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Abstract

Let Hi (where i = 1, ...,m) be Hilbert spaces, and let H be another Hilbert

space. Let Ai : Hi → H be bounded linear operators for i = 1, ...,m. We

introduce the Multiple Split Equality Problem (MSEP), provide an algorithm

for constructing a solution to MSEP, and establish the strong convergence of

the algorithm to such a solution.

1 Introduction

Let D1 and D2 be nonempty closed convex subsets of real Hilbert spaces H1 and

H2, respectively. The split feasibility problem is formulated as finding a point x

satisfying

x ∈ D1 such that Ax ∈ D2, (1)

where A is a bounded linear operator from H1 into H2. The split feasibility

problem in finite-dimensional Hilbert spaces was first studied by Censor
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and Elfving [3] for modeling inverse problems that arise in medical image

reconstruction, image restoration, and radiation therapy treatment planning (see,

e.g., [1], [2], [3]). It is clear that x ∈ D1 is a solution to the split feasibility problem

(1) if and only if Ax − PD2Ax = 0, where PD2 is the metric projection from H2

onto D2.

Let H1, H2, and H be Hilbert spaces, D1, D2 be nonempty closed convex

subsets of H1, H2 respectively, and let A : H1 → H and B : H2 → H be bounded

linear operators. The Split Equality Problem (SEP) is to find

x ∈ D1 and y ∈ D2 such that Ax = By. (2)

This problem has been studied by several researchers; see, for example, Censor

and Segal [4], Moudafi [7], Zhao [17], and references therein. Clearly, the SEP is

a special case of the SFP. Since the introduction of the Split Feasibility Problem

above, many authors have modified it to solve common fixed-point problems; see,

for example, Hojo and Takahashi [14], Wang and Kim [15], Shehu et al. [13],

Zegeye [16], Ofoedu and Araka [9], Nnubia et al. [8], and references therein.

Let Xi (where i = 1, . . . ,m), X be Banach spaces, Di ⊂ Xi, D ⊂ X be closed

convex nonempty subsets of the respective Banach spaces, and let Ai : Xi → X

(for i = 1, 2, . . . ,m) be bounded linear operators. The Multiple Split Feasibility

Problem (MSFP) consists in finding

xi ∈ Di such that Aixi ∈ D (i = 1, . . . ,m). (3)

Let A = (A1, A2, . . . , Am) and x̄ = (x1, x2, . . . , xm). Then A :
∏m
i=1Xi → Xm is

multilinear and multibounded (i.e., bounded and linear in each argument). The

MSFP becomes the problem of finding

x̄ ∈
m∏
i=1

Di such that Ax̄ ∈ Dm. (4)

Thus, the MSFP is an extension and generalization of SFP, since m = 2 yields

the SFP.
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Similarly, the Multiple Split Equality Problem (MSEP) also becomes the

problem of finding

x̄ ∈
m∏
i=1

Di such that Ax̄ ∈ Dm
0 , (5)

where Dm
0 = {(x, x, . . . , x) | x ∈ D} = {(x1, . . . , xm) ∈ Dm | xi = xj , i, j =

1, . . . ,m} ⊂ Dm.

In the above setting, the Multiple Split Equality Problem (MSEP) consists in

finding

xi ∈ Di (i = 1, . . . ,m) such that AiXi = AjXj (6)

(all i, j = 1, . . . ,m), so that the MSEP is an extension and generalization of SEP.

2 Preliminaries

It is our purpose in this work to introduce the Multiple Split Equality Problem

(MSEP), provide an algorithm for constructing a solution to MSEP, and establish

the strong convergence of the algorithm to such a solution.

We shall make use of the following lemmas.

Lemma 2.1. Let E be a real normed linear space with a single-valued generalized

duality mapping, and let 1 < p < ∞. Then, for all x, y ∈ E, the following

inequality holds:

‖x+ y‖p ≤ ‖x‖p + p〈y, JpE(x+ y)〉.

For E = H and x, y, z ∈ H, the following also hold:

1. ‖x− y + z‖2 − 2〈z, x− y〉 ≥ ‖x− y‖2,

2. ‖x+ y‖2 = ‖x‖2 + 2〈y, x〉+ ‖y‖2.

Lemma 2.2. For any x, y, z in a real Hilbert space H and a real number λ ∈ [0, 1],

‖λx+ (1− λ)y − z‖2 = λ‖x− z‖2 + (1− λ)‖y − z‖2 − λ(1− λ)‖x− y‖2.
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Lemma 2.3. [14] Let K be a closed convex nonempty subset of a real Hilbert

space H. Let x ∈ H, then x0 = PKx if and only if

〈z − x0, x− x0〉 ≤ 0 ∀ z ∈ K.

Lemma 2.4. Let {Γn} be a sequence of real numbers that does not decrease at

infinity in the sense that there exists a subsequence {Γnj} of {Γn} which satisfies

Γnj < Γnj+1 for all j ∈ N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n0 : Γk < Γk+1},

where n0 ∈ N and the set {k ≤ n0 : Γk < Γk+1} is not empty. Then, the following

hold:

1. τ(n0) ≤ τ(n0 + 1) and τ(n)→∞ as n→∞,

2. Γτ(n) ≤ Γτ(n+1) and Γn ≤ Γτ(n+1) for all n ∈ N.

Lemma 2.5. Let {xn} be a sequence of nonnegative real numbers satisfying the

following relation:

xn+1 ≤ xn − αnxn + δn, n ≥ n0,

where {αn}n≥1 ⊂ (0, 1) and {δn}n≥1 ⊂ R satisfy the following conditions:
∞∑
n=0

αn =∞, lim
n→∞

αn = 0, and lim sup
n→∞

δn ≤ 0, then lim
n→∞

xn = 0.

3 Main Result

Theorem 3.1. Let Hi (i = 1, ...,m) be Hilbert spaces, H another Hilbert space,

and Ai : Hi → H be bounded linear operators with adjoint operators A∗i (i =

1, ...,m).

Define Ω = {(x1, x2, ..., xm) ∈ Πm
i=1Hi : Aixi = Ajxj for i, j = 1, ...,m}.
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Starting with arbitrary ui ∈ Hi (i = 1, ...,m), define the iterative sequence

{xi,n} by

xi,n+1 = αnui + (1− αn)yi,n

yi,n = xi,n − βnA∗i (Aixi,n −Ajxj,n) : i 6= j. (7)

Suppose that Ω 6= ∅, then {xi,n} is bounded for all i ∈ {1, 2, ...,m} provided

that

1. {αn}n≥0 ⊂ (0, 1) such that limn→∞ αn = 0 and

∞∑
n=1

αn =∞.

2. 2m− βn
m∑
i=1

‖Ai‖2 > 0.

Proof. Let (x∗1, x
∗
2, , ..., x

∗
m) ∈ Ω , from (7), Lemma 2.1 we have

‖yi,n − x∗i ‖2 = ‖xi,n − x∗i − βnA∗i (Aixi,n −Ajxj,n)‖2

= ‖xi,n − x∗i ‖2 − 2βn〈Aixi,n −Ajxj,n, A∗ixi,n −A∗ix∗i 〉

+β2
n‖Ai‖2‖Aixi,n −Ajxj,n‖2. (8)

Moreover, with Lemma 2.3 and the hypothesis, we have

‖xi,n+1 − x∗i ‖2 = ‖αn(ui − x∗i )− (1− αn)(yi,n − x∗i )‖2

= αn‖ui − x∗i ‖2 + (1− αn)‖yi,n − x∗i ‖2 − αn(1− αn)‖ui − yi,n‖2

= αn‖ui − x∗i ‖2 + (1− αn)‖xi,n − x∗i ‖2

+(1− αn)β2
n‖Ai‖2‖Aixi,n −Ajxj,n‖2

−2(1− αn)βn〈Aixi,n −Ajxj,n, A∗ixi,n −A∗ix∗i 〉

−αn(1− αn)‖ui − yi,n‖2. (9)

Define Dn(x∗1, x
∗
2, ..., x

∗
m) =

m∑
i=1

‖xi,n − x∗i ‖2.

Earthline J. Math. Sci. Vol. 14 No. 1 (2024), 161-173



166 A. C. Nnubia, A. Nduaguibe, O. Ugochukwu and C. Moore

Then,

Dn+1(x∗1, x
∗
2, , ..., x

∗
m)

≤ αn
m∑
i=1

‖ui − x∗i ‖2 + (1− αn)

m∑
i=1

‖xi,n − x∗i ‖2

−(1− αn)βn(2m− βn
m∑
i=1

‖Ai‖2)

m∑
i=1

‖Ai,nxi,n −Ajxj,n)‖2

−αn(1− αn)

m∑
i=1

‖ui,n − yi,n‖2. (10)

Since 2m− βn
m∑
i=1

‖Ai‖2 ≥ 0, we have that

Dn+1(x∗1, ..., x
∗
m) ≤ (1− αn)Dn(x∗1, ..., x

∗
m) + αn

m∑
i=1

‖ui − x∗i ‖2. (11)

Using mathematical induction, we show that the sequence

{Dn+1(x∗1, ..., x
∗
k)}n≥1 is bounded.

Let d = max{
m∑
i=1

‖xi,0 − x∗i ‖2,
m∑
i=1

‖ui − x∗i ‖2}.

So, D0(x∗1, ..., x
∗
k) ≤ d, observe that

D1(x∗1, ..., x
∗
m) ≤ (1− α0)D0(x∗1, ..., x

∗
m) + α0

m∑
i=1

‖ui − x∗i ‖2

= (1− α0)d+ α0d = d.

Suppose Dk(x
∗
1, ..., x

∗
m) ≤ d, then,

Dk+1(x∗1, ..., x
∗
m) ≤ (1− αk)Dk(x

∗
1, ..., x

∗
m) + αk

m∑
i=1

‖ui − x∗i ‖2

≤ (1− αk)d+ αkd = d
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so that {Dn(x∗1, ..., x
∗
m)}n≥1 is bounded and hence {xi,n}n≥1 is bounded ∀ i, ...,m.

Theorem 3.2. Let Hi (i = 1, ...,m) be Hilbert spaces, H another Hilbert space,

and Ai : Hi → H be bounded linear operators with adjoint operators A∗i (i =

1, ...,m). Let Ω be as defined in Theorem 3.1. Consider the sequence {xi,n}
defined by (7). Then, {xi,n}n≥0, where i ∈ {1, 2, ...,m}, converges strongly to an

element (x̂1, x̂2, ..., x̂k) ∈ PΩ(u1, u2, ..., um).

Proof. From Theorem 3.1, we know that {xi,n}n≥1 is bounded for all i, ...,m.

Let (x̂1, x̂2, ..., x̂m) ∈ PΩ(u1, u2, ..., um) for all (y1, y2, ..., yk) ∈ Ω.

From Lemma 2.3:

〈(y1, y2, ..., ym)− (x̂1, x̂2, ..., x̂m), (u1, u2, ..., um)− (x̂1, x̂2, ..., x̂m)〉

= 〈(y1 − x̂1, y2 − x̂2, ..., ym − x̂m), (u1 − x̂1, u2 − x̂2, ..., um − x̂m)〉 ≤ 0.

From Lemma 2.1, Theorem 3.1, and the hypothesis, we conclude that

‖xi,n+1 − x̂i‖2 = ‖αnui + (1− αn)yi,n − x̂i‖2

= ‖αnui + (1− αn)yi,n − x̂i − αn(ui − x̂i) + αn(ui − x̂i)‖2

≤ ‖αnui + (1− αn)yi,n − x̂i − αn(ui − x̂i)‖2

+2αn〈ui − x̂i, xi,n+1 − x̂i〉

= ‖αnx̂i + (1− αn)yi,n − x̂i‖2 + 2αn〈ui − x̂i, xi,n+1 − x̂i〉

= (1− αn)2‖yi,n − x̂i‖2 + 2αn〈ui − x̂i, xi,n+1 − x̂i〉

≤ (1− αn)‖yi,n − x̂i‖2 + 2αn〈ui − x̂i, xi,n+1 − x̂i〉

≤ (1− αn)‖xi,n − x∗i ‖2 + 2αn〈ui − x̂i, xi,n+1 − x̂i〉

+(1− αn)β2
n‖Ai‖2‖Aixi,n −Ajxj,n‖2

−2(1− αn)βn〈Aixi,n −Ajxj,n, A∗ixi,n −A∗ix∗i 〉

so,
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Dn+1(x̂1, ..., x̂m) ≤ (1− αn)Dn(x̂1, ..., x̂m) + 2αn

m∑
i=1

〈ui − x̂i, xi,n+1 − x̂i〉

−(1− αn)βn(2m− βn
m∑
i=1

‖Ai|‖2)
m∑

i=1,i 6=j
‖Aixi,n −Ajxj,n‖.

(12)

Hence

Dn+1(x̂1, ..., x̂m) ≤ (1− αn)Dn(x̂1, ..., x̂m) + 2αn

m∑
i=1

‖ui − x̂i‖‖xi,n+1 − xi,n‖

+2αn

m∑
i=1

〈ui − x̂i, xi,n − x̂i〉. (13)

Furthermore, we show that {Dn(x̂1, ..., x̂m)} converges strongly to zero. We

discern two possible cases

Case 1: Suppose that the real sequence {Dn(x̂1, ..., x̂m)}n≥1 is non-increasing

for n ≥ n0, for some n0 ∈ N. This implies that {Dn(x̂1, ..., x̂m)}n≥1 is monotonic

and bounded, and hence converges.

Moreover, using (12) and the fact that αn → 0 as n → ∞, we have that for

all i, j ∈ {1, 2, ...,m}, j 6= i:

limn→∞ ‖Aixi,n −Ajxj,n‖ = 0,

limn→∞ ‖yi,n − xi,n‖ = limn→∞ βn‖Aixi,n −Ajxj,n‖ = 0,

limn→∞ ‖xi,n+1 − yi,n‖ = limn→∞ αn‖ui − yi,n‖ = 0 ∀ i,
and

limn→∞ ‖xi,n+1 − xi,n‖ ≤ limn→∞(‖xi,n+1 − yi,n‖+ ‖yi,n − xi,n‖) = 0 ∀ i.

Claim:

lim sup
n→∞

m∑
i=1

〈ui − x̂i, xi,n − x̂i〉 ≤ 0.

Proof of Claim: Let {x1,nl
, x2,nl

, ..., xm,nl
}l≥1 be a subsequence of

http://www.earthlinepublishers.com
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{x1,n, x2,n, ..., xm,n}n≥1 such that

lim sup
n→∞

m∑
i=1

〈ui − x̂i, xi,n − x̂i〉 = lim
l→∞

m∑
i=1

〈ui − x̂i, xi,nl
− x̂i〉

so, ∀ i:
lim sup
n→∞

〈ui − x̂i, xi,n − x̂i〉 = lim
l→∞
〈ui − x̂i, xi,nl

− x̂i〉.

Furthermore, since H0 = Πm
i=1Hi is a Hilbert space and reflexive, and

{x1,nl
, x2,nl

, ..., xm,nl
}l≥1 is a bounded sequence in H0, there exists a subsequence

{x1,nlt
, x2,nlt

, ..., xm,nlt
}t≥1 of {x1,nl

, x2,nl
, ..., xm,nl

}l≥1 that converges weakly to

(x̂1, ..., x̂m) ∈ H; that is, xi,nlt
→w x̂i as t → ∞. Hence, the subsequences

{yi,nlt
} ⊂ {yi,nl

} converge weakly to x̂i for all i.

Moreover, for all i and j 6= i:

‖Aix∗i −Ajx∗j‖2 ≤ ‖Aixi,nlt
−Ajxj,nlt

‖2

+ 2〈Aix∗i −Aixi,nlt
+Ajxj,nlt

−Ajx∗j , Aixi,nlt
−Ajxi,nlt

〉.

Since xi,nlt
→w x∗i as t → ∞ for all i, we have that Aixi,nlt

→w Aix
∗
i as t → ∞.

Thus, taking limits on both sides and using the fact that Aix
∗
i = Ajx

∗
j for all

i, j ∈ {1, 2, ...,m}, we conclude that (x∗1, x
∗
2, ..., x

∗
m) ∈ Ω.

lim sup
t→∞

m∑
i=1

〈ui − x∗i , xi,n − x∗i 〉

= lim
t→∞
〈(x1,nl

, x2,nl
, ..., xm,nl

)− (x∗1, x
∗
2, ..., x

∗
m), (x1,0, x2,0, ..., xm,0)− (x∗1, x

∗
2, ..., x

∗
m)〉

= 〈(x∗1, x∗2, ..., x∗m)− (x∗1, x
∗
2, ..., x

∗
m), (u1, x2, ..., xm)− (x∗1, x

∗
2, ..., x

∗
m)〉 ≤ 0.

Now, from (12) and (13), we have

Dn+1(x̂1, ..., x̂m) ≤ (1− αn)Dn(x̂1, ..., x̂m)

+ 2αn

m∑
i=1

〈ui − x̂i, xi,n − x̂i〉

+ 2αn

m∑
i=1

‖ui − x̂i‖‖xi,n+1 − xi,n‖.
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So, by Lemma 2.5, {Dn(x̂1, ..., x̂m)}n≥0 converges strongly to zero as n→∞.

Hence, (x1,n, x2,n, ..., xm,n) converges strongly to (x̂1, ..., x̂m) ∈ Ω. This completes

the proof of this Case.

Case 2: Suppose there exists a subsequence {Dns(x̂1, ..., x̂m)} of

{Dn(x̂1, ..., x̂m)} such that Dns(x̂1, ..., x̂m) ≤ Dns+1(x̂1, ..., x̂m) for all s ∈ N.

Then, by Lemma 2.4, there exists a non-decreasing sequence {qc}c≥1 ⊂ N such

that:

(i) limn→∞ qc =∞

(ii) Dqc(x̂1, ..., x̂m) ≤ Dqc+1(x̂1, ..., x̂m) for all c ∈ N.

Since the sequence {xi,qc}c≥1 for i = 1, ...,m is bounded, we obtain from (12)

and using the arguments earlier:

‖yi,qc − xi,qc‖ → 0, as c→∞ ∀ i

and

‖xi,qc+1 − xi,qc‖ → 0, as c→∞ ∀ i.

Also,

lim sup
t→∞

m∑
i=1

〈ui − x̂i, xi,qc − x̂i〉 ≤ 0.

Since Dqc(x̂1, ..., x̂m) ≤ Dqc+1(x̂1, ..., x̂m), we have:

αqcDqc(x̂1, ..., x̂m) ≤ Dqc(x̂1, ..., x̂m)−Dqc+1(x̂1, ..., x̂m)

+ 2αqc

m∑
i=1

〈ui − x̂i, xi,qc − x̂i〉

+ 2αqc

m∑
i=1

‖ui − x̂i‖‖xi,qc+1 − xi, qc‖.

Dividing through by αqc and taking limits as c→∞, we get:

Dqc(x̂1, ..., x̂m) ≤ 2
m∑
i=1

〈ui − x̂i, xi,qc − x̂i〉+ 2
m∑
i=1

‖ui − x̂i‖‖xi,qc+1 − xi,qc‖
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and

Dqc+1(x̂1, ..., x̂m)→ 0 as c→∞.

Since Dc(x̂1, ..., x̂m) ≤ Dqc+1(x̂1, ..., x̂m), then Dc(x̂1, ..., x̂m)→ 0 as c→∞. This

implies that

lim
c→∞

‖xi,c − x̂i‖ = 0 ∀ i,

so that xi,c → x̂i as c→∞. Thus, (x1,n, x2,n, ..., xm,n)→ (x̂1, ..., x̂m) as n→∞.

This completes the proof of the second case and thus the proof of the Theorem.

4 Concluding Remarks

The Multiple Split Equality Problem (MSEP) has been introduced in this work,

and an algorithm for constructing its solution has been provided. Moreover, the

strong convergence of the algorithm to such a solution has been established.
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