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Abstract

In the present paper, we have studied the curvature tensors of
(k, u)-paracontact manifold satisfying the conditions Z-C=0, R-C=0,
P.-C=0and C-C =0. According these cases, (k, u)-paracontact manifolds

have been characterized.

1 Introduction

Following their introduction by Kaneyuki and Williams [10], Zamkovoy conducted
a comprehensive investigation of paracontact metric manifolds and their
subclasses.  Subsequently, several geometers researched paracontact metric
manifolds and discovered a variety of essential features of these manifolds [17].
Paracontact metric manifolds have been investigated from a variety of perspectives.

Recently, Cappeletti-Montano and Di Terlizzi have introduced the notion of
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(k, p)-paracontact metric manifolds as those paracontact metric manifolds such

that the underlying paracontact metrix structure (¢, §,n, g) satisfies the condition
R(X,Y)§ = k(n(Y)X —n(X)Y) + p(n(Y)hX — n(X)hY)

for some real numbers k£ and p, where 2h denotes the Lie derivative of ¢ in the
direction of £, giving several examples [5]. Para-Sasakian manifolds are included
in the (k, u)-paracontact metric manifold class. Suppose that k and p are smooth
functions, Kiipeli Erken has studied the notion on generalized (k, ut)-paracontact

metric manifolds with &£(u) =0 [11].

Ozgiir and De researced some certain curvature conditions satisfying
quasi-conformal curvature tensor in Kenmotsu manifolds [11]. Yano and Sawaki
proposed the concept of quasi-conformal curvature tensor, which is an extension
of the conformal curvature tensor [16]. It is crucial in differential geometry as well

as in the theory of relativity.

Atceken studied generalized Sasakian space form satisfying certain conditions
on the concircular curvature tensor [2]. De et al. searched Sasakian manifolds
with quasi-conformal curvature tensor |7]. Hosseinzadeh and Taleshian produced
conformal and quasi-conformal curvature tensors of an N(k)-quasi Einstein
manifold [9]. De and Sarkar studied properties of projective curvature tensor to
generalized Sasakian space form [5]. Many geometers have studied these curvature

tensors in different manifolds. [1,3,4,12,13,18].

In this study, we characterize (k, )-paracontact manifolds in response to the
findings of the preceding writers, which satify the curvature conditions Z-C= 0,
RC = 0, P-C=0andC-C =0 where, C~’, Z, R and P denote the quasi-conformal,

concircular, projective and Riemannian tensors of manifold, respectively.

2 Preliminaries

A contact manifold is a C* — (2n + 1) dimensional manifold M?"*! equipped
with a global 1-form 7 such that n A (dn)™ # 0 everywhere on M?"*!. Given
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such a form 7, it is well known that there exists a unique vector field &, called the
characteristic vector field, such that n(¢) = 1 and dn(X,&) = 0 for every vector
field X on M?"*1 A Riemannian metric g is said to be associated metric if there
exists a tensor field ¢ of type (1, 1) such that

P*X =X -—nX), nE =1, nop=0, P& =0, (2.1)

9(¢X,9Y) = —g(X.Y) +n(X)n(Y), ¢(X,§) =n(X) (2.2)
for all vector fields X, Y on M. Then the structure (¢,&,7,g) on M is called a

paracontact metric structure and the manifold equipped with such a structure is

called a almost paracontact metric manifold [17].

We now define a (1,1) tensor field h by h = $L¢¢, where L denotes the Lie

derivative. Then h is symmetric and satisfies the conditions

hé = —bdh,  hé =0, Tr.h = Tr.gh = 0. (2.3)

If V denotes the Levi-Civita connection of g, then we have the following

relation

Vx¢& = —¢X + ¢hX (2.4)

for any X € x(M) [17]. For a paracontact metric manifold M?"*1(¢, &, n,g), if
¢ is a killing vector field or equivalently, h = 0, then it is called a K-paracontact

manifold.

A para-contact metric structure (¢,&, 7, g) is normal, that is, satisfies [¢, @] +
2dn ® & = 0, which is equivalent to

(Vx9)Y = —g(X,Y)E+n(Y)X

for all XY € x(M) [17]. If an almost paracontact metric manifold is normal,
then it called paracontact metric manifold. Any para-Sasakian manifold is
K-paracontact, and the converse holds when n = 1, that is, for 3-dimensional

spaces. Any para-Sasakian manifold satisfies

R(X,Y)§ = —(n(Y)X —n(X)Y) (2.5)
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for all X,Y € x(M), but this is not a sufficient condition for a paracontact
manifold to be para-Sasakian. It is clear that every para-Sasakian manifold is

K-paracontact. But the converse is not always true [4].

A paracontact manifold M is said to be n-Einstein if its Ricci tensor S of
type (0,2) is of the from S(X,Y) = ag(X,Y)+bn(X)n(Y), where a,b are smooth

functions on M. If b = 0, then the manifold is also called Einstein [15].

A paracontact metric manifold is said to be a (k, u)-paracontact manifold if

the curvature tensor R satisfies

R(X,Y)E =k [n(Y)X = n(X)Y]+ p[n(Y)hX —n(X)hY] (2.6)
for all X,Y € x(M), where k and p are real constants.

This class is very wide containing the para-Sasakian manifolds as well as the

paracontact metric manifolds satisfying R(X,Y )¢ =0 [18].

In particular, if 4 = 0, then the paracontact metric (k, u)-manifold is called
paracontact metric N (k)-manifold . Thus for a paracontact metric N (k)-manifold

the curvature tensor satisfies the following relation
R(X,Y)§ = k(n(Y)X —n(X)Y) (2.7)

for all X,Y € x(M). Though the geometric behavior of paracontact metric
(k, p)-spaces is different according as k < —1, or kK > —1, but there are also

some common results for k < —1 and k > —1.

Lemma 2.1. There does not exist any paracontact (k, p)-manifold of dimension

greater than 3 with k > —1 which is Finstein whereas there exits such manifolds

for k< —1 [0].

In a paracontact metric (k, u)-manifold (M?"*1¢, € n,g), n > 1, the following
relation hold:
h% = (k +1)¢?, for k # —1, (2.8)
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(Vx)Y = —g(X = X, Y)E+n(Y)(X = hX), (2.9)
S(X,Y) = 20 —n)+nulg(X,Y) +[2(n — 1) + plg(hX,Y)

+[2(n = 1) + n(2k — w)In(X)n(Y), (2.10)
S(X,€&) = 2nkn(X), (2.11)

QY = [2(1—n)+nu]Y +[2(n—1)+ plhY
20— 1)+ n(2k — pIn(V)E, (2.12)
QE = 2nk¢, (2.13)
Qb —¢Q =2[2(n — 1) + plho (2.14)

for any vector fields X,Y on M?"*! where Q and S denotes the Ricci operator

and Ricci tensor of (M?"+1, g), respectively [6].

The concept of quasi-conformal curvature tensor was defined by Yano and
Sawaki [16].  Quasi-conformal curvature tensor of a (2n + 1)-dimensional

Riemannian manifold is defined as

C(X,Y)Z = aR(X,Y)Z+bS(Y,2)X — S(X,2)Y
Y,

+9(Y,2)QX — g(X, Z)QY]
- gl F Y DX —g(X,2)Y] (215)

where a and b are arbitrary scalars, and r is the scalar curvature of the manifold, @,
S and r denote the Ricci operator, Ricci tensor and scalar curvature of manifold,

respectively.

Let (M,g) be an (2n + 1)-dimensional Riemannian manifold. Then the

concircular curvature tensor Z is defined by [15].

-~ T

Z(X,Y)Z:R(X,Y)Z—m[g(Y,Z)X—g(X,Z)Y}, (2.16)
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for all X,Y,Z € x(M). On the other hand, projective curvature tensor P is
defined by

P(X,Y)Z =R(X,Y)Z — QL[S(Y, Z)X — S(X, 2)Y], (2.17)

n

for all X,Y,Z € x(M), where r is the scalar curvature of M and @ is the Ricci
operator given by g(QX,Y) = S(X,Y) [19].

3 A (k,u)-Paracontact Metric Manifolds satisfying

Certain Curvature Conditions

In this section, we will give the main results for this paper.

Let M be (2n + 1)-dimensional (k, u)-paracontact metric manifold and we

denote the Riemannian curvature tensor of R, from (2.6), we have for later
R(&Y)Z = k(g(Y, 2)€ = n(2)Y) + u(g(hY, Z)§ = n(Z)hY'). (3.1)
In (3.1), choosing Z = ¢ and taking into account (2.3), we obtain
R(&Y)E = k(n(Y)E = Y) — uhY (3.2)

In the same way, choosing Z = ¢ in (2.15) and using (2.6), we have

~ r

CX,Y)E = (ak+2nkb— (L 120 (n(Y)X — n(X)Y)

2n(2n+1) 2n

+ap(n(Y)hX —n(X)hY) +o(n(Y)QX —n(X)QY)  (3.3)
In (3.3), choosing X = £ and using (2.11), we obtain
(G T2 (YV)E-Y)

2n(2n+1) 2n
—aphY + b(2nkn(Y)¢ — QY). (3.4)

CE,Y)¢ = (ak+2nkb—

In same way from (3.1) and (2.16), we get

T

ZE&Y)Z = (k- 2n(2n + 1)

)9(Y, 2)E=n(2)Y )+ pu(g(hY, Z2)E —n(Z)RY), (3.5)
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from which
26 Y)6 = (k= 5 )0V )E = Y) = b, (3.6)
From (3.1) and (2.17), we have
P(&Y)Z = kg(Y, 2)E + ulg(hY, 2)6 ~n(Z)AY) — SOV, 2). (3.7
Choosing Z = £ in (3.7), we obtain
P(£,Y)E = —phY. (3.8)

Theorem 3.1. Let M?"*1(¢,€,n,9) be a (k, p)-paracontact space. Then Z-C=0
if and only if M is an Einstein manifold.

Proof. Suppose that Z-C =0. This implies that

(Z(X,Y)CWUW)Z = Z(X,Y)C(UW)Z—C(Z(X,Y)UW)Z
—C(U,Z(X,YYW)Z — C(UW)Z(X,Y)Z
= 0, (3.9)

for any X,Y,U,W,Z € x(M). Taking X = Z = £ in (3.9), making use of (3.3),
(3.5) and (3.6) we have

(Z(EY)ONUW)E = Z(EY)NARW)U = nU)W) + ap(n(W)hU
—n(U)hW) + b(n(W)QU — n(U)QW))
—C(B(g(Y,U)¢ = n(U)Y) + p(g(hY, U)E
—n(U)hY ), W)& = C(U, B(g(Y, W)& = n(W)Y)
+u(g(hY, W)§ —n(W)hY)§
—C(U,W)(Bm(Y)E-Y) — uhY) =0, (3.10)

where A = [ak+2nkb— 5"y (5 +2b)] and B = k— 5

CESY m Taking into account
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(3.3), (3.4), (3.5) and inner product both sides of (3.10) by Z € x(M), we obtain

Bg(C(U, W)Y, Z) + pg(C(U, W)Y, Z) + auB(n(W)n(Z)g(Y, hU)
—n(U)n(Z)g(Y,hW)) + ap?(1 + k) (n(W)n(Z)g(Y,U) = n(U)n(Z)g(Y, W)
+bu(n(W)n(Z2)S(Y, hU) —n(U)n(Z2)S(Y,hW)) + AB(g(Y,U)g(W, Z)
—9(Y,W)g(U, 2)) + Au(g(hY, U)g(W, Z) — g(hY,W)g(U, Z))
+apB(g(Y,U)g(hW, Z) — g(Y,W)g(hU, Z)) + ap*(g(hY, U)g(hW, Z)
—g(hY,W)g(hU, Z)) + Bb(g(Y,U)S(W, Z) — g(Y,W)S(U, Z))
+ub(g(hY,U)S(W, Z) — S(U, Z)g(hY, W)) Bb(n(W)n(2)S(Y,U)
—n(U)n(Z)S(Y,W)) + 2nkBb(n(U)n(Z)g(Y, W) — ( n(Z)g(Y.U))
+2nkbu(n(Z)n(U)g(hY, W) —n(W)n(Z)g(hY,U)) = (3.11)

Using (2.1), (2.12) and (2.15) choosing U = Z = e;, £ in (3.11), 1 < i < n, for

orthonormal basis of x (M), we arrive
BS(W,Y) + uS(W,hY) — 2nkBg(W,Y) — 2nkug(W,hY) = 0. (3.12)
Using (2.8) and replacing AY of Y in (3.12), we get
BS(W,hY )+u(1+k)S(W,Y)—2nkBg(W,hY ) —2nku(1+k)g(W,Y) = 0. (3.13)
From (3.12) and (3.13), we have
S(W,Y) = 2nkg(W,Y).
So, M is an Einstein manifold. Conversely, let M?"*1(¢, & 7, g) be an Einstein

manifold, i.e., S(W,Y) = 2nkg(W,Y), then from (3.13)-(3.9), we have Z - C =
0.

O

Theorem 3.2. Let M?" (¢, £, m,9) be a (k, u)-paracontact space. Then PC=0
if and only if M is an n-Finstein manifold.
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Proof. Assume that P - C = 0. Then we have
(P(X,Y)C)UW)Z = P(X,Y)C(UW)Z—-C(P(X,Y)U,W)Z
—C(U,P(X,Y)W)Z — C(UW)P(X,Y)Z
= 0, (3.14)

for any X, Y, U, W, Z € x(M). Taking X = Z = ¢ in (3.14) and using (3.3), (3.7),

(3.8) setting A = [ak + 2nkb — @ (s + 2b)], we obtain

(PEY)O)NUW)E = PEY)ANW)U = n(U)W) + ap(n(W)hU — n(U)hW)

FB(V)QU — n(U)QW)) — Clkg(Y, D)6 + plg(hY, U)g
—(U)RY) ~ 5-S(V,0)E W)E — C(U, K(g(Y, W)e

Falg(hY, W)E —n(WIRY) = 5 S(Y, W)6)e
+C(U,W)phY = 0. (3.15)

Taking into account that (3.3), (3.4), (3.7) and setting U = &, inner product both
sides of in (3.15) by & € x(M), we get

apS(Y, hW) — 2naukg(Y,hW) — 2nbkS(Y, W)
1bS(Y, QW) — 2nkAg(Y, W) + AS(Y, W) = 0. (3.16)

Using (2.1) and (2.15) in (3.16), we get

(A+b[2(1 —n) + nu] — 2nkb)S(Y, W)

+(ap 4 b2(n — 1) + u])S(Y, hW)

+(—2nkA)g(Y, W) + (—2nkapu)g(Y, hW)

+(2nkb[2(n — 1) + n(2k — p)])n(Y)n(W) = 0. (3.17)
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Replacing hZ of Z in (3.17) and making use of (2.8), we get

(A +b2(1 — n) + ng] — 20kb)S(Y, kW)

+(L+F)(ap +0[2(n — 1) + p) S(Y, W)

k(1 + k)(ap + b2 — 1) + WY In(W)
—2nkAg(Y,hW) + (1 + k)(—2nkap)g(Y, W)

—(1+ k)(—2nkap)n(Y)n(W) = 0. (3.18)

From (3.17), (3.18) and using (2.10), we obtain

DS(Y,W) = Eg(Y,W) + Fn(Y)n(W),

where,
¢ = (A+0b2(1 —n)+ nu| — 2nkb),
d = (ap+0b2(n—1)+ p)),
e = —2nkA,
f = —2nkap,
= (2nkb[2(n — 1) + n(2k — p)])
and
E = (fd(1+k)—ec)2(n—1)4 pu]l+ (fc—ed)[2(1 —n)+ npul,
D = (—-d*Q+4k)2n—1)+u] + (fc—de),

|
|

(fe—de)2(n— 1) + n(2k — )]
—(ct +2nkd*(1 + k) + fd(1 + k))[2(n — 1) + ]
Thus, M is an 7-Einstein manifold. Conversely, let M?"*1(¢, & n,9) be an

n-Einstein manifold ie. DS(Y,W) = Eg(Y,W) + Fn(Y)n(W), then from
(3.18)-(3.14) we obtain P - C = 0. O

Theorem 3.3. Let M?"*1(¢,¢,n, g) be a (k, u)-paracontact space. Then M is a

quasi-conformal semi-symmetric if and only if M is an Einstein manifold.
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Proof. Assume that M is a quasi-conformal semi-symmetric. This implies that

(R(X,Y)O)U,W)Z = R(X,Y)C(UW)Z—C(R(X,Y)UW)Z
—C(U,R(X,Y)W)Z — C(UW)R(X,Y)Z
= 0, (3.19)
for any X,Y,U,W,Z € x(M). Setting X = Z = ¢ in (3.19) and making use of
(3.1), (3.2), (3.3), for A = [ak + 2nkb — (QHTTU(% + 2b)], we obtain
(R Y)O)U,W)E = R(EY)AQW)U = n(0)W) + ap(n(W)h
—n(U)hAW) + b(n(W)QU — n(U)QW))
~Ck(g(Y, U)E = n(U)Y) + p(g(hY, V)
—n(U)RY),W)é = C(U, k(g(Y, W)§
—n(W)Y) + u(g(hY, W)§ — n(W)hY))E
—C(U, W) (k(n(Y)¢ —=Y) — phY = 0. (3.20)

§

Inner product both sides of (3.20) by Z € x(M) and putting (3.1), (3.3) and (3.4),

we get
kg(C(U,W)Y, Z) + ug(C(U, W)LY, Z) + Au(n(W)n(Z)g(Y, hU)
—n(U)n(Z)g(Y,hW)) + ap? (1 + k) (n(W)n(2)g(Y,U) = n(U)n(Z)g(Y, W))
+op(n(W)n(2)S(Y, hU) = n(U)n(2)S(Y, hW)) + Ak(g(Y, U)g(W, Z)
—9(Y;W)g(U, 2)) + apk(n(W)n(Z)g(Y, hU) = n(U)n(Z)g(Y, hW))
+ok(n(W)n(2)S(Y,U) = n(U)n(Z2)S(Y, W)) + bu(g(hY,U)S(W, Z)
—g(hY,W)S(U, Z)) + ap*(g(hY,U)g(hW, Z) — g(hY, W)g(hU, Z))
+apk(g(Y,U)g(hW, Z) — g(Y, W)g(hU, Z)) + bk(g(Y,U)S(W, Z)
—9(Y,W)S(U, 2)) + 2nkbu(n(U)n(Z)g(hY, W) —n(W)n(Z)g (hY, U))
+2nk*b(n(U)n(2)g(Y. W) — n(W)n(Z)g(Y.U)) = 0. (3.21)

Making use of (2.8), (2.15) and choosing U = Z = ¢;, { 1 < i < n, for orthonormal
basis of x(M) in (3.21), we have

ES(W,Y) 4+ pS(W,hY) — 2nk?g(W,Y) — 2nkug(W,hY) = 0. (3.22)
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Replacing hY of Y in (3.22) and taking into account (2.8), we get

ES(W,hY ) + u(1 + k)S(W,Y) — 2nk?(1 + k)g(W, hY') — 2nku(1 + k)g(W,Y) = 0.
(3.23)
From (3.22) and (3.23), we arrive

S(W,Y) = 2nkg(W,Y).

This tell us, M is an Einstein manifold. Conversely, let M?"1(¢4,£,n,9) be an
Einstein manifold, i.e., S(Y, W) = 2nkg(Y, W), then from (3.23)-(3.19), we get M

is a quasi-conformal semi-symmetric. O

Theorem 3.4. Let M2+ (¢, £, 1, g) be a (k, p)-paracontact space. Then C-C = 0
if and only if M is an n-Finstein manifold.

Proof. Suppose that C - C = 0. This means that

C(X,Y)ONUW,Z) = C(X,Y)C(UW)Z—-C(C(X,Y)U,W)Z
—C(U,C(X,Y)W)Z — C(UW)C(X,Y)Z
= 0, (3.24)

for any X, Y, U, W,Z € x(M). Setting X = Z = ¢ in (3.24) and making use of
(3.3), (3.4), for A = [ak + 2nkb — o H)(% + 2b)], we obtain

(CEY)ONUW)E = CEY)NAQW)U —n(U)W) + ap(n(W)hU

—n(U)RW) + b(n(W)QU — n(U)QW))

—C(A(g(Y, U)¢ = n(U)Y) + ap(g(hY, U)E
—n(U)LY) + b(S(Y,U)§ — n(U)QY, W)€

~C(U, A(g(Y, W)€ — n(W)Y) + au(g(hY, W)é

—n(W)hY) + b(S(Y, W)& — n(W)QY))§

—C(U,W)(A(n(Y )¢ — AY — aphY)

+b(2nkn(Y)¢ — QY) = 0. (3.25)
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By using (2.12), (2.15) inner product both sides of (3.25) by Z € x(M) and
choosing W =Y = ¢;, £, 1 < i < n, for orthonormal basis of x(M) in (3.25), we

have

(Aa + ba2(1 — n) + nu) — b(A — ak — 2nkb) — b*[2(1 — n) + nu))S(U, Z)
+(Aap + bal2(n — 1) + u))S(U,hZ) + (2nA(A — ak — 2nkb)

+2napb(1 + k)[2(n — 1) + p] + br(A — ak — 2nkbd)

+bak[2(n — 1) + n(2k — p)] + b*r?[2(1 = n) + nu))g(U, Z)

+(ap(ak + 2nkb) + bau[2(n — 1) + n(2k — p)] — 2nAap

—abrp)g(U, hZ) 4 (—bak[2(n — 1) + n(2k — u)] + 2nkb*[2(1 — n)

+np]) — b*r[2(1 — n) + np] — 2nb? (14 k)[2(n — 1) + p]?

—(ap)?(1 + k)(2n + 1) — 2nabu(l + k)[2(n — 1) 4 ] — Abr

—2nabu(1 + k)[2(n — 1) + p] — (2nkb)?

+2nkAb(2n + 1) + 2nkrb*)n(U)n(Z) = 0. (3.26)

Replacing hZ of Z in (3.26) and taking into account (2.8), we get

(Aa + ba[2(1 — n) + np] — b(A — ak — 2nkb)

—b?[2(1 — n) + nu))S(U, hZ)

+(1 + k)(Aap + ba[2(n — 1) + u])S(U, Z)

—2nk(1 + k)(Aap + ba[2(n — 1) + u])n(U)n(Z)
+(2nA(A — ak — 2nkb) + 2naub(1 + k)[2(n — 1) + y]
+br(A — ak — 2nkb) + bak[2(n — 1) + n(2k — p)]
+02r2[2(1 — n) + nu))g(U, hZ)

+(1 4 k)(ap(ak + 2nkb) + bap]2(n — 1)

+n(2k — p)] — 2nAap — abrp)g(U, Z)

—(1+ k)(ap(ak + 2nkb) + bap[2(n — 1)

+n(2k — p)] — 2nAap — abrp)n(U)n(Z) = 0. (3.27)

From (3.26), (3.27) and by using (2.10), for the sake of brevity, we set
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¢ = (Aa+bal2(1 —n) +nu] — b(A — ak — 2nkb) — b?[2(1 — n) + nul),

d = (Aap+bal2(n—1)+ ),

e = (2nA(A — ak — 2nkb) + 2napb(1 + k)[2(n — 1) + p] + br(A — ak — 2nkb)
+bak[2(n — 1) + n(2k — p)] + b*r?[2(1 — n) + npy)),

f = (ap(ak + 2nkdb) + bap[2(n — 1) + n(2k — u)] — 2nAap — abrpy),

t = (=bak[2(n —1) +n(2k — p)] + 2nkb?[2(1 — n) + nu)) — b*r[2(1 — n) + ny
—2nb*(L+k)[2(n — 1) + p)?* — (ap)*(1 + k)(2n + 1)
—2nabp(l + k)[2(n — 1) + p] — Abr — 2nabu(l + k)[2(n — 1) + yj
—(2nkb)? + 2nkAb(2n + 1) + 2nkrb?)

and
E = [fd(1+4+k)—ec]2(n—1)+ p] + (fc—de)[2(1 —n) 4+ nul,
D = (Z-dA+k)[2n—1)+ ]+ (fc— ed),
F = (fe—de)[2(n—1)+n(2k — u)]
—(ct 4 2nkd*(1 + k) + fd(1+ k))[2(n — 1) + 4],
we obtain

DS(U,Z)=Eqg(U,Z) + Fn(U)n(Z).

So, M is an n-Einstein manifold. M is an n-Einstein manifold. Conversely, let
M+, &,n, g) be an Einstein manifold, i.e., DS(U, Z) = Eq(U, Z)+Fn(U)n(Z),
then from (3.27)-(3.24), we arrive C - C' = 0. O

Conclusion and Recommendations The tensors studied above can also

be applied to other Manifolds.
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