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Abstract 

Topological entropy is used to determine the complexity of a dynamical system. This 

paper aims to serve as a stepping stone for the study of topological entropy. We review 

the notions of topological entropy, give an overview on the relation between the notions 

and fundamental properties of topological entropy. Besides, we cover the topological 

entropy of the induced hyperspaces and its connection with the original systems. We also 

provide a summary on the latest research topic related with topological entropy. 

1. Introduction 

In the study of dynamical systems, one of the topics is to determine the chaotic 

behaviour of the systems. There are several methods to determine the complexity of the 

systems. Topological entropy is one of accepted methods that we use to determine the 

complexity of the systems. Before the term “entropy” was studied in the aspect of 

topology and dynamical systems, this term has been widely used in other research fields 

containing different meanings. 

The term “entropy” was formed from two Greek words: en which means “in” and 
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trope which means “transformation”. This term has been widely used in various research 

fields but carried different meanings. In 1864, this term made it first appearance in the 

field of thermodynamics. Clausius [46] defined the change in entropy of a body as the 

heat transfer divided by the temperature. Around 1870s, Boltzmann [45, Part III Section 

5] introduced entropy in the field of statistical mechanics to calculate the degree of 

uncertainty about the macrostate of the system that remains if given only the probability 

vector. Inspired by Boltzmann’s entropy, Shannon [38] adopted the term entropy in 

information theory and defined it as a measure of the average information content 

associated with a random outcome. 

In 1950s, Kolmogorov [25, 26] introduced the concept of entropy in dynamical 

system as a measure-preserving transformation and studied the attendant property of 

completely positive entropy (K-property). Later his student Sinai [39] formulated a more 

general version of entropy which known as Kolmogorov-Sinai entropy that is suitable for 

arbitrary automorphisms of Lebesgue spaces. Finally in 1965, the concept of the 

topological entropy was first introduced by Adler et al. [1] for continuous map on a 

compact topological space. Their idea was heavily inspired from Kolmogorov-Sinai 

entropy and the relation between these two entropies was proved by Goodwyn [16, 18]. 

Reader can refer to [21, 47] for extended history of entropy. 

After 1965, different notions of topological entropy have been proposed by other 

researchers [2, 5, 6, 19, 20, 33]. Most of the new notions extended the concept to a more 

general functions or spaces. Despite of that, the idea of measure the complexity of the 

systems was preserved among all these new notions. In general, if the topological 

entropy of a system is positive, then we say that the system is topologically chaotic [44, 

50]. 

In this paper, our main purpose is to review different notions of topological entropy 

and their properties. In Section 2, we review the construction of different notions of 

topological entropy. Section 3 will discuss the relations between the notions of 

topological entropy and some fundamental properties of topological entropy. In Section 

4, we study the topological entropy of the induced hyperspace system and review its 

connection with the topological entropy of the original system. Finally in Section 5, we 

give a summary on the recent development of topological entropy. 
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2. Notions of Topological Entropy 

In this section, we study the notions of topological entropy introduced by Adler et al. 

[1], Bowen [2], Canovas and Rodriguez [6], and Liu et al. [30]. Reader might come 

across other papers that introduce their own notion of topological entropy, we are not 

able to cover all of them. We only select the notions which widely cited by other 

researchers and close related to our interest. Throughout this paper, the pair ( )fX ,  

means dynamical system, where X is a topological (or metric) space and XXf →:  is 

a self-continuous map of X unless explicitly stated in particular subsection. 

2.1. Topological entropy of continuous map on compact topological space 

Adler et al. [1] were the first who introduce the concept of topological entropy which 

serve as an invariant under topological conjugacy and analogue of measure theoretic 

entropy. The notion is defined for continuous mappings on compact topological space in 

terms of open covers. In this subsection, we always let X be a compact topological space 

and XXf →:  be a self-continuous map of X. 

Definition 2.1. Let α be any open cover of X. Since X is compact, we can obtain 

finite subcovers from the cover α. Let ( )αN  denote as the minimal cardinality of all the 

subcovers of α. The entropy of α is defined as ( ) ( ).log α=α NH  Note that ( ) .1≥αN  

Definition 2.2. If α, β are any two open covers of X, then their join is defined as 

{ }.,: β∈α∈=β∨α BABA ∩  Similarly the join of any finite collection of open 

covers of X can be defined as ....,,1for:11






 =α∈=α == niAA iii

n
ii

n
i ∩V  

Since X is compact and f is continuous, for any open cover α of X the family of 

( ) { ( ) }α∈=α −−
AAff :11  is also an open cover of X. Obviously we have 

( ) ( ) ( )β∨α=β∨α −−− 111
fff  [1, Property 6]. Note that ( ( )) ( )α≤α−

HfH
1  and the 

inequality will become equal when map f is onto [1, Property 7]. Hence, we obtain the 

following lemma and the proof can be found in [43, Lemma 4.1.1]. 

Lemma 2.3. For every α open cover of X and f continuous, ( 1
0

1
lim −

=∞→
n
in H

n
V  

( ))α−i
f  exists and is a non-negative real number. 
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Definition 2.4. For a dynamical system ( )fX ,  and α open cover of X, we define 

the topological entropy of f with respect to cover α by 

( ) ( )




 α=α −−

=∞→ ∨ in

in fH
n

fh
1

0

1
lim,  

and the topological entropy of f by 

( ) ( ){ }.ofcoveropen:,sup Xfhfh αα= α  

Clearly from Definition 2.1, we can see that ( ) .0≥fh  

2.2. Topological entropy of uniformly continuous maps on metric space 

Bowen [2] defines his version of topological entropy for a uniformly continuous map 

on a metric space. From [15] we know that with Bowen’s notion we can relate the 

topological entropy and the measure theoretic entropy. Note that the metric space is not 

necessarily compact. In this section, ( )dX ,  means a metric space and XXf →:  is a 

member of ( ),, dXUC  where ( )dXUC ,  is the space of all uniformly continuous maps 

of ( )., dX  

Definition 2.5. For ( )dX ,  and ( ),, dXUCf ∈  let n be a positive integer and 

.0>ε  A new metric nd  on X is defined by ( ) ( ( ) ( )).,max,
10

yfxfdyxd
ii

ni
n

−≤≤
=  Let 

,XE ⊂  E is ( )ε,n -separated set of X if for all Eyx ∈,  where ,yx ≠  the inequalities 

( ) ε>yxdn ,  hold. A set XF ⊂  is said to be ( )ε,n -spans XK ⊂  (with respect to f ) 

if for all Kx ∈  there exists Fy ∈  such that ( ) ., ε≤yxdn  

Definition 2.6. Let K be a compact subset of X, ( )Krn ,ε  is denoted as the smallest 

cardinality of any subset F that ( )ε,n -spans K (with respect to f ) and ( )Ksn ,ε  is 

denoted as the largest cardinality of any ( )ε,n -separated subset of K. If we wish to stress 

the dependence on f we write ( )fKrn ,,ε  or ( )fKsn ,,ε  instead. Next, define 

( ) ( )Kr
n

fKr n
n

,log
1

suplim,, ε=ε
∞→

 and ( ) ( ).,log
1

suplim,, Ks
n

fKs n
n

ε=ε
∞→

 

The following lemma is based on Definition 2.5 and Definition 2.6. Reader may 

refer [2] for detail proof of the lemma. 
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Lemma 2.7. Let K be a compact subset of X. Then, 

 (i) ( ) ( ) .,
2

1
,, ∞<







 ε≤ε≤ε KrKsKr nnn  

(ii) 21 ε<ε  implies ( ) ( )fKrfKr ,,,, 21 ε≥ε  and ( ) ( ).,,,, 21 TKsTKs ε≥ε  

Definition 2.8. Let K be a compact subset of X and f be a uniformly continuous self-

map of X. We define the topological entropy of f with respect to K as 

( ) ( ) ( )fKsfKrKfhd ,,lim,,lim, ε=ε=
∞→ε∞→ε

 

and the topological entropy of f as 

( ) ( ){ }.compactis:,sup KKfhfh Kd =  

Note that in Definition 2.8 we stress the dependence on the metric d used. Later in 

Section 3 we will see when we restrict X to be a compact metric space, then 

( ) ( )Xfhfh dd ,=  and both Adler et al.’s notion and Bowen’s notion coincide. 

2.3. Topological entropy for continuous maps on non-compact metric spaces 

Topological entropy has been defined as a measurement of the complexity of a 

dynamical system. However, Bowen’s notion does not fully support this statement. We 

refer to an example from [51], we have a metric space ( )d,R  where R  represents the 

real line and d is the Euclidean metric and a uniformly continuous map RR →:T  is 

given by ( ) .2xxT =  It is obvious that the dynamics of this system is simple but 

( ) .2log=Thd  This flaw inspires Canovas and Rodriguez [6] to introduce a new notion 

of topological entropy modified from the Bowen’s notion. 

Canovas and Rodriguez’s notion is defined for continuous map on metric space. 

According to [6], this notion is designed to preserve the property of positive topological 

entropy implies the map has complicated dynamical behaviour, at least for continuous 

real maps. Additionally this notion preserves some properties that hold for Definition 

2.4. Throughout this section, we let ( )dX ,  be a metric space and XXf →:  be a 

continuous map. For any set ,XK ⊆  we can define a new continuous map 

XKf K →:|  as the restriction of map f  to set K. 

Definition 2.9. Let ( )fX ,K  denote as the collection of all compact subsets of X 
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which are strictly invariant by f, i.e., ( ) ( ){ }.compactand:, KKKfXKfX ⊆⊆=K  

The topological entropy for f  is defined as 

( ) ( ) ( ){ },,:|supent fXKfhf KdK K∈=  

where ( )Kd fh |  is the Bowen’s notion from Definition 2.8. 

Remark 2.10. If ( ) ∅=fX ,K , then ( ) 0ent =f  (see the proof of Theorem 2.1 (b) 

in [6]). 

2.4. Topological entropy of maps on topological spaces 

Liu et al. [30] proposed a new notion of topological entropy that generalizes to 

arbitrary topological dynamical systems (compactness, metrizability or axioms of 

separation not necessarily require) in 2009. Liu et al.’s notion is metric-independent for 

any metrizable spaces and coincide with Adler et al.’s notion when the topological space 

restricted to be compact (see Section 3). Most of the fundamental properties of 

topological entropy are either preserve or similar to the others. In this subsection, we 

denote X to be an arbitrary topological space and XXf →:  a continuous map. 

Definition 2.11. Let ( )fX ,  be an arbitrary topological dynamical system. Let α be 

an open cover of X and F be an f-invariant nonempty compact subset of X. We denote 

( )αFM  as the smallest cardinality of all subcovers (for F) of α. Since F is compact, a 

subcover (for F) of α must be exist. Therefore, ( )αFM  must be a positive integer. 

Finally, let ( ) ( ).log α=α FF ML  

Using Definition 2.2, we can find the join of any open cover (for F) of α. Similar to 

Adler et al.’s notion, we obtain the following lemma and its proof can be found in [30, 

Lemma 2.3]. 

Lemma 2.12. The limit ( ( ))α−−
=∞→

jn
jFn fL

n

1
0

1
lim V  exists. 

Definition 2.13. ( )fX ,C  is denoted as the collection of all f-invariant nonempty 

compact subsets of X, i.e., ( ) ( ){ }.andcompact,:, FFfFFXFfX ⊆∅≠⊆=C  

If the space X is compact, together with the fact that ( ) ,XXf ⊆  then we have 

( )fXX ,C∈  which implies ( ) ., ∅≠fXC  Note that ( )fX ,C  could be empty when X 
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is not compact. For example, we have a translation map RR →:T  defined by 

( ) .5+= xxT  Clearly, we can see that ( ) ., ∅=TRC  

Definition 2.14. Let ( )fX ,  be a topological dynamical system. For ( )fXF ,C∈  

and α be any open cover of X, topological entropy of f on F relative to α is denoted as 

( ) ( ( )).1
lim,,ent 1

0 α=α −−
=∞→

∗ jn
jFn fL

n
Ff V  By taking the supremum over all open 

covers α of X on ( )Ff ,,ent α∗ , we get the topological entropy of f on F denoted by 

( )α∗ ,ent f , i.e., ( ) { ( )}.,,entsup,ent Fff α=α ∗

α

∗  

Definition 2.15. Let ( )fX ,  be a topological dynamical system. When ( )fX ,C  

,∅≠  define 

( ) { ( ) ( )}fXFFff F ,:,entsupent C∈= ∗∗  

When ( ) ,, ∅=fXC  define ( ) .0ent =∗
f  ( )f

∗ent  is said to be the topological entropy 

of f. 

3. Relations between Notions and Fundamental Properties of Topological Entropy 

In this section, we will give an overview on the relation between the notions in 

Section 2 and some fundamental properties of topological entropy.  

3.1. Relations between different notions of topological entropy 

Recall that for two metrics d and d ′  on X, we say that they are uniformly equivalent 

if both identity functions ( ) ( )dXdXid X ′→ ,,:  and ( ) ( )dXdXid X ,,: →′  are 

uniformly continuous. In other words, ( )dXUCf ,∈  if and only if ( )., dXUCf ′∈  If 

X is compact and both metrics d and d ′  are equivalent metrics, then they are uniformly 

equivalent. Any continuous map XXf →:  is also uniformly continuous when X is 

compact. 

We know that Bowen’s notion is defined on arbitrary metric space. As mentioned in 

[2], Bowen’s notion is metric dependent. The following lemma and theorem show that if 

X is compact, then Bowen’s notion does not depend on the metric and it coincides with 

the classic Adler et al.’s notion. 
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Lemma 3.1. [2] If d and d ′  are uniformly equivalent and ( ),, dXUCf ∈  then 

( ) ( ).fhfh dd ′=  

Theorem 3.2. [51] If X is a compact metrisable space and d is any metric on X, then 

( ) ( ).fhfh d=  

Liu et al.’s notion is defined on arbitrary topological space. Recall that Adler et al. 

defined their notion on compact topological space. Hence, Liu et al.’s notion will 

coincide with Adler et al.’s notion in some special case, for example, when the 

topological space X is compact. The result is shown in the next theorem and the proof of 

the theorem can refer to [30, Theorem 2.9]. 

Theorem 3.3. If ( )fX ,  is a compact topological dynamical system, then 

( ) ( ).ent fhf =∗  

As mentioned in Section 2, Canovas and Rodriguez’s notion is a modification from 

Bowen’s notion. It is enough to study the relation between Canovas and Rodriguez’s 

notion and Liu et al.’s notion. Since topological and metric spaces are not equivalent, 

Canovas and Rodriguez’s notion and Liu et al.’s notion are essentially different in 

general. The next theorem shows the consistency between these two notions. 

Theorem 3.4. [30] Let ( )dX ,  be a metric space and f be a continuous mapping 

from X into itself. Then the topological entropy according to Definition 2.15 and the 

topological entropy given by Definition 2.9 are consistent, i.e., ( ) ( ).entent ff =∗  

3.2. Fundamental properties of topological entropy 

Topological entropy comes with some fundamental properties. We will discuss some 

fundamental properties of topological entropy based on Liu et al.’s notion. For other 

notions that we reviewed in Section 2, the fundamental properties of topological entropy 

will be similar or different due to the way they are being defined. Hence, for each 

fundamental property of topological entropy that we discuss, we will give a remark about 

the same fundamental property on other notions. 

Recall that if we let ( )fX ,  and ( )gY ,  be any topological dynamical systems and 

YX →π :  be a homeomorphism map such that .π=π �� gf  Then f is topologically 

conjugate to g and map π  is known as conjugacy [50]. 
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Theorem 3.5. [30] If ( )fX ,  and ( )gY ,  are two topologically conjugated 

dynamical systems, then ( ) ( ).entent gf
∗∗ =  

Remark 3.6. The notion given by Alder et al. [1], Bowen [2], Canovas and 

Rodriguez [6] are invariant of topological conjugacy as well. 

Theorem 3.7. [30] Let m be a positive integer, ( ) ( ).entent fmf
m ∗∗ ⋅≥  When 

( ) ( ),,, m
fXfX CC =  then ( ) ( ).entent fmf

m ∗∗ ⋅=  

Remark 3.8. For Adler et al., Bowen, Canovas and Rodriguez’s notions [1, 2, 6], the 

topological entropy of m
f  is equal to m times of the topological entropy of f. 

For two topological dynamical systems ( )fX ,  and ( )gY , , we also can form the 

product space YX ×  and a continuous map YXYXgf ×→×× :  defined by 

( ) ( ) ( ) ( )( ).,, ygxfyxgf =×  The pair ( )gfYX ×× ,  forms a topological dynamical 

system. 

Theorem 3.9. [30] Let ( )fX ,  and ( )gY ,  be two topological dynamical systems, 

where X and Y are Hausdorff. Then ( ) ( ) ( ).ententent gfgf
∗∗∗ +≤×  

Remark 3.10. Adler et al. show that ( ) ( ) ( )ghfhgfh +=×  without the 

assumption that X and Y are Hausdorff [1, Theorem 3]. However Goodwyn [17] proved 

that the equality only holds if X and Y are both compact Hausdorff spaces. Hence for 

Adler et al.’s notion we will have the inequality ( ) ( ) ( ).ghfhgfh +=×  Bowen’s 

notion yields similar result to Theorem 3.9 (see [2] and [4]). Moreover, when one of the 

metric spaces is compact, then for Bowen’s notion we obtain ( ) =× gfhd  

( ) ( )ghfh dd +  [51, Theorem 7.10]. For Canovas and Rodriguez’s notion, we will have 

the topological entropy of gf ×  is equal to the sum of the topological entropies of f and 

g [6]. 

Theorem 3.11. [30] Let ( )fX ,  be a topological dynamical system and assume that 

map f is homeomorphism. If the conditions 

 (i) for any ( ) FFffXF →∈ :,,C  is autohomeomorphism; 

(ii) for any ( ) FFffXF →∈ −− :,, 11
C  is autohomeomorphism; 

holds, then ( ) ( ).entent 1−∗∗ = ff  
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Remark 3.12. For a homeomorphism map f, the topological entropy of f and the 

topological entropy of 1−
f  are equal according to Adler et al. [1], Canovas and 

Rodriguez’s notions [6]. For Bowen’s notion, the topological entropy of f and the 

topological entropy of 1−
f  are not necessary equal under the condition f is 

homeomorphism (see Remark 16 in [51]). 

4. Topological Entropy of Continuous Map for Induced Hyperspace 

The set valued dynamics that induced from original dynamics is known as induced 

hyperspace. We can find the topological entropy for the induced hyperspace in a similar 

fashion to the original dynamical system. Hence, there is a connection between the 

original system and the induced hyperspace. We discuss the formation of hyperspace and 

the connection of topological entropy between original and induced systems. Reader can 

refer famous sources such as [23], [34], [48] and [49] for further exploration about 

hyperspaces. 

Definition 4.1. Let ( )τ,X  be a topological space. Then X2  is defined as the family 

of all nonempty closed subsets of X. For any finite collection of sets ,...,,, 21 τ∈nUUU  

let  

....,,1eachforand:2...,,,

1

21












=∅≠⊂∈=
=

niUAUAAUUU i

n

i

i
X

n ∩∪  

The collection of all subsets of X2  denoted as { τ∈= in UUUU :...,,, 21B  for each 

}ni ...,,1=  is a base for a topology of X2  called the Vietoris topology or finite 

topology, .vτ  We call the pair ( )v
X τ,2  hyperspace of X. 

Definition 4.2. When ( )dX ,  is a metric space, for any X
A 2∈  and ,0>ε  let 

( ) { ( ) ε<∈=ε axdXxAN ,:,  for some }.Aa ∈  We call ( )ε,AN  as ε-neighborhood 

of A. For ,2, X
BA ∈  a map [ )∞→× ,022: XX

dH  is defined as 

( ) ( ) ( ){ }.,and,:0inf, ε⊆ε⊆>ε= ANBBNABAHd  

dH  (or simply denote as H) is a metric for X2   known as the Hausdorff metric. 
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Remark 4.3. From 0.13 of [49], we know that when X is compact, the Vietoris 

topology and the topology induced by the Hausdorff metric are the same. 

Definition 4.4. Let XXf →:  be a self-continuous mapping of X. Then a 

continuous mapping XX
f 22: →  given by ( ) ( ) ( ){ }AaafAfAf ∈== :  for each 

X
A 2∈  is called as the map induced by f, or simply the induced map. 

( )f
X ,2  is called as the induced hyperspace system induced by ( )., fX  Canovas 

and Lopez [7] investigate the relation of topological entropy between the original system 

and the induced system using Bowen’s notion. The result is shown in the following 

theorem. 

Theorem 4.5. [7] Let ( )dX ,  be a compact metric space and let XXf →:  be 

continuous. Let XX
f 22: →  be the map defined above. Then ( ) ( ).fhfh Hd ≤  

Moreover, the inequality can be strict. 

Remark 4.6. According to [30] or [38], if we use topological space instead of metric 

space, then we yield similar result for Theorem 4.5. 

From Theorem 4.5, we can see that if the ( )fX ,  is topologically chaotic, then the 

( )f
X ,2  is topologically chaotic as well. However, Kwietniak and Oprocha [27] proved 

that the converse is false. The following examples taken from [27] show that if 

( ) ,0=fhd  then we can get either ( ) 0=fhd  or ( ) .0≥fhd  

Example 4.7. Let αR  be an irrational rotation of a circle. Then ( ) =αRhd  

( ) .0=αRhd  

Example 4.8. Let S be a subset of 2∑  where symbol 1 only occurs at most once. 

Then for the subshift ( ) ( ) 0,, =σσ SdS hS  but ( ) .2log=σSdh  

Remark 4.9. Reader can refer [32] for alternate proof of Example 4.8 and [28] if the 

map f  is homeomorphism. 

5. Conclusion and Recent Development 

We have explored some notions of topological entropy that are commonly seen in 

literature. We have also studied the relation between the notions and some fundamental 
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properties of topological entropy. Furthermore, we have reviewed the connection of the 

topological entropy between the dynamical system and its induced system. To end this 

paper, we give a summary on the latest researches about topological entropy in 

dynamical systems. 

One of the earliest results by Bowen [3] was a dynamical system with specification 

property must have positive entropy. In 2015, Dong [14] showed that there exist some 

dynamical systems satisfying almost specification property but with zero entropy, 

contradict with Bowen’s result. Dong also proposed the sufficient and necessary 

condition for a system with almost specification property to have positive entropy. 

Kawan and Latushkin [22] derived the sufficient conditions for the variational principle 

that relate topological and measure-theoretic entropy together to hold for non-

autonomous systems. In 2016, Zheng and Chen [42] defined Bowen entropy for 

amenable group action dynamical systems and showed that the Bowen entropy of the 

whole compact space for a given Fφlner sequence under tempered condition equal to the 

topological entropy of the systems. 

Canovas, who did intensive researches in the topological entropy of fuzzified 

dynamical systems [8, 9, 10] recently extended his study to a more general family of 

fuzzy sets on a compact interval, i.e., fuzzy sets with their level sets (α-cuts) have at 

most m connected (convex) components, where m represents some positive integer. 

Canovas and Kupka [11] proved that both the continuous interval map and its 

fuzzification to the space of fuzzy sets with the property above have positive topological 

entropy. Another interesting dynamics that has been work for a long time is the graph 

map, a compact connected one-dimensional branched manifold (see [31, 35, 41]). 

Recently Sun [40] generalised some equivalent conditions for an interval map has 

positive topological entropy to graph map. 

Recently, researchers start to investigate the topological entropy of set-valued 

functions. In 2015, Carrasco-Olivera et al. [12] introduced two kinds of entropy which 

known as separated and spanning entropy for set valued functions. Furthermore they 

proved that these entropies satisfy some of the fundamental properties of the topological 

entropy of single-valued function. Later, Kelly and Tennant [24] introduced a new notion 

of topological entropy for set-valued function and showed that the topological entropy of 

the set-valued function and the topological entropy of the shift map on its orbit space are 

both equal. In 2016, Cordeiro and Pacifico [13] extended the notion of point-wise 
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specification property and continuum-wise expansivity into set-valued function. They 

proved that set-valued function with point-wise specification property have positive 

entropy and gave sufficient conditions for a continuum-wise expansive set-valued 

function to have positive entropy. Meanwhile, Raines and Tennant [36] proved that the 

set-valued function with specification property will imply positive entropy and 

topological mixing. 

One of the methods to study dynamical systems is through symbolic dynamics. In 

2018, Li et al. [29] studied the topological entropy of the induced hyperspace dynamical 

systems of the symbolic dynamical systems and proved that entropy of the induced 

hyperspace dynamical systems of any symbolic dynamical system with two or more 

symbols is infinity. 
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