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Abstract

Let H; (where i = 1,...,m) be Hilbert spaces, and let H be another Hilbert
space. Let A; : H; — H be bounded linear operators for ¢ = 1,...,m. We
introduce the Multiple Split Equality Problem (MSEP), provide an algorithm
for constructing a solution to MSEP, and establish the strong convergence of

the algorithm to such a solution.

1 Introduction

Let D, and D2 be nonempty closed convex subsets of real Hilbert spaces H; and
Ho, respectively. The split feasibility problem is formulated as finding a point x
satisfying

x € Dy such that Az € D, (1)

where A is a bounded linear operator from H; into Hs. The split feasibility

problem in finite-dimensional Hilbert spaces was first studied by Censor
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and Elfving [3] for modeling inverse problems that arise in medical image
reconstruction, image restoration, and radiation therapy treatment planning (see,
e.g., [1], [2], [3])- It is clear that € D; is a solution to the split feasibility problem
(1) if and only if Az — Pp,Ax = 0, where Pp, is the metric projection from Hp

onto Ds.

Let Hi, Hy, and H be Hilbert spaces, D1, D2 be nonempty closed convex
subsets of Hy, Hs respectively, and let A : Hy — H and B : Hy — H be bounded
linear operators. The Split Equality Problem (SEP) is to find

x € Dy and y € D5 such that Az = By. (2)

This problem has been studied by several researchers; see, for example, Censor
and Segal [1], Moudafi [7], Zhao [17], and references therein. Clearly, the SEP is
a special case of the SFP. Since the introduction of the Split Feasibility Problem
above, many authors have modified it to solve common fixed-point problems; see,
for example, Hojo and Takahashi [11], Wang and Kim [15], Shehu et al. [13],
Zegeye [16], Ofoedu and Araka [9], Nnubia et al. [3], and references therein.

Let X; (wherei=1,...,m), X be Banach spaces, D; C X;, D C X be closed
convex nonempty subsets of the respective Banach spaces, and let 4; : X; —» X
(for i = 1,2,...,m) be bounded linear operators. The Multiple Split Feasibility
Problem (MSFP) consists in finding

x; € D; such that Ajxz; € D (i=1,...,m). (3)

Let A = (A1, As,...,Ap) and T = (x1,22,...,2p). Then A: [[1; X; — X™ is
multilinear and multibounded (i.e., bounded and linear in each argument). The
MSFP becomes the problem of finding

ze H D; such that Az € D™. (4)
i=1

Thus, the MSFP is an extension and generalization of SFP, since m = 2 yields
the SFP.
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Similarly, the Multiple Split Equality Problem (MSEP) also becomes the
problem of finding

m
z € [[ Di such that Az € D, (5)
i=1
where D' = {(z,z,...,2) | x € D} = {(z1,...,2m) € D™ | x; = xj, i,j =
1,...,m}C D™

In the above setting, the Multiple Split Equality Problem (MSEP) consists in
finding
xi€D; (i=1,...,m) such that 4;X; = A;X; (6)

(all i,7 =1,...,m), so that the MSEP is an extension and generalization of SEP.

2 Preliminaries

It is our purpose in this work to introduce the Multiple Split Equality Problem
(MSEP), provide an algorithm for constructing a solution to MSEP, and establish

the strong convergence of the algorithm to such a solution.
We shall make use of the following lemmas.

Lemma 2.1. Let E be a real normed linear space with a single-valued generalized
duality mapping, and let 1 < p < oo. Then, for all x,y € E, the following
inequality holds:

lz+ylI” < llzl|” + ply, Ji(z +y))-

For E=H and z,y,z € H, the following also hold:
Ll —y+ 2l = 2(z,2 —y) > |lz — g%,
2. Nz +yll* = llz]* + 2y, 2) + [ly[|*-
Lemma 2.2. For any x,y, z in a real Hilbert space H and a real number X\ € [0, 1],

Iha + (1= Ny —2[* = Az — 2| + (1= N)lly = 2l = A1 = Nz — yl*.
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Lemma 2.3. [1/] Let K be a closed convexr nonempty subset of a real Hilbert
space H. Let x € H, then xo = Pxx if and only if

(z —zp,xr—209) <0 VzeK.

Lemma 2.4. Let {T',} be a sequence of real numbers that does not decrease at
infinity in the sense that there exists a subsequence {I'y;} of {I'y} which satisfies
[y, < T,y for all j € N. Define the sequence {7(n)}n>n, of integers as follows:

T(?”L) — max{k <ng:Ti < Fk+1}v

where ng € N and the set {k < ng: Ty < Tgi1} is not empty. Then, the following
hold:

1. 7(ng) < 71(np+1) and 7(n) — oo as n — oo,
2. Ty S Trngry and Ty, < Ty for alln € N.

Lemma 2.5. Let {x,} be a sequence of nonnegative real numbers satisfying the

following relation:
Tnt1 < Ty — ATy + On, M 2> Ng,
where {an}n>1 C (0,1) and {on}n>1 C R satisfy the following conditions:

oo

Zan =00, lim ap, =0, and limsupd, <0, then lim z, = 0.
: n—o0 N—00 n—o0

n=

3 Main Result

Theorem 3.1. Let H; (i = 1,...,m) be Hilbert spaces, H another Hilbert space,
and A; : Hy — H be bounded linear operators with adjoint operators A} (i =

y ey ).

Define Q = {(x1, 22, ...,xm) € IL H; : Ajz; = Ajay fori,j=1,...,m}.
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Starting with arbitrary w; € H; (i = 1,...,m), define the iterative sequence

{xi,n} by

Tint1 = opui+ (1 —an)yin

Yin = Tin— BpAi(AiTin — AjTjn) 10 F ]

Suppose that Q # 0, then {x;,} is bounded for all i € {1,2,.

that

1. {an}n>0 C (0,1) such that lim,, o0 o, = 0 and Z Q= 00.

n=1
m
2. 2m— B, > | Ail* > 0.
i=1
Proof. Let (z7,5,,...,x}) € Q, from (7), Lemma 2.1 we have
lyim =27 I? = Nain — 27 = B A7 (Aiwim — Ajujn)|”

= Hxi,n - xi'kHQ - 25n<A¢$i,n - ijjma A?xi,n

Ol A1 Aiign — Ajainll.
Moreover, with Lemma 2.3 and the hypothesis, we have

i —2f1? = llan(us —27) = (1= ) (yin — )|
= anllui — 27 [* + (1 — an)[yin — 27> — an(l -

= agllu; — 2 |° + (1 = an)l|zip — 272

+(1 = an) Ba | Aill? [l Aiwin — Ajjnl®
—2(1 — ) Bn(Aizin — Ajzjn, Ajzin — Ajx;)

—an(1 = an)llui = yinll*.

m
Define Dy (2}, 23, ..., xh) = Y _ ||zim — 27|,
=1

(7)

..,m} provided

— Ajx})
(8)

an)llui = yinl®
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Then,

Dypii(27, 25, , ..., x)

ey by

m m
<any llui =P+ (1 —an) Y llzin — |
i=1 i=1

~(1 = an)Bu(2m = Bu Y NAl*) D 1 Asntin — Ajsn)l?

i=1 =1

—an(l —an) Z [t — yi,n||2- (10)

=1

Since 2m — S, Z | A;]|? > 0, we have that

i=1
m
D1 (25, s ) < (1= an) D@}, o 2f) + an Y llug — 2], (11)
i=1
Using mathematical induction, we show that the sequence

{Dps1(a7,...,2%) }n>1 is bounded.

m m
Let d = max{z |lzio — x|, Z Jui — 7 [|*}.
i=1 i=1

So, Do(x7,...,z3) < d, observe that

m
Dy(af, . xh) < (1= a0)Do(af, .., a5,) + a0 Y flus — af|)?
=1

= (1-ap)d + apd = d.

Suppose Dy (z7,...,x},) < d, then,

m
Dpsi(2,yty) < (1= ap)Dg(af, ey ay) + g Y |ui — |
i=1

< (I—agp)d+ard=4d
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so that {Dy (7, ..., x},) }n>1 is bounded and hence {x; y, }n>1 is bounded V i, ..., m.
O

Theorem 3.2. Let H; (i = 1,...,m) be Hilbert spaces, H another Hilbert space,
and A; : Hy — H be bounded linear operators with adjoint operators A} (i =
1,...,m). Let Q be as defined in Theorem 3.1. Consider the sequence {x;n}
defined by (7). Then, {x;n}tn>0, wherei € {1,2,....m}, converges strongly to an
element (1,22, ...,Tx) € Pao(uy,ug, ..., Up).
Proof. From Theorem 3.1, we know that {x; ,,}»>1 is bounded for all i, ..., m.

Let (1,22, ..., Tm) € Pa(uy,us, ..., uy) for all (y1,y2,...,yx) € Q.

From Lemma 2.3:

<(y17 Y2, - ym) - (i17 :%21 ey jjm)? (Ul, Uz, - Um) - (:%11 £'27 ooy i'm)>
= <(y1 — i‘l,yg — .@2, oy Ym — i’m), (U1 — .’,i'l,UQ — i"z, ey U, — i‘m» S 0.

From Lemma 2.1, Theorem 3.1, and the hypothesis, we conclude that

1 Tint1 — &3] lanu; + (1 — an)yipn — 2|

= lanui + (1 — an)yin — & — an(ui — i) + an(u; — ;)|

< i+ (1= an)yin — & — an(u; — &)
200, (Ui — T4, Tip1 — Ti)

= landi + (1 — an)yin — &ill]* + 20m (ui — &, Ti i1 — &)
(1= n)?[[yin — &il1* + 20m (us — &4, i1 — 22)

< (U= an)llyin — &ll* + 200 (i — 24, Tipgr — &)

< (1= an)|lzin — 2 )? + 200 (s — iy Timy1 — i)

(1 = an) Bl APl Aizign — Ajjnl?
—2(1 — Oén),Bn<AiﬂZ7;7n — ijj,n’ A,Tl‘lm — Afxf)

S0,
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m

Dni1(#1, e @m) < (1= an)Dp(1, e ) + 200 Y (us — &4y Tiy1 — )
i=1
m m
—(1 = an)Bum = Ba Y NAllP) D NAiwin — Ajzjnll.
i=1 i=1,i#j
(12)
Hence
m
Dn—&-l(i'ly 7£'m) < (1 - an)Dn(«%la w%m) + 2an Z Huz - ii”Hxi,n—‘rl — Tin ‘
i=1
m
+2a, Z<u1 — Ty, Tip — Ty)- (13)
i=1

Furthermore, we show that {D,(Z1,...,2,)} converges strongly to zero. We

discern two possible cases

Case 1: Suppose that the real sequence {Dy,(Z1, ..., Zm) }n>1 is non-increasing
for n > ng, for some ng € N. This implies that {Dy,(Z1, ..., £m) }rn>1 is monotonic

and bounded, and hence converges.

Moreover, using (12) and the fact that a,, — 0 as n — oo, we have that for

alli,j € {1,2,...,m}, j # i:
limy, 00 [|AiTim — Ajxjnl =0,

limy, 00 Hyz,n - xi,n” = limy, 00 /BnHAzxz,n - ijj,n” =0,
hmn—wo Hxi,n—‘rl - yz,n” = hmn—>00 anHuz - yz,nH =0 V i,
and

hmn%oo ”xi,n+1 - xz,n” < hmnﬁoo(||a7i,n+1 - y'L,nH + ||yz,n - xz,n”) =0 V.

Claim:
m
lim sup Z<U’Z — T4, Tipm — &) < 0.
n—oo
=1
Proof of Claim: Let {z1,,,%2n,, ., Tmmn ti>1 be a subsequence of

http://www. earthlinepublishers.com
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{1 n, T2, Tmn fn>1 such that

m
lim sup g — T4, Tiyp — &) = lim (Ui — &i, Tip, — Ti)
n— 00 l—o0 4

=1

so, V i:

lim sup(u; — &4, Tip — &) = lm (u; — T4, Tim, — Ti)-
n—00 l—o0

Furthermore, since Hy = II" H; is a Hilbert space and reflexive, and

{Z1n;, T2m;» s Tmon, }1>1 18 @ bounded sequence in Hy, there exists a subsequence

{xl,nztv@,nztv ooy Ty, >t of {z1n,, T2, s Tmom, Ji>1 that converges weakly to

(Z1,...,%m) € H; that is, Tiny, —% z, as t — o0o. Hence, the subsequences

{ymlt} C {Yin, } converge weakly to &; for all 7.
Moreover, for all ¢ and j # ¢:

1Aiz} — A5 1* < |Aiwim, — Ajjm, |

+ 2</1Zl‘2< — Aimi,nzt + ijj,nl AAJCL‘J J A u, Aj:EiJHt >

Since Tiny, —" 27 as t — oo for all ¢, we have that Aixi,nzt —" A;x} ast — oo.
Thus, taking limits on both sides and using the fact that A;z; = Ajz7 for all
i,7 € {1,2,...,m}, we conclude that (z7,z3,....,z}) € Q.

lim supz Py Tip — )
t—o0
— tli}go<(x17n”$27n” --'axm,nl) - (.%'T,.’L';, "‘7'1";.;1)7 (1"1,07 Z2,0, "'71:m,0) - (xivxgv 71’.:71

= ((x], 25, ...,xy,) — (2], 25, ..., xr), (U1, T2y oy Ty) — (2], 25, ..y 2))) < 0.

Now, from (12) and (13), we have

Dn+1(i‘1, ,fim) S (1 — Ozn)Dn(.i'l, ,.f,‘m)

m

+ 20ln Z(u, — QAZZ', .%Ln — iz>
i=1

m
+2an ) llui = &l @inr — zinll.
i=1
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So, by Lemma 2.5, { Dy, (21, ..., &m) }n>0 converges strongly to zero as n — oo.
Hence, (21, Z2n, ..., Tm,n) converges strongly to (Z1, ..., L) € Q. This completes

the proof of this Case.

Case 2: Suppose there exists a subsequence {D, (Z1,...,3m)} of
{Dn(&1, ..., &m)} such that Dy, (Z1,....,2m) < Dp41(21,...,%m) for all s € N.
Then, by Lemma 2.4, there exists a non-decreasing sequence {gc}.>1 C N such
that:

(1) hmn—wo Gc = 0
(ii) Dg.(Z1, ..., Zm) < Dgo41(Z1, ..., &) for all ¢ € N.

Since the sequence {x; 4 }c>1 for ¢ = 1,...,m is bounded, we obtain from (12)

and using the arguments earlier:

Y g — Tig.l| =0, asc—o00 Vi

and
||xi,qc+1 — l“i,qu —0, asc—oo Vi.
Also,
m
lim sup Z<Uz Ty Tig, — &) <0
t—o00 i1

Since Dy, (21, ..., Zm) < Dg.+1(Z1, ..., Tm), we have:

m
+20g, > [l — &illl|2ig. 41 — i, gell-
=1

Dividing through by a4, and taking limits as ¢ — oo, we get:

m m
Dy (81, Bm) < 2) (s — &4, Tig, — ) + 2 lus — 2ill | @igo 1 — Tig,]
=1 =1
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and

Dy +1(Z1,...,2m) = 0 as c— oo.

Since De(Z1, ..., Tm) < Dgo+1(Z1, .., T ), then De(Z1, ..., &) — 0 as ¢ — oo. This
implies that

lim ||z;.— & =0 Vi,
Cc— 00

so that x; . — &; as ¢ — oo. Thus, (21,221, ..., Tmmn) = (L1, ..., Tm) &S N — 00,

This completes the proof of the second case and thus the proof of the Theorem. [

4 Concluding Remarks

The Multiple Split Equality Problem (MSEP) has been introduced in this work,
and an algorithm for constructing its solution has been provided. Moreover, the

strong convergence of the algorithm to such a solution has been established.
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