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Abstract

This research employed binary logistic regression and machine learning

techniques; Decision Tree, Random Forest, and Support Vector Machine

(SVM), to predict functional outcomes following ischemic stroke. The main

goal was to determine the most suitable model for the dataset through

a comprehensive performance evaluation. Four models were examined for

predicting post-ischemic stroke functional outcomes: Decision Tree, Random

Forest, Logistic Regression, and SVM. The evaluation involved metrics such

as Accuracy, Precision, F1-Score, and Recall. The Logistic Regression model

achieved the highest accuracy at 90%, accurately predicting outcomes in 90%

of cases. However, it had lower precision (50%), indicating an increased rate

of false positive predictions. On the other hand, the SVM model displayed

the highest precision (71.3%), implying fewer false positive predictions. It

also attained the highest F1-Score (77.5%), indicating a strong balance

between precision and Recall compared to the other models. Notably,

the Logistic Regression model achieved perfect Recall (100%), correctly

identifying all positive outcomes, while the Random Forest model showed

significant recall performance (93.2%). Conversely, the Decision Tree model
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exhibited moderate accuracy (66.11%) but lower precision (66%), F1-Score

(6.15%), and recall (3.2%), suggesting challenges with false positives and

false negatives. Choosing the best model depends on analysis priorities. For

accurate identification of positive outcomes, the Logistic Regression model’s

perfect recall is advantageous. For balanced performance, the SVM model’s

high F1-Score makes it a compelling option.

1 Introduction

The digital revolution has ushered in an era of information transformation,

driven by advanced data analysis algorithms. Machine learning, a subset of

this field, leverages mathematical and statistical models to make predictions and

gain insights from data. In healthcare research, predictive modeling techniques,

including logistic regression, decision trees, random forests, and support vector

machines, have gained prominence for their ability to forecast outcomes such as

stroke recovery. This study explores the application of machine learning to predict

functional outcome after ischemic stroke, with a focus on enhancing predictive

model accuracy. Ischemic stroke is a significant global health concern, and early

intervention is critical for improving patient outcomes. By leveraging patient

characteristics, risk factors, and imaging data, machine learning algorithms can

aid in prognosis and treatment decisions. The aim of this research is to investigate

the efficacy of various machine learning algorithms, including logistic regression,

support vector machines, decision trees, and random forests, in predicting

functional outcome after ischemic stroke. Accurate predictions in this context

hold the potential to significantly impact patient care and outcomes.

2 Materials and Methods

2.1 Source of Data

The data in this study comprises real-life data obtained from Nnamdi Azikiwe

University Teaching Hospital Nnewi, Anambra State, Nigeria, covering patients
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diagnosed with stroke from 1st January 2014 to 31st July 2019. The dataset

encompasses information from a total of 601 patients and includes various personal

characteristics such as patient’s age, gender, smoking, heart rate, chest pain,

cholesterol, blood pressure, blood sugar, and stroke.

2.2 Methods

This research applies a combination of statistical and machine learning techniques

to predict functional outcomes following ischemic stroke.

2.2.1 Sampling Techniques

The data analysis involves the application of sampling techniques to enhance

model robustness. The techniques employed include boosting, bootstrapping, and

bagging.

2.2.2 Model Evaluation Metrics

To assess the predictive performance of the models, several evaluation metrics

are utilized, including: Precision, Recall (Sensitivity), F1-Score, and Confusion

Matrix which provides information on true positives, true negatives, false

positives, and false negatives.

2.2.3 Logistic Regression

Logistic regression is employed to model the relationship between independent

variables and the binary dependent variable, which represents functional outcome

after ischemic stroke. Logistic regression in this research is aimed at developing

a model that can accurately classify or predict the likelihood of specific outcomes

after ischemic stroke. The interpretability of logistic regression results can provide
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valuable insights for clinical decision-making, enhance prognostic capabilities, and

contribute to the field of stroke management and treatment strategies.

Logistic regression is a method for fitting a regression curve, y = f(x), when

y is a categorical variable. The typical use of this model is predicting y given a

set of predictors x. The predictors can be continuous, categorical, or both. The

sigmoid function maps the predicted values to probabilities. The probability is

calculated as:

ŷj =
ex·bj

1 + ex·bj
.

In logistic regression, the logistic function is defined as:

p(x) =
eβ0+β1x

1 + eβ0+β1x
.

To fit the model, the method of maximum likelihoods can be used. The logistic

function will always produce a sensible prediction:

P (X)

1− P (X)
= eβ0+β1x,

where P (X)
1−P (X) is called the odds and can take any value between 0 and ∞. By

taking the log of both sides:

log

(
P (X)

1− P (X)

)
= β0 + β1x.

The left-hand side is called the log odds or logit, and the logistic regression

model has a logit that is linear in X.

2.2.4 Estimating the Logistic Regression Coefficients

β0 and β1 in the logistic regression model are unknown. We seek estimates for β0

and β1 such that the predicted probability p̂(xi) of stroke for each individual using

the logistic regression formula corresponds as closely as possible to individuals’

observed stroke status. In other words, we try to find β̂0 and β̂1 such that plugging
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these estimates into the model for p(X) yields a number close to one for all

individuals who had a stroke and a number close to zero for individuals who did

not. This intuition can be formalized using a mathematical equation called a

likelihood function:

L(β0, β1) =
∏
i:yi=1

p(xi)
∏
i:yi=0

(1− p(xi)).

The estimates β̂0 and β̂1 are chosen to maximize this likelihood function. Measure

of accuracy of the coefficient estimates is by computing their standard errors:

Z-statistic associated with β1 =
β̂1

SE(β̂1)
.

2.2.5 Making Predictions

Once the coefficients have been estimated, predictions can be made:

p̂(x) =
eβ̂0+β̂1x

1 + eβ̂0+β̂1x
.

2.3 Decision Tree

According to Anshul [1], this algorithmic model utilizes conditional control

statements and is non-parametric, supervised learning useful for both classification

and regression tasks. It is a tree-structured classifier, where internal nodes

represent the features of a dataset, branches represent the decision rules, and

each leaf node represents the outcome. The algorithm works as follows:

1. Start with the root node.

2. Select the best attribute to split the data based on a criterion such as

information gain or Gini index.
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3. Create a new internal node with the selected attribute.

4. Split the data into subsets based on the attribute values.

5. For each subset, repeat steps 2-4 recursively until a stopping criterion is met

(e.g., all instances belong to the same class or a maximum depth is reached).

6. Assign a class label to each leaf node based on the majority class of the

instances in that node.

7. The decision tree is now ready for predictions.

2.4 Random Forest

According to Biau and Scornet [2], random forest is composed of multiple decision

trees (classified regression trees).

The model randomly drafts N training subsets M = {m1,m2, . . . ,mn} based

on bootstraps. The probability P of each sample not being drawn is calculated

as:

P =

(
1− 1

N

)N
.

The N decision trees T = {T1, T2, . . . , Tn} are developed on their

corresponding training subsets. The Gini Index is calculated as:

G(M) =
k∑
k=1

Pk(1− Pk) = 1−
k∑
k=1

P 2
k

where:

- M is the independent training subset.

- The probability that the sample belongs to the k-th category is denoted as Pk.
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Incorporating random forest in this research is aimed at leveraging the

ensemble learning approach to improve prediction accuracy and robustness while

gaining insights into the important features that contribute to stroke outcomes.

This can enhance the understanding of stroke management and strategies,

potentially leading to improved patient care and decision-making in the field of

medicine.

2.5 Support Vector Machines

Vapnik [12] developed Support Vector Machines (SVM) to tackle the issue of

binary classification by constructing the hyper-plane to separate the positive class

and the negative class. The Gaussian Kernel function of SVM is given by:

K(xi, xj) = e−(xi−xj)2 .

Incorporating support vector machines in this research is aimed at developing

a predictive model that can effectively handle non-linear relationships,

high-dimensional data, and outliers, while potentially providing interpretable

insights through the analysis of support vectors. SVMs offer a robust and

well-established approach to predicting stroke outcome, contributing to the field

of ischemic stroke management and enhancing clinical decision-making.

3 Results

3.1 Logistic Regression Analysis

Table 1 evaluates the statistical significance and reliability of the estimated

coefficients in the logistic regression model. A non-significant (i.e., large) p-value,

greater than 0.05, suggests insufficient evidence to prove that the variables have

a significant impact on the log-odds of the outcome.
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• Age: The coefficient for age is 0.012882, indicating that for each one-unit

increase in age, the log-odds of the outcome increase by 0.012882. However,

this coefficient is not statistically significant at the 0.05 significance level.

• Gender: The coefficient of gender is 0.060505, suggesting that being in

the gender category (male or female) is associated with an increase in the

log-odds of the outcome by 0.060505. However, this coefficient is also not

statistically significant (p-value = 0.857).

• Smoking, Heart Rate, Chest Pain, Cholesterol, Blood Pressure,

and Blood Sugar: The coefficients for these values are not statistically

significant (all p-values > 0.05). Therefore, there is insufficient evidence to

suggest that these variables have a significant impact on the log-odds of the

outcome.

Table 1: Assessing Coefficient Estimates, Standard Errors, Z-Values, and

P-Values.

Variable Estimate Std. Error Z-Value P-Value

Intercept -0.692868 1.171708 -0.591 0.554

Age 0.012882 0.011316 1.138 0.255

Gender 0.060505 0.334619 0.181 0.857

Smoking 0.692868 0.355815 0.011 0.991

Heart Rate 0.004296 0.006356 0.676 0.499

Chest Pain 0.011730 0.060741 0.193 0.847

Cholesterol 0.000109 0.002199 0.050 0.960

Blood Pressure -0.000342 0.005059 -0.068 0.946

Blood Sugar 0.003742 0.003168 1.181 0.237
Source: Authors’ Computation, 2023
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3.2 Model Performance

The Confusion matrix below provides a summary of the predictions made by the

model against the actual true values of the target variable.

Predicted Classes

0 1

62 118

Based on the confusion matrix, the logistic regression model predicted 62 instances

as class 0 (no stroke) and 118 instances as class 1 (stroke). These numbers

represent the count of observations classified into each class based on the modelâs

predictions.

3.3 Analysis of Decision Tree Model

Test for Correlation

Table 2 below focuses on the relationship between the predictor variables and

the target variable i.e. it examined how changes in the predictor variables

are associated with the target variable. The decision tree has a total of 420

observations (n = 420). The root node is the starting point of the tree. The first

split occurs based on the variable “Age”. If the age is less than 45.5, we move

to node 2; otherwise, we move to node 3. Node 2 represents individuals with an

age less than 45.5. It contains 119 observations. The deviance for this node is

27.462180, and the predicted value (Yval) is 0.6386555. The lower the deviance,

the better the prediction accuracy. In this case, the deviance is relatively low,

indicating a reasonably good fit. At node 2, there are two further splits based

on blood sugar and heart rate. If blood sugar is less than 136.5, we move to

node 4. This node contains 76 observations. The deviance is 18.671050, and

the predicted outcome value is 0.5657895. Again, this deviance is relatively low,

suggesting a decent fit. At node 4, there is another split based on “Heart Rate”.
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If “Heart Rate” is less than 55.5, we move to node 8. This node represents

individuals with low heart rates (21 observations). The deviance is 4.666667,

and the predicted outcome value is 0.3333333. At this point, gender becomes

a splitting criterion. If Gender is greater than or equal to 0.5, we reach node

16. This terminal node represents individuals with a predicted outcome value of

0.1538462. Terminal nodes are the endpoints of the decision tree, where no further

splits occur. If “Gender” is less than 0.5, we reach node 17. This terminal node

represents individuals with a predicted outcome value of 0.6250000. If “Heart

Rate” is greater than or equal to 55.5, we move to node 9. This node represents

individuals with higher heart rates (55 observations). The deviance is 12.436360,

and the predicted outcome value is 0.6545455. This node is a terminal node,

and no further splits occur. If Blood Sugar is greater than or equal to 136.5, we

move to node 5. This node represents individuals with higher blood sugar levels

(43 observations). The deviance is 7.674419, and the predicted outcome value is

0.7674419. This node is also a terminal node. Node 3 represents individuals with

an age greater than or equal to 45.5. It contains 301 observations. The deviance

for this node is 59.661130, and the predicted outcome value is 0.7275748. This

node is a terminal node.

Table 2: Relationship between Predictor Variables and Target Variable

(Functional Outcome After Ischemic Stroke).

Node Observations (n) Deviance Predicted Outcome Value (Y value)

1) Root 420 87.797620 0.7023810

2) Age < 45.5 119 27.462180 0.6386555

4) Blood Sugar < 136.5 76 18.671050 0.5657895

8) Heart Rate < 55.5 21 4.666667 0.3333333

16) Gender ≥ 0.5 13 1.692308 0.1538462 *

17) Gender < 0.5 8 1.875000 0.6250000 *

9) Heart Rate ≥ 55.5 55 12.436360 0.6545455 *

5) Blood Sugar ≥ 136.5 43 7.674419 0.7674419 *

3) Age ≥ 45.5 301 59.661130 0.7275748 *

* denotes terminal node Source: Authors’ Computation, 2023
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Figure 1: Decision Tree Plot

3.4 Model Performance

3.4.1 Confusion Matrix

The confusion matrix is a summary of the model’s predictions compared to the

actual true values of the target variable.

Predicted Classes

2 1

60 117

Based on the confusion matrix:
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• The model correctly predicted a positive outcome (functional outcome after

stroke = 1) in 117 instances (True Positives).

• The model correctly predicted a negative outcome (functional outcome after

stroke = 0) in 2 instances (True Negatives).

• The model incorrectly predicted a positive outcome (functional outcome

after stroke = 1) when the actual outcome was negative (functional outcome

after stroke = 0) in 1 instance (False Positives).

• The model incorrectly predicted a negative outcome (functional outcome

after stroke = 0) when the actual outcome was positive (functional outcome

after stroke = 1) in 60 instances (False Negatives).

3.5 Analysis of Random Forest Regression Model

3.5.1 Confusion Matrix

The confusion matrix provides an overview of the model’s predictions compared

to the actual true values of the target variable.

Predicted

0 1

Actual 0 1 0

1 61 118

Based on the confusion matrix:

• The model correctly predicted a positive outcome (functional outcome after

stroke = 1) in 118 instances (True Positives).

• The model correctly predicted a negative outcome (functional outcome after

stroke = 0) in 1 instance (True Negatives).

http://www.earthlinepublishers.com



Predicting Functional Outcome After Ischemic Stroke ... 145

• The model did not make any false positive predictions (False Positives),

meaning it did not incorrectly classify a negative outcome as positive.

• The model incorrectly predicted a negative outcome (functional outcome

after stroke = 0) when the actual outcome was positive (functional outcome

after stroke = 1) in 61 instances (False Negatives).

3.6 Analysis of Support Vector Machine

3.6.1 Confusion Matrix

The confusion matrix provides valuable information about the performance of the

classification model.

Predictions

0 1

Actual 0 0 62

1 0 118

Based on the predictions:

• The model performed well in predicting positive functional outcomes

(functional outcome 1) after ischemic stroke, achieving 118 correct

predictions.

• However, it failed to identify any negative functional outcomes (functional

outcome 0) correctly, with 62 false positive predictions.

Figure 2 shows the scatter plot illustrating the relationship between age and

heart rate for individuals who have had a stroke (red) and those who have not

(blue). Additionally:
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Figure 2: SVM Scatter Plot for Age and Heart Rate.

• The scatter plot displays the decision boundary of the SVM classifier, a

curved line that separates the red and blue data points.

• The SVM classifier seeks to find the optimal decision boundary that

maximizes the margin and minimizes the classification error.

• Most of the red data points are positioned above the decision boundary,

while most of the blue data points are below it, indicating that the SVM

classifier can correctly predict the functional outcome for most individuals

based on their age and heart rate.

• However, there are some data points that fall on the wrong side of the

decision boundary (outliers), suggesting that age and heart rate alone are

not sufficient to predict the functional outcome for some individuals. Other

factors, such as comorbidities, medications, lifestyle, etc., may also play a

role.
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3.7 Performance Metrics of Logistic Regression and Machine

Learning Models

In this section, we compare the performance of three supervised machine learning

models and the Logistic Regression model to determine which model fits the data

better.

The results showed that the Logistic Regression model achieved the highest

accuracy of 90%. This implies that it correctly predicted the functional outcome

in 90% of cases. However, it exhibited the lowest precision at 50%, indicating

a higher likelihood of false positive predictions. On the other hand, the SVM

model demonstrated the highest precision at 71.3%, suggesting a lower rate of

false positive predictions. Additionally, it achieved the highest F1-Score of 77.5%,

indicating a better balance between precision and recall compared to other models.

The Logistic Regression model exhibited perfect recall (sensitivity) of 100%,

meaning it correctly identified all positive functional outcomes. The Random

Forest model also achieved high recall at 93.2%. The decision tree model exhibited

relatively lower performance across all metrics, indicating that it might not be as

suitable for this specific prediction task compared to other models. Considering

these findings, the choice of theâbestâ model depends on the specific priorities and

requirements of the analysis. If correctly identifying positive functional outcomes

is crucial, the Logistic Regression model with perfect recall may be preferred.

However, if a balanced performance between precision and recall is important,

the SVM model with the highest F1-Score could be considered. In summary, to

predict functional outcome after 36 ischemic stroke, the most crucial metric to

focus on is recall (sensitivity) which measures the ability of the model to correctly

identify positive cases (functional outcome) out of all actual positive cases in the

dataset. The Logistic Regression model with perfect recall is an excellent option.

The SVM model achieved a relatively high recall of 84.92% and also demonstrated

a good balance between precision and recall, as indicated by its higher F1-Score of

77.54%. This suggests that the SVM model is also a viable option for predicting

functional outcomes after stroke, especially in balancing the model sensitivity and
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precision.

Table 3: Performance metrics of the models.

Model Accuracy Precision F1-Score Recall (Sensitivity)

Decision Tree 0.6611 0.6667 0.0615 0.0323

Random Forest 0.6333 0.6548 0.7692 0.9322

Logistic Regression 0.9000 0.5000 0.6667 1.0000

SVM 0.6865 0.7133 0.7754 0.8492

4 Discussion

This research employed binary logistic regression and machine learning models,

including Decision Tree, Random Forest, and Support Vector Machine (SVM),

to predict functional outcomes after ischemic stroke. Additionally, the models

were evaluated to identify the best-fit model for the dataset. In the analysis, four

models were assessed for predicting functional outcomes after ischemic stroke:

Decision Tree, Random Forest, Logistic Regression, and Support Vector Machine

(SVM). Model performance was evaluated using metrics such as Accuracy,

Precision, F1-Score, and Recall (Sensitivity). The results revealed that the

Logistic Regression model achieved the highest accuracy of 90%, indicating correct

predictions in 90% of cases. However, it had the lowest precision at 50%,

implying a higher likelihood of false positive predictions. In contrast, the SVM

model demonstrated the highest precision at 71.3%, indicating a lower rate of

false positive predictions. Moreover, it achieved the highest F1-Score of 77.5%,

signifying a better balance between precision and recall compared to other models.

The Logistic Regression model exhibited perfect recall (sensitivity) of 100%,

correctly identifying all positive functional outcomes. The Random Forest model

also achieved high recall at 93.2%. The Decision Tree model showed moderate

accuracy of 66.11%, but it had relatively low precision (66%), an F1-Score of
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6.15%, and recall (sensitivity) of 3.2%, indicating a high number of false positives

and false negatives. This makes it less reliable for classification tasks. The choice

of the âbestâ model depends on specific priorities and requirements, with Logistic

Regression being preferred for correctly identifying positive outcomes and SVM

for a balanced performance between precision and recall.

5 Conclusion

In conclusion, based on the findings, the Support Vector Machine (SVM) model

appears to be a promising approach for predicting functional outcomes after

ischemic stroke. It exhibited high precision and a balanced F1-Score, suggesting

accurate predictions with a lower rate of false positives.
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