ g(0, y) = En,p (0) = (1− n)−1(p1−n − 1),

this completes the proof.
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3 Conclusion

Using inequalities (1.5), (1.6), (1.7), (1.8) and (1.9), we established some
monotonicity and convexity properties of the p-analogue of the exponential integral
function. The increasing and decreasing, positive and negative, and convexity
and concavity properties of the function were established and proved. Complete
monotonicity of the function was also considered. It is our hope that the findings
will contribute greatly to knowledge in the area of mathematical analysis.
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