E-ISSN: 2581-8147

Volume 14, Number 2, 2024, Pages 175-190 https://doi.org/10.34198/ejms.14224.175190

A (k, μ) -Paracontact Metric Manifolds satisfying Curvature Conditions

Pakize Uygun^{1,*} and Mehmet Atçeken²

Department of Mathematics, Faculty of Arts and Sciences, Aksaray University, 68100, Aksaray,

Turkey

e-mail: pakizeuygun@hotmail.com¹

e-mail: mehmet.atceken382@gmail.com 2

(Academic Editor: Tugba MERT)

Abstract

In the present paper, we have studied the curvature tensors of (k,μ) -paracontact manifold satisfying the conditions $\widetilde{Z}\cdot\widetilde{C}=0,\ R\cdot\widetilde{C}=0,\ P\cdot\widetilde{C}=0$ and $\widetilde{C}\cdot\widetilde{C}=0$. According these cases, (k,μ) -paracontact manifolds have been characterized.

1 Introduction

Following their introduction by Kaneyuki and Williams [10], Zamkovoy conducted a comprehensive investigation of paracontact metric manifolds and their subclasses. Subsequently, several geometers researched paracontact metric manifolds and discovered a variety of essential features of these manifolds [17]. Paracontact metric manifolds have been investigated from a variety of perspectives. Recently, Cappeletti-Montano and Di Terlizzi have introduced the notion of

Received: November 4, 2023; Revised & Accepted: December 8, 2023; Published: December 15, 2023 2020 Mathematics Subject Classification: 53C15, 53C25.

Keywords and phrases: (k, μ) -paracontact manifold, η -Einstein manifold, quasi-conformal curvature tensor, Riemannian curvature tensor.

 (k,μ) -paracontact metric manifolds as those paracontact metric manifolds such that the underlying paracontact metrix structure (ϕ,ξ,η,g) satisfies the condition

$$R(X,Y)\xi = k(\eta(Y)X - \eta(X)Y) + \mu(\eta(Y)hX - \eta(X)hY)$$

for some real numbers k and μ , where 2h denotes the Lie derivative of ϕ in the direction of ξ , giving several examples [5]. Para-Sasakian manifolds are included in the (k,μ) -paracontact metric manifold class. Suppose that k and μ are smooth functions, Küpeli Erken has studied the notion on generalized (k,μ) -paracontact metric manifolds with $\xi(\mu) = 0$ [11].

Özgür and De researced some certain curvature conditions satisfying quasi-conformal curvature tensor in Kenmotsu manifolds [14]. Yano and Sawaki proposed the concept of quasi-conformal curvature tensor, which is an extension of the conformal curvature tensor [16]. It is crucial in differential geometry as well as in the theory of relativity.

Atçeken studied generalized Sasakian space form satisfying certain conditions on the concircular curvature tensor [2]. De et al. searched Sasakian manifolds with quasi-conformal curvature tensor [7]. Hosseinzadeh and Taleshian produced conformal and quasi-conformal curvature tensors of an N(k)-quasi Einstein manifold [9]. De and Sarkar studied properties of projective curvature tensor to generalized Sasakian space form [8]. Many geometers have studied these curvature tensors in different manifolds. [1,3,4,12,13,18].

In this study, we characterize (k,μ) -paracontact manifolds in response to the findings of the preceding writers, which satisfy the curvature conditions $\widetilde{Z} \cdot \widetilde{C} = 0$, $R \cdot \widetilde{C} = 0$, $P \cdot \widetilde{C} = 0$ and $\widetilde{C} \cdot \widetilde{C} = 0$ where, \widetilde{C} , \widetilde{Z} , R and P denote the quasi-conformal, concircular, projective and Riemannian tensors of manifold, respectively.

2 Preliminaries

A contact manifold is a $C^{\infty} - (2n+1)$ dimensional manifold M^{2n+1} equipped with a global 1-form η such that $\eta \wedge (d\eta)^n \neq 0$ everywhere on M^{2n+1} . Given

such a form η , it is well known that there exists a unique vector field ξ , called the characteristic vector field, such that $\eta(\xi) = 1$ and $d\eta(X,\xi) = 0$ for every vector field X on M^{2n+1} . A Riemannian metric g is said to be associated metric if there exists a tensor field ϕ of type (1,1) such that

$$\phi^2 X = X - \eta(X)\xi, \quad \eta(\xi) = 1, \quad \eta \circ \phi = 0, \quad \phi \xi = 0,$$
 (2.1)

$$g(\phi X, \phi Y) = -g(X, Y) + \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X)$$
(2.2)

for all vector fields X, Y on M. Then the structure (ϕ, ξ, η, g) on M is called a paracontact metric structure and the manifold equipped with such a structure is called a almost paracontact metric manifold [17].

We now define a (1,1) tensor field h by $h = \frac{1}{2}L_{\xi}\phi$, where L denotes the Lie derivative. Then h is symmetric and satisfies the conditions

$$h\phi = -\phi h, \qquad h\xi = 0, \qquad Tr.h = Tr.\phi h = 0.$$
 (2.3)

If ∇ denotes the Levi-Civita connection of g, then we have the following relation

$$\widetilde{\nabla}_X \xi = -\phi X + \phi h X \tag{2.4}$$

for any $X \in \chi(M)$ [17]. For a paracontact metric manifold $M^{2n+1}(\phi, \xi, \eta, g)$, if ξ is a killing vector field or equivalently, h = 0, then it is called a K-paracontact manifold.

A para-contact metric structure (ϕ, ξ, η, g) is normal, that is, satisfies $[\phi, \phi] + 2d\eta \otimes \xi = 0$, which is equivalent to

$$(\widetilde{\nabla}_X \phi)Y = -g(X, Y)\xi + \eta(Y)X$$

for all $X, Y \in \chi(M)$ [17]. If an almost paracontact metric manifold is normal, then it called paracontact metric manifold. Any para-Sasakian manifold is K-paracontact, and the converse holds when n = 1, that is, for 3-dimensional spaces. Any para-Sasakian manifold satisfies

$$R(X,Y)\xi = -(\eta(Y)X - \eta(X)Y) \tag{2.5}$$

for all $X, Y \in \chi(M)$, but this is not a sufficient condition for a paracontact manifold to be para-Sasakian. It is clear that every para-Sasakian manifold is K-paracontact. But the converse is not always true [4].

A paracontact manifold M is said to be η -Einstein if its Ricci tensor S of type (0,2) is of the from $S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y)$, where a,b are smooth functions on M. If b=0, then the manifold is also called Einstein [15].

A paracontact metric manifold is said to be a (k, μ) -paracontact manifold if the curvature tensor R satisfies

$$\widetilde{R}(X,Y)\xi = k\left[\eta(Y)X - \eta(X)Y\right] + \mu\left[\eta(Y)hX - \eta(X)hY\right] \tag{2.6}$$

for all $X, Y \in \chi(M)$, where k and μ are real constants.

This class is very wide containing the para-Sasakian manifolds as well as the paracontact metric manifolds satisfying $R(X,Y)\xi = 0$ [18].

In particular, if $\mu=0$, then the paracontact metric (k,μ) -manifold is called paracontact metric N(k)-manifold. Thus for a paracontact metric N(k)-manifold the curvature tensor satisfies the following relation

$$R(X,Y)\xi = k(\eta(Y)X - \eta(X)Y) \tag{2.7}$$

for all $X, Y \in \chi(M)$. Though the geometric behavior of paracontact metric (k, μ) -spaces is different according as k < -1, or k > -1, but there are also some common results for k < -1 and k > -1.

Lemma 2.1. There does not exist any paracontact (k, μ) -manifold of dimension greater than 3 with k > -1 which is Einstein whereas there exits such manifolds for k < -1 [6].

In a paracontact metric (k, μ) -manifold $(M^{2n+1}\phi, \xi, \eta, g), n > 1$, the following relation hold:

$$h^2 = (k+1)\phi^2$$
, for $k \neq -1$, (2.8)

$$(\widetilde{\nabla}_X \phi) Y = -g(X - hX, Y)\xi + \eta(Y)(X - hX), \tag{2.9}$$

$$S(X,Y) = [2(1-n) + n\mu]g(X,Y) + [2(n-1) + \mu]g(hX,Y) + [2(n-1) + n(2k-\mu)]\eta(X)\eta(Y),$$
(2.10)

$$S(X,\xi) = 2nk\eta(X),\tag{2.11}$$

$$QY = [2(1-n) + n\mu]Y + [2(n-1) + \mu]hY + [2(n-1) + n(2k-\mu)]\eta(Y)\xi,$$
(2.12)

$$Q\xi = 2nk\xi, \tag{2.13}$$

$$Q\phi - \phi Q = 2[2(n-1) + \mu]h\phi \tag{2.14}$$

for any vector fields X, Y on M^{2n+1} , where Q and S denotes the Ricci operator and Ricci tensor of (M^{2n+1}, g) , respectively [6].

The concept of quasi-conformal curvature tensor was defined by Yano and Sawaki [16]. Quasi-conformal curvature tensor of a (2n + 1)-dimensional Riemannian manifold is defined as

$$\widetilde{C}(X,Y)Z = aR(X,Y)Z + b[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY] - \frac{\tau}{2n+1} [\frac{a}{2n} + 2b][g(Y,Z)X - g(X,Z)Y]$$
(2.15)

where a and b are arbitrary scalars, and r is the scalar curvature of the manifold, Q, S and r denote the Ricci operator, Ricci tensor and scalar curvature of manifold, respectively.

Let (M,g) be an (2n+1)-dimensional Riemannian manifold. Then the concircular curvature tensor \widetilde{Z} is defined by [15].

$$\widetilde{Z}(X,Y)Z = R(X,Y)Z - \frac{\tau}{2n(2n+1)}[g(Y,Z)X - g(X,Z)Y],$$
 (2.16)

for all $X, Y, Z \in \chi(M)$. On the other hand, projective curvature tensor P is defined by

$$P(X,Y)Z = R(X,Y)Z - \frac{1}{2n}[S(Y,Z)X - S(X,Z)Y], \tag{2.17}$$

for all $X, Y, Z \in \chi(M)$, where r is the scalar curvature of M and Q is the Ricci operator given by g(QX, Y) = S(X, Y) [15].

3 A (k, μ) -Paracontact Metric Manifolds satisfying Certain Curvature Conditions

In this section, we will give the main results for this paper.

Let M be (2n + 1)-dimensional (k, μ) -paracontact metric manifold and we denote the Riemannian curvature tensor of R, from (2.6), we have for later

$$R(\xi, Y)Z = k(g(Y, Z)\xi - \eta(Z)Y) + \mu(g(hY, Z)\xi - \eta(Z)hY). \tag{3.1}$$

In (3.1), choosing $Z = \xi$ and taking into account (2.3), we obtain

$$R(\xi, Y)\xi = k(\eta(Y)\xi - Y) - \mu hY \tag{3.2}$$

In the same way, choosing $Z = \xi$ in (2.15) and using (2.6), we have

$$\widetilde{C}(X,Y)\xi = (ak + 2nkb - \frac{r}{2n(2n+1)}(\frac{a}{2n} + 2b)(\eta(Y)X - \eta(X)Y) + a\mu(\eta(Y)hX - \eta(X)hY) + b(\eta(Y)QX - \eta(X)QY)$$
(3.3)

In (3.3), choosing $X = \xi$ and using (2.11), we obtain

$$\widetilde{C}(\xi, Y)\xi = (ak + 2nkb - \frac{r}{2n(2n+1)}(\frac{a}{2n} + 2b)(\eta(Y)\xi - Y) - a\mu hY + b(2nk\eta(Y)\xi - QY).$$
(3.4)

In same way from (3.1) and (2.16), we get

$$\widetilde{Z}(\xi,Y)Z = (k - \frac{r}{2n(2n+1)})(g(Y,Z)\xi - \eta(Z)Y) + \mu(g(hY,Z)\xi - \eta(Z)hY), (3.5)$$

from which

$$\widetilde{Z}(\xi, Y)\xi = (k - \frac{r}{2n(2n+1)})(\eta(Y)\xi - Y) - \mu hY.$$
 (3.6)

From (3.1) and (2.17), we have

$$P(\xi, Y)Z = kg(Y, Z)\xi + \mu(g(hY, Z)\xi - \eta(Z)hY) - \frac{1}{2n}S(Y, Z)\xi.$$
 (3.7)

Choosing $Z = \xi$ in (3.7), we obtain

$$P(\xi, Y)\xi = -\mu hY. \tag{3.8}$$

Theorem 3.1. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a (k, μ) -paracontact space. Then $\widetilde{Z} \cdot \widetilde{C} = 0$ if and only if M is an Einstein manifold.

Proof. Suppose that $\widetilde{Z} \cdot \widetilde{C} = 0$. This implies that

$$\begin{split} (\widetilde{Z}(X,Y)\widetilde{C})(U,W)Z &= \widetilde{Z}(X,Y)\widetilde{C}(U,W)Z - \widetilde{C}(\widetilde{Z}(X,Y)U,W)Z \\ &- \widetilde{C}(U,\widetilde{Z}(X,Y)W)Z - \widetilde{C}(U,W)\widetilde{Z}(X,Y)Z \\ &= 0, \end{split} \tag{3.9}$$

for any $X, Y, U, W, Z \in \chi(M)$. Taking $X = Z = \xi$ in (3.9), making use of (3.3), (3.5) and (3.6) we have

$$(\widetilde{Z}(\xi,Y)\widetilde{C})(U,W)\xi = \widetilde{Z}(\xi,Y)(A(\eta(W)U - \eta(U)W) + a\mu(\eta(W)hU - \eta(U)hW) + b(\eta(W)QU - \eta(U)QW))$$

$$-\widetilde{C}(B(g(Y,U)\xi - \eta(U)Y) + \mu(g(hY,U)\xi - \eta(U)hY), W)\xi - \widetilde{C}(U,B(g(Y,W)\xi - \eta(W)Y) + \mu(g(hY,W)\xi - \eta(W)hY)\xi$$

$$-\widetilde{C}(U,W)(B(\eta(Y)\xi - Y) - \mu hY) = 0, \qquad (3.10)$$

where $A = [ak + 2nkb - \frac{r}{(2n+1)}(\frac{a}{2n} + 2b)]$ and $B = k - \frac{r}{2n(2n+1)}$. Taking into account

(3.3), (3.4), (3.5) and inner product both sides of (3.10) by $Z \in \chi(M)$, we obtain

$$Bg(\tilde{C}(U,W)Y,Z) + \mu g(\tilde{C}(U,W)hY,Z) + a\mu B(\eta(W)\eta(Z)g(Y,hU) - \eta(U)\eta(Z)g(Y,hW)) + a\mu^{2}(1+k)(\eta(W)\eta(Z)g(Y,U) - \eta(U)\eta(Z)g(Y,W)) + b\mu(\eta(W)\eta(Z)S(Y,hU) - \eta(U)\eta(Z)S(Y,hW)) + AB(g(Y,U)g(W,Z) - g(Y,W)g(U,Z)) + A\mu(g(hY,U)g(W,Z) - g(hY,W)g(U,Z)) + a\mu B(g(Y,U)g(hW,Z) - g(Y,W)g(hU,Z)) + a\mu^{2}(g(hY,U)g(hW,Z) - g(hY,W)g(hU,Z)) + Bb(g(Y,U)S(W,Z) - g(Y,W)S(U,Z)) + \mu b(g(hY,U)S(W,Z) - S(U,Z)g(hY,W)) + Bb(\eta(W)\eta(Z)S(Y,U) - \eta(U)\eta(Z)S(Y,W)) + 2nkBb(\eta(U)\eta(Z)g(Y,W) - \eta(W)\eta(Z)g(Y,U)) + 2nkb\mu(\eta(Z)\eta(U)g(hY,W) - \eta(W)\eta(Z)g(hY,U)) = 0.$$
 (3.11)

Using (2.1), (2.12) and (2.15) choosing $U = Z = e_i$, ξ in (3.11), $1 \le i \le n$, for orthonormal basis of $\chi(M)$, we arrive

$$BS(W,Y) + \mu S(W,hY) - 2nkBg(W,Y) - 2nk\mu g(W,hY) = 0.$$
 (3.12)

Using (2.8) and replacing hY of Y in (3.12), we get

$$BS(W, hY) + \mu(1+k)S(W, Y) - 2nkBg(W, hY) - 2nk\mu(1+k)g(W, Y) = 0.$$
 (3.13)

From (3.12) and (3.13), we have

$$S(W,Y) = 2nkg(W,Y).$$

So, M is an Einstein manifold. Conversely, let $M^{2n+1}(\phi, \xi, \eta, g)$ be an Einstein manifold, i.e., S(W,Y) = 2nkg(W,Y), then from (3.13)-(3.9), we have $\widetilde{Z} \cdot \widetilde{C} = 0$.

Theorem 3.2. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a (k, μ) -paracontact space. Then $P \cdot \widetilde{C} = 0$ if and only if M is an η -Einstein manifold.

Proof. Assume that $P \cdot \widetilde{C} = 0$. Then we have

$$\begin{split} (P(X,Y)\widetilde{C})(U,W)Z &= P(X,Y)\widetilde{C}(U,W)Z - \widetilde{C}(P(X,Y)U,W)Z \\ &- \widetilde{C}(U,P(X,Y)W)Z - \widetilde{C}(U,W)P(X,Y)Z \\ &= 0, \end{split} \tag{3.14}$$

for any $X, Y, U, W, Z \in \chi(M)$. Taking $X = Z = \xi$ in (3.14) and using (3.3), (3.7), (3.8) setting $A = [ak + 2nkb - \frac{r}{(2n+1)}(\frac{a}{2n} + 2b)]$, we obtain

$$(P(\xi,Y)\widetilde{C})(U,W)\xi = P(\xi,Y)(A(\eta(W)U - \eta(U)W) + a\mu(\eta(W)hU - \eta(U)hW) + b((\eta(W)QU - \eta(U)QW)) - \widetilde{C}(kg(Y,U)\xi + \mu(g(hY,U)\xi - \eta(U)hY) - \frac{1}{2n}S(Y,U)\xi,W)\xi - \widetilde{C}(U,k(g(Y,W)\xi + \mu(g(hY,W)\xi - \eta(W)hY) - \frac{1}{2n}S(Y,W)\xi)\xi + \widetilde{C}(U,W)\mu hY = 0.$$

$$(3.15)$$

Taking into account that (3.3), (3.4), (3.7) and setting $U = \xi$, inner product both sides of in (3.15) by $\xi \in \chi(M)$, we get

$$a\mu S(Y, hW) - 2na\mu kg(Y, hW) - 2nbkS(Y, W)$$

+bS(Y, QW) - 2nkAg(Y, W) + AS(Y, W) = 0. (3.16)

Using (2.1) and (2.15) in (3.16), we get

$$\begin{split} &(A+b[2(1-n)+n\mu]-2nkb)S(Y,W)\\ &+(a\mu+b[2(n-1)+\mu])S(Y,hW)\\ &+(-2nkA)g(Y,W)+(-2nka\mu)g(Y,hW)\\ &+(2nkb[2(n-1)+n(2k-\mu)])\eta(Y)\eta(W)=0. \end{split} \tag{3.17}$$

Replacing hZ of Z in (3.17) and making use of (2.8), we get

$$(A + b[2(1 - n) + n\mu] - 2nkb)S(Y, hW)$$

$$+(1 + k)(a\mu + b[2(n - 1) + \mu])S(Y, W)$$

$$-2nk(1 + k)(a\mu + b[2(n - 1) + \mu])\eta(Y)\eta(W)$$

$$-2nkAg(Y, hW) + (1 + k)(-2nka\mu)g(Y, W)$$

$$-(1 + k)(-2nka\mu)\eta(Y)\eta(W) = 0.$$
(3.18)

From (3.17), (3.18) and using (2.10), we obtain

$$DS(Y, W) = Eg(Y, W) + F\eta(Y)\eta(W),$$

where,

$$c = (A + b[2(1 - n) + n\mu] - 2nkb),$$

$$d = (a\mu + b[2(n - 1) + \mu]),$$

$$e = -2nkA,$$

$$f = -2nka\mu,$$

$$t = (2nkb[2(n - 1) + n(2k - \mu)])$$

and

$$E = (fd(1+k) - ec)[2(n-1) + \mu] + (fc - ed)[2(1-n) + n\mu],$$

$$D = (c^2 - d^2(1+k))[2(n-1) + \mu] + (fc - de),$$

$$F = (fc - de)[2(n-1) + n(2k - \mu)]$$

$$-(ct + 2nkd^2(1+k) + fd(1+k))[2(n-1) + \mu]$$

Thus, M is an η -Einstein manifold. Conversely, let $M^{2n+1}(\phi, \xi, \eta, g)$ be an η -Einstein manifold i.e. $DS(Y, W) = Eg(Y, W) + F\eta(Y)\eta(W)$, then from (3.18)-(3.14) we obtain $P \cdot \tilde{C} = 0$.

Theorem 3.3. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a (k, μ) -paracontact space. Then M is a quasi-conformal semi-symmetric if and only if M is an Einstein manifold.

Proof. Assume that M is a quasi-conformal semi-symmetric. This implies that

$$(R(X,Y)\widetilde{C})(U,W)Z = R(X,Y)\widetilde{C}(U,W)Z - \widetilde{C}(R(X,Y)U,W)Z$$
$$-\widetilde{C}(U,R(X,Y)W)Z - \widetilde{C}(U,W)R(X,Y)Z$$
$$= 0, \tag{3.19}$$

for any $X, Y, U, W, Z \in \chi(M)$. Setting $X = Z = \xi$ in (3.19) and making use of (3.1), (3.2), (3.3), for $A = [ak + 2nkb - \frac{r}{(2n+1)}(\frac{a}{2n} + 2b)]$, we obtain

$$(R(\xi,Y)\widetilde{C})(U,W)\xi = R(\xi,Y)(A(\eta(W)U - \eta(U)W) + a\mu(\eta(W)hU - \eta(U)hW) + b(\eta(W)QU - \eta(U)QW))$$
$$-\widetilde{C}(k(g(Y,U)\xi - \eta(U)Y) + \mu(g(hY,U)\xi - \eta(U)hY), W)\xi - \widetilde{C}(U,k(g(Y,W)\xi - \eta(W)Y) + \mu(g(hY,W)\xi - \eta(W)hY))\xi$$
$$-\widetilde{C}(U,W)(k(\eta(Y)\xi - Y) - \mu hY = 0. \tag{3.20}$$

Inner product both sides of (3.20) by $Z \in \chi(M)$ and putting (3.1), (3.3) and (3.4), we get

$$kg(\widetilde{C}(U,W)Y,Z) + \mu g(\widetilde{C}(U,W)hY,Z) + A\mu(\eta(W)\eta(Z)g(Y,hU) - \eta(U)\eta(Z)g(Y,hW)) + a\mu^{2}(1+k)(\eta(W)\eta(Z)g(Y,U) - \eta(U)\eta(Z)g(Y,W)) + b\mu(\eta(W)\eta(Z)S(Y,hU) - \eta(U)\eta(Z)S(Y,hW)) + Ak(g(Y,U)g(W,Z) - g(Y,W)g(U,Z)) + a\mu k(\eta(W)\eta(Z)g(Y,hU) - \eta(U)\eta(Z)g(Y,hW)) + bk(\eta(W)\eta(Z)S(Y,U) - \eta(U)\eta(Z)S(Y,W)) + b\mu(g(hY,U)S(W,Z) - g(hY,W)S(U,Z)) + a\mu^{2}(g(hY,U)g(hW,Z) - g(hY,W)g(hU,Z)) + a\mu k(g(Y,U)g(hW,Z) - g(Y,W)g(hU,Z)) + bk(g(Y,U)S(W,Z) - g(Y,W)S(U,Z)) + 2nkb\mu(\eta(U)\eta(Z)g(hY,W) - \eta(W)\eta(Z)g(hY,U)) + 2nk^{2}b(\eta(U)\eta(Z)g(Y,W) - \eta(W)\eta(Z)g(Y,U)) = 0.$$
 (3.21)

Making use of (2.8), (2.15) and choosing $U = Z = e_i$, $\xi \ 1 \le i \le n$, for orthonormal basis of $\chi(M)$ in (3.21), we have

$$kS(W,Y) + \mu S(W,hY) - 2nk^2 g(W,Y) - 2nk\mu g(W,hY) = 0.$$
 (3.22)

Replacing hY of Y in (3.22) and taking into account (2.8), we get

$$kS(W, hY) + \mu(1+k)S(W, Y) - 2nk^{2}(1+k)g(W, hY) - 2nk\mu(1+k)g(W, Y) = 0.$$
(3.23)

From (3.22) and (3.23), we arrive

$$S(W,Y) = 2nkg(W,Y).$$

This tell us, M is an Einstein manifold. Conversely, let $M^{2n+1}(\phi, \xi, \eta, g)$ be an Einstein manifold, i.e., S(Y, W) = 2nkg(Y, W), then from (3.23)-(3.19), we get M is a quasi-conformal semi-symmetric.

Theorem 3.4. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a (k, μ) -paracontact space. Then $\widetilde{C} \cdot \widetilde{C} = 0$ if and only if M is an η -Einstein manifold.

Proof. Suppose that $\widetilde{C} \cdot \widetilde{C} = 0$. This means that

$$\begin{split} (\widetilde{C}(X,Y)\widetilde{C})(U,W,Z) &= \widetilde{C}(X,Y)\widetilde{C}(U,W)Z - \widetilde{C}(\widetilde{C}(X,Y)U,W)Z \\ &- \widetilde{C}(U,\widetilde{C}(X,Y)W)Z - \widetilde{C}(U,W)\widetilde{C}(X,Y)Z \\ &= 0, \end{split} \tag{3.24}$$

for any $X, Y, U, W, Z \in \chi(M)$. Setting $X = Z = \xi$ in (3.24) and making use of (3.3), (3.4), for $A = [ak + 2nkb - \frac{r}{(2n+1)}(\frac{a}{2n} + 2b)]$, we obtain

$$(\widetilde{C}(\xi,Y)\widetilde{C})(U,W)\xi = \widetilde{C}(\xi,Y)(A(\eta(W)U - \eta(U)W) + a\mu(\eta(W)hU - \eta(U)hW) + b(\eta(W)QU - \eta(U)QW))$$

$$-\widetilde{C}(A(g(Y,U)\xi - \eta(U)Y) + a\mu(g(hY,U)\xi - \eta(U)hY) + b(S(Y,U)\xi - \eta(U)QY,W))\xi$$

$$-\widetilde{C}(U,A(g(Y,W)\xi - \eta(W)Y) + a\mu(g(hY,W)\xi - \eta(W)hY) + b(S(Y,W)\xi - \eta(W)QY))\xi$$

$$-\widetilde{C}(U,W)(A(\eta(Y)\xi - AY - a\mu hY) + b(2nk\eta(Y)\xi - QY) = 0. \tag{3.25}$$

By using (2.12), (2.15) inner product both sides of (3.25) by $Z \in \chi(M)$ and choosing $W = Y = e_i$, ξ , $1 \le i \le n$, for orthonormal basis of $\chi(M)$ in (3.25), we have

$$(Aa + ba[2(1 - n) + n\mu] - b(A - ak - 2nkb) - b^{2}[2(1 - n) + n\mu])S(U, Z)$$

$$+(Aa\mu + ba[2(n - 1) + \mu])S(U, hZ) + (2nA(A - ak - 2nkb))$$

$$+2na\mu b(1 + k)[2(n - 1) + \mu] + br(A - ak - 2nkb)$$

$$+bak[2(n - 1) + n(2k - \mu)] + b^{2}r^{2}[2(1 - n) + n\mu])g(U, Z)$$

$$+(a\mu(ak + 2nkb) + ba\mu[2(n - 1) + n(2k - \mu)] - 2nAa\mu$$

$$-abr\mu)g(U, hZ) + (-bak[2(n - 1) + n(2k - \mu)] + 2nkb^{2}[2(1 - n)$$

$$+n\mu]) - b^{2}r[2(1 - n) + n\mu] - 2nb^{2}(1 + k)[2(n - 1) + \mu]^{2}$$

$$-(a\mu)^{2}(1 + k)(2n + 1) - 2nab\mu(1 + k)[2(n - 1) + \mu] - Abr$$

$$-2nab\mu(1 + k)[2(n - 1) + \mu] - (2nkb)^{2}$$

$$+2nkAb(2n + 1) + 2nkrb^{2})\eta(U)\eta(Z) = 0.$$
(3.26)

Replacing hZ of Z in (3.26) and taking into account (2.8), we get

$$(Aa + ba[2(1 - n) + n\mu] - b(A - ak - 2nkb)$$

$$-b^{2}[2(1 - n) + n\mu])S(U, hZ)$$

$$+(1 + k)(Aa\mu + ba[2(n - 1) + \mu])S(U, Z)$$

$$-2nk(1 + k)(Aa\mu + ba[2(n - 1) + \mu])\eta(U)\eta(Z)$$

$$+(2nA(A - ak - 2nkb) + 2na\mu b(1 + k)[2(n - 1) + \mu]$$

$$+br(A - ak - 2nkb) + bak[2(n - 1) + n(2k - \mu)]$$

$$+b^{2}r^{2}[2(1 - n) + n\mu])g(U, hZ)$$

$$+(1 + k)(a\mu(ak + 2nkb) + ba\mu[2(n - 1)$$

$$+n(2k - \mu)] - 2nAa\mu - abr\mu)g(U, Z)$$

$$-(1 + k)(a\mu(ak + 2nkb) + ba\mu[2(n - 1)$$

$$+n(2k - \mu)] - 2nAa\mu - abr\mu)\eta(U)\eta(Z) = 0.$$
(3.27)

From (3.26), (3.27) and by using (2.10), for the sake of brevity, we set

$$c = (Aa + ba[2(1 - n) + n\mu] - b(A - ak - 2nkb) - b^{2}[2(1 - n) + n\mu]),$$

$$d = (Aa\mu + ba[2(n - 1) + \mu]),$$

$$e = (2nA(A - ak - 2nkb) + 2na\mu b(1 + k)[2(n - 1) + \mu] + br(A - ak - 2nkb) + bak[2(n - 1) + n(2k - \mu)] + b^{2}r^{2}[2(1 - n) + n\mu]),$$

$$f = (a\mu(ak + 2nkb) + ba\mu[2(n - 1) + n(2k - \mu)] - 2nAa\mu - abr\mu),$$

$$t = (-bak[2(n - 1) + n(2k - \mu)] + 2nkb^{2}[2(1 - n) + n\mu]) - b^{2}r[2(1 - n) + n\mu] - 2nb^{2}(1 + k)[2(n - 1) + \mu]^{2} - (a\mu)^{2}(1 + k)(2n + 1) - 2nab\mu(1 + k)[2(n - 1) + \mu] - Abr - 2nab\mu(1 + k)[2(n - 1) + \mu] - (2nkb)^{2} + 2nkAb(2n + 1) + 2nkrb^{2})$$

and

$$E = [fd(1+k) - ec][2(n-1) + \mu] + (fc - de)[2(1-n) + n\mu],$$

$$D = (c^2 - d^2(1+k))[2(n-1) + \mu] + (fc - ed),$$

$$F = (fc - de)[2(n-1) + n(2k - \mu)]$$

$$-(ct + 2nkd^2(1+k) + fd(1+k))[2(n-1) + \mu],$$

we obtain

$$DS(U, Z) = Eg(U, Z) + F\eta(U)\eta(Z).$$

So, M is an η -Einstein manifold. M is an η -Einstein manifold. Conversely, let $M^{2n+1}(\phi, \xi, \eta, g)$ be an Einstein manifold, i.e., $DS(U, Z) = Eg(U, Z) + F\eta(U)\eta(Z)$, then from (3.27)-(3.24), we arrive $\widetilde{C} \cdot \widetilde{C} = 0$.

Conclusion and Recommendations The tensors studied above can also be applied to other Manifolds.

Acknowledgement. The authors are grateful to the referee for making helpful ideas to improve the paper's quality.

References

- [1] Arslan, K., Murathan, C., & Özgür, C. (2000). On contact manifolds satisfying certain curvature conditions. *Annales Universitatis Bucuresti. Mathematica*, 49(2), 17-26.
- [2] Atçeken, M. (2014). On generalized Sasakian space forms satisfying certain conditions on the concircular curvature tensor. *Bulletin of Mathematical Analysis and Applications*, 6(1), 1-8.
- [3] Atçeken, M., & Uygun, P. (2020). Characterizations for totally geodesic submanifolds of (k, μ) -paracontact metric manifolds. Korean Journal of Mathematics, 28, 555-571.
- [4] Calvaruso, G. (2011). Homogeneous paracontact metric three-manifolds. *Illinois Journal of Mathematics*, 55, 697-718. https://doi.org/10.1215/ijm/1359762409
- [5] Cappeletti-Montano, B., & Di Terlizzi, L. (2010). Geometric structure associated to a contact metric (k, μ) -space. Pacific Journal of Mathematics, 246(2), 257-292. https://doi.org/10.2140/pjm.2010.246.257
- [6] Cappelletti-Montano, B., Küpeli Erken, I., & Murathan, C. (2012). Nullity conditions in paracontact geometry. *Differential Geometry and its Applications*, 30, 665-693. https://doi.org/10.1016/j.difgeo.2012.09.006
- [7] De, U. C., Jun, J. B., & Gazi, A. K. (2008). Sasakian manifolds with quasi-conformal curvature tensor. *Bulletin of the Korean Mathematical Society*, 45(2), 313-319. https://doi.org/10.4134/BKMS.2008.45.2.313
- [8] De, U. C., & Sarkar, A. (2010). On the projective curvature tensor of generalized Sasakian-space forms. Quaestiones Mathematicae, 33, 245-252. https://doi.org/ 10.2989/16073606.2010.491203
- [9] Hosseinzadeh, A., & Taleshian, A. (2012). On conformal and quasi-conformal curvature tensors of an N(k)-quasi Einstein manifold. Communications of the Korean Mathematical Society, 27(2), 317-326. https://doi.org/10.4134/CKMS.2012.27.2.317
- [10] Kaneyuki, S., & Williams, F. L. (1985). Almost paracontact and parahodge structures on manifolds. Nagoya Mathematical Journal, 99, 173-187. https://doi. org/10.1017/S0027763000021565

- [11] Küpeli Erken, I. (2015). Generalized $(\widetilde{k} \neq -1, \widetilde{\mu})$ -paracontact metric manifolds with $\xi(\widetilde{\mu}) = 0$. International Electronic Journal of Geometry, 8(1), 77-93 https://doi.org/10.36890/iejg.592801
- [12] Mert, T. (2022). Characterization of some special curvature tensor on almost C(a)-manifold. Asian Journal of Mathematics and Computer Research, 29(1), 27-41. https://doi.org/10.56557/ajomcor/2022/v29i17629
- [13] Mert, T., & Atçeken, M. (2021). Almost C(a)-manifold on W_0^{\star} -curvature tensor. $Applied\ Mathematical\ Sciences,\ 15(15),\ 693-703.\ https://doi.org/10.12988/ams.\ 2021.916556$
- [14] Özgür, C., & De, U. C. (2006). On the quasi-conformal curvature tensor of a Kenmotsu manifold. *Mathematica Pannonica*, 17(2), 221-228.
- [15] Yano, K., & Kon, M. (1984). Structures manifolds. Singapore: World Scientific.
- [16] Yano, K., & Sawaki, S. (1968). Riemannian manifolds admitting a conformal transformation group. *Journal of Differential Geometry*, 2, 161-184. https://doi. org/10.4310/jdg/1214428253
- [17] Zamkovoy, S. (2009). Canonical connections on paracontact manifolds. Annals of Global Analysis and Geometry, 36, 37-60. https://doi.org/10.1007/ s10455-008-9147-3
- [18] Zamkovoy, S., & Tzanov, V. (2011). Non-existence of flat paracontact metric structures in dimension greater than or equal to five. Annuaire de l'Université de Sofia Faculté de Mathématiques et Informatique, 100, 27-34.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.