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Abstract 

This paper aims at computing the rotation matrix and angles of rotations using Newton 

and Halley’s methods in the generalized polar decomposition. The method extends the 

techniques of Newton’s and Halley’s methods for iteratively finding the zeros of 

polynomial equation of single variable to matrix rotation valued problems. It calculates 

and estimates the eigenvalues using Chevbyshev’s iterative method while computing the 

rotation matrix. The sample problems were tested on a randomly generated matrix of 

order � from the family of matrix market. Numerical examples are given to demonstrate 

the validity of this work. 

1. Introduction 

The idea of computing zeros of a nonlinear equation of degree � with �(�) = 0, 

where �
 
is continuously differentiable in the interval [	, �] dates back to history. There, 

methods of Newton, Halley, Chevbyshev iterations and their variants were very popular 

in use among various researchers. Later on, there developed sporadic interests in the 

inventions of other higher iterative method and a combination of them to attain higher 

orders of convergences. Such later day development of these methods usually entailed 

higher computing time in space and complexities. Therefore as time went on the ideas 

arose of extending hitherto iterative methods for finding zeros of single variable 

polynomials of degree � to matrix valued problems. This birthed the idea of computing 

polar decomposition by these methods which gained favourable appeals in the minds of 

numerical analysts. For example, the matrix sign function written as sign(A) is usually 
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calculated by the Newton, Halley and Chebyshev’s iterative formulas. The matrix sign 

function �() belongs to a class of matrix square root problem which provides 

information on chromodynamic and density matrix in a molecular system with Fermi 

level [4] as a few examples. 

In [13] a great enumeration of viable areas in which matrix sign function has gained 

prominence documented to include the following among others: solving algebraic Riccati 

equation, Lyapunov matrix equation, generalized Bernoulli equations, separation of 

matrix eigenvalue problems, computing the pth roots of a matrix and a host of others in 

the cited references. 

In [7] “Functions of Matrices: Theory and Computation”, Higham gave a well-

documented evidence of applicability of the matrix sign function. Bjorck in [3] also had a 

very excellent documentation on the matrix sign functions and polar decomposition of a 

matrix. In a nutshell, matrix sign function is a well-known class of polar decomposition. 

We work along this line in this paper to provide a new technique for computing matrix 

rotation using the polar decomposition. 

1.1. Preliminaries 

The polar decomposition forms the hall mark enthusiasm that spurs the development 

to a method of computing rotation matrix which is obtained free of charge with no extra 

work. Firstly, we will give a brief exposition of polar decomposition which will fully 

assist the reader to grasp with the basic tools necessary to understanding the subject 

matter rotation matrix. 

Following [3,6,7], the interest in computing the polar decomposition of a matrix 

 = ��� (where  ∈ ��∗�, � > � or ℂ�×�) was developed. The matrix �� ∈ ��×� is a 

unitary polar factor while the matrix � ∈ ��×� is a Hermittian factor. The study of polar 

decomposition of a matrix is an important aspect in numerical computing and engineering 

practices where it is always a necessary task providing the nearness of another matrix to a 

known matrix. Thus, nearness to the polar decomposition is the difference between 

matrix  and its polar factor, that is ‖ − ���‖. The polar decomposition of a matrix 

thus describes [3] information on nearby structured matrices. The matrix gives the nearest 

Hermittian positive semi-definite matrix to . Therefore, one often recovers the ��� [2] 

from computing the polar decomposition of  = ��� by computing the eigen 

decomposition of � ∈ ��×� such that � = �∑�!, where ∑ ∈ ��×� and, � ∈ ��×� 

[6,7,8,9,10,11,12]. Therefore it follows that the polar decomposition narrows closely the 
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Singular value decomposition (SVD). In a polar decomposition  = �∑�", the � and � 

are the left and right singular vectors respectively while ∑ contains the associated 

singular values of  (i.e., eigenvalues of (!)). 

Computing the nearness to the polar decomposition [3] involves the following steps. 

Firstly, compute the polar factor � by yet to be discussed Newton or Halley’s iterative 

method. Then the matrix � is calculated by some technique in the accompany formula. 

The difference matrix � =  − ��� is performed. Secondly, calculate the matrix norm � 

denoted as ‖�‖. Any of the matrix norms can be used such as infinite norm, the first 

norm or the Frobenius norm (2-norm of matrix singular values) may be suitable for this 

purpose. The scaling dynamically Newton’s and Halley’s method [1,7,13] are a class of 

methods which use the scaling factors such as matrix condition numbers, the determinant 

of a matrix or a combination of both scaling equivalent factor to  speeding up calculation 

process in the matrix polar decomposition. This process leads to a dynamically rotated 

matrix which hitherto has not been considered by anybody in the available literatures. 

Of particular interest in this study is the rotation matrix and the accompanying 

rotation angles. This can be calculated from the numerical results in the polar 

decomposition  = ���. The rotation component in the polar decomposition is the 

unitary matrix ��. The rotation matrix is the result obtained by taking the logarithm of 

the component matrix ��.  

2. Derivation of a Class of Iterative Methods 

A class of iterative methods for computing polar decomposition is presented. The 

methods were derived from the iterative methods known to converge globally and 

quadratically to the desired zeros of polynomials of single variable, �(�) = 0. 

The polar decomposition is amenable to methods calculating the roots of polynomial 

equation of single variable. Some relevant literature in this field are [1,3,6,7,8,9,10,12]. 

The two commonly used methods are the Newton and Halley’s iteration. Higher 

order method exists such as Chevbyshev’s method [11]. We shall however dwell on the 

former two methods of Newton and Halley. They are written as 

�#$% = �# − �/(�#)'%�(�#),   ) = 0,1,2, …   (Newton’s method)           (2.1) 

�#$% = �# − -(./)
-/(./)'0(1/)0//(1/)

20/(1/)
,   ) = 0,1,2, …   (Halley’s method)           (2.2) 
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Following [11] the pth root formula for the equation �3 − 	 = 0, 4 ≥ 2 with the Newton 

and Halley’s methods are written in the forms: 

�#$% = %
3 6(4 − 1)�# + 	�#

%'38,  �9 = 1,  4 ≥ 2,  ) = 0,1,2, … (Newton method)   (2.3) 

�#$% = �# :(3'%)./;$(3$%)<
(3$%)./

;$(3'%)<= ,  �9 = 1,  4 ≥ 2,  ) = 0,1,2, … (Halley’s method)    (2.4) 

In equations (2.3) and (2.4), we take 4 = 2
 
for solving matrix square root equation 

>? −  = @. This technique introduced the Newton’s and Halley’s methods as the basic 

tools for implementation in the matrix square root problem. We therefore extend this 

approach to the case of polar decomposition and consequently the matrix rotation 

problem which we shall describe subsequently in the paper. For this, we review in the 

forms: 

Newton’s Method: 

>#$% = %
? A># + >#'!B,   >9 =     () = 0,1,2, … )                       (2.5) 

The Halley’s Method: 

>#$% = >#A3>#? + B'%A>#? + 3B,  >9 = D    () = 0,1,2, … )            (2.6) 

It is usual to modify the Newton’s and Halley’s methods [5,9,11]. Such modifications are 

the scaled Newton’s and scaled Halley’s methods and are written as: 

The scaled Newton’s method: 

>#$% = %
? EF#># + %

G/ >#'%H    () = 0,1,2, . . . ).                          (2.7) 

The modified Halley’s method: 

>#$% = >#A	#D + �#>#!>#BAD + F#>#!>IB'%,  >9 = J
< ,  	 = ‖‖?  () = 0,1,2, . . . ). (2.8) 

Taking for instance, 	I = ‖‖?, �# = %
‖J‖2 , F# = 	# + �# − 1, as parameters in the 

iterations in equations (2.7) and (2.8) respectively will yield improved iterative results. 

Besides the aforementioned methods regarding equations (2.7) and (2.8), by applying 

the ��� on equation (2.5) we have that 

>#$% = �∑#A	#D + �#∑#?BAD + F#∑#?B'%�!.                            (2.9) 
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The matrices � and � are orthonormal while ∑# = (K%, K?, . . . , KL , . . . , K�) are the singular 

values corresponding to the matrix !, where, K% > K? >. . . > KL > 0, are ordered 

according to their multiplicities. 

Following equation (2.9) we now describe theoretical basis surrounding the singular 

values associated with the iterated matrix K(>#$%). We give such review here critical for 

deeper understanding of the subject matter under consideration. 

The estimate for KM(>#$%) is given by the equation 

KM(>#$%) = N#(KM(>#)),                                             (2.10) 

where, 

N#(�) = � E </$O/
%$G/.2H ;   (0 < N#(�) < 1).                            (2.11) 

In [1,3,7,9,10] the global minimizers of N#(�) are well known. Thus setting as  

	# = ℎ(ℓ#),     �# = (</'%)2
Q  ,                                              (2.12) 

ℎ(ℓ) = √1 + S + %
? T8 − 4S + W(?'ℓ2)

ℓ
2√%$� ,                                 (2.13) 

S = TQA%'ℓ2B
ℓ

X
Y

 ,                                                        (2.14) 

ℓ9 = O
< ,   ℓ# = ℓ/Z[A</Z[$O/Z[ℓ/Z[2 B

%$G/Z[ℓ/Z[2 ,   ) = 1,2, …                        (2.15) 

one computes the value ℓ#, which is actually equals to the lower bound of  the smallest 

singular value in the phase space matrices in the recurrence relation by the equation: 

ℓ# = ℓ/Z[A</Z[$O/Z[ℓ/Z[2 B
A%$G/Z[ℓ/Z[2 B  ,   (ℓ9 ≤ K(>9)�M�).                           (2.16) 

Introducing the ]� decomposition see, e.g., [3,6,7,8] from its history of evolution, 

we then compute  the following expression in the modified Halley’s method in equation 

(2.9): 

^F#>#D _ = `]%]?a �,                                                    (2.17) 

>#$% = O/
G/

># + %
bG/ E	# − O/

G/H ]%]?,    ) ≥ 0.                           (2.18) 
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where, 

]%]?! = F#>#AD + F#?>#?>#B'%
.                                 (2.19) 

Nevertheless as to be noted in a closing remark in this section the inverse Newton’s 

method in this class of methods discussed above also remains valid [7]. 

Theorem 2.1. The Halley’s method expressed in equation 2.2 has an order of 

convergence three and it is globally convergent for any starting values. 

The details about Halley’s method can be found in [11]. 

3. The Main Result: The Rotation Matrix  

The basic result in the work is that the polar decomposition described above will be 

used to obtain the rotation matrix. The rotation matrix is the matrix obtained after 

calculating with the numerical method to obtain the form  = ��� where we used the 

Newton’s and Halley’s method respectively. Therefore, the primary purpose in the 

computation is obtaining the rotation component in the polar decomposition as the 

unitary matrix �� free of charge without additional work. The angular velocity of 

Rotation matrix thus becomes a central interest which is obtained by taking the logarithm 

of the component matrix ��. Thus the resulting matrix is then the angular velocity. It 

represents the rate at which the rotation matrix is changing with respect to time. This 

provides detail information about the rotational motion associated with rotation matrix. 

Fundamental to the work is the computation of eigenvalues of rotation matrix which 

represents the rotation angles in radians. The eigenvectors represent the rotation axis. The 

eigenvalues are calculated using the Chevbyshev method in the senses of Arnoldi’s 

iteration [6]. 

There is need for investigation in the relationship existing between two given 

subspaces in the rotation axis. This includes how close they are, do they intersect? Can 

one be rotated into another? These questions were answered in [6], as result we omit. 

3.1. The methodology 

Abstractly, we fast forward the Newton’s and Halley’s methods earlier described in 

Section 2 which we are using in the computation of rotation matrix and angles of 

rotations in the form polar decomposition: 
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The Newton’s method: 

Newton’s method is an iterative optimization technique to find the polar 

decomposition of a given matrix. The iteration updates the rotation matrix � using the 

equation. 

>c#$% = %
? A># + >#'!B,     >9 =      () = 0,1,2, … ).                      (3.1) 

The Halley’s method: 

We hereby extend Halley’s iteration formula expressed in equation (2.2) from the 

single variable equations for polynomial problems of single variable to the rotation 

matrix problem. The iteration updates the rotation matrix � using the Halley’s algorithm: 

Algorithm 3.1 of Halley’s method. 

d =  − � ∗ �! 
S� = 0.5 ∗ E� ∗ (�!) + AdB'%H 
S2� = � ∗ (�! ∗ S�) − S� ∗ �! 
>#$% = � + 2 ∗ S�'% ∗ Ad − S� ∗ �B − 0.5 ∗ (S2�)'% ∗ (�! ∗ � − D) 
�#$% = >#$% ∗ �# 

Here,  is the given matrix, � is the rotation matrix, ' is a temporary variable, S� is the 

first derivative, and S2� is the second derivative. As with Newton’s method, the iteration 

continues until the residual norm falls below a specified tolerance or reaches a maximum 

number of iterations. 

Both Newton’s and Halley’s methods are iterative techniques for the polar 

decomposition, but Halley’s method tends to converge faster due to the use of higher-

order derivatives in its iteration. Whereas Newton’s method is quadratically convergent, 

the Halley’s method is cubically convergent to the desired solution. 

The iteration updates the rotation matrix � in succession until convergence is 

attained. 

3.2. Numerical results 

We provide results for the computed rotation matrix and rotation angles from the 

numerical test problem using Newton’s and Halley’s methods. 
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⎣⎢
⎢⎢
⎡0.72620613  0.24406446  0.60207421  0.53672703   0.42840759
0.24406446  0.86565298  0.17261807   0.24457816   0.2212896
0.60207421  0.17261807  0.72270461   0.43629414   0.45835621
0.53672703  0.24457816  0.43629414   0.85731306   0.45898858
0.42840759  0.2212896    0.45835621   0.45898858   0.8481392 ⎦⎥

⎥⎥
⎤
 

The sample matrices used for the tested problems are named A1, A2, A3. These were 

generated randomly from the matrix market using Sci-py code. 

Sample problem 1. Original symmetric Matrix A1: 

Below we presented the computed results with the two methods in the form Tables 1 

and 2. 

Table 1: Result for rotation matrix �o[  using Newton’s method (2.5). 

⎣⎢
⎢⎢
⎡   0.45106428 − 0.4596411          0.60498727       0.15364719  − 0.41660764
−0.01566061 − 0.67094869  − 0.12845163       0.69538118       0.25285513
−0.88301794 − 0.12872206       0.32477441  − 0.25104823  − 0.1987192
−0.09125429      0.40854111       0.7187919          0.50653646  − 0.25161584
−0.09125429      0.40854111       0.7187919          0.50653646  − 0.25161584⎦⎥

⎥⎥
⎤
 

Corresponding rotation angles (radians) to Table 1: 

(0.45106428 − 0.4596411  0.60498727  0.15364719  − 0.41660764). 

Table 2. Numerical results for the rotation matrix �"[  using Halley’s method (Algorithm 

2.6). 

⎣⎢
⎢⎢
⎡    0.45106428 − 0.4596411           0.60498727        0.15364719  − 0.41660764
−0.01566051  − 0.67094869   − 0.12845163        0.69538118       0.25285513
−0.88301794  − 0.12872206        0.32477441   − 0.25104823 − 0.1987192
−0.09125429       0.40854111         0.7187919          0.50653646  − 0.25161584
−0.08388052       0.37782237    − 0.20023771  − 0.4247228         0.76412346 ⎦⎥

⎥⎥
⎤
 

Corresponding rotation angles (radians) to Table 2: 

(1.65490707  2.42382623  1.78550429  1.86346698  1.45683618). 
From Tables 1 and 2 above, both Newton’s and Halley’s methods yielded same 

results for the rotation matrix and rotation angles for the given sample symmetric matrix 

of order 5 that was used as a trial experiment. The meaning is that the rotation matrix 

signifies the orthogonal component of the polar decomposition while the rotation angles 

denote the angle of rotation about corresponding rotation axis (as provided by the 

eigenvectors of rotation matrix). 
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Sample problem 2. Original symmetric Matrix A2: 

⎣⎢
⎢⎢
⎡0.58569239   0.60901746    0.88178832   0.89680938    0.56957174
0.60901746   0.75796097    0.93855484   0.6431292      0.86418686
0.88178832   0.93855484    0.92629921   0.72485866    0.95057222
0.89680938   0.6431292      0.72485866    0.51015896    0.7947987
0.56957174   0.86418686    0.95057222   0.7947987       0.65775385⎦⎥

⎥⎥
⎤
 

Similarly, we also presented results for Newton’s and Halley’s methods obtained 

from sample problem 2 in the forms of Tables 3 and 4 below. 

Table 3. Numerical values for rotation matrix �o2  (Newton’s method). 

⎣⎢
⎢⎢
⎡0.34785022 − 0.52082796  − 0.25396129 − 0.74284229  − 0.01405999
0.01411612 − 0.16808971       0.94195826 − 0.288004229     0.07424814
0.73308661      0.75823571       0.00833906  − 0.20810013       0.59619799
0.54815094 − 0.36967593  − 0.15038847      0.69957671  − 0.23298519
0.15354642      0.02627212       0.16141367       0.5038593          0.82861912⎦⎥

⎥⎥
⎤
 

Table 4. Numerical values for rotation matrix �"2  (Halley’s method). 

⎣⎢
⎢⎢
⎡0.34785022 − 0.52082796 − 0.25396129 − 0.01405999
0.01411612 − 0.16808971      0.94195826 − 0.28800425     0.07424814
0.73308771      0.75823571      0.00833906 − 0.20810013      0.59619799
0.54815094 − 0.36967593 − 0.15038847     0.69957671 − 0.23298519
0.15354642      0.02627212       0.16141367     0.5038593        0.82861912 ⎦⎥

⎥⎥
⎤
 

Table 5. Residual errors in Newton’s and Halley’s iteration corresponding to results in 

Tables 3 and 4. 

Iteration  

i 

Error in Newton’s method �o2   

(Table 3) 

Error in Halley’s method �"2   

(Table 4) 

1 0.374003479491028 0.374003479491028 

2 0.037175953324314135 0.005104640614007619 

3 0.000675636185003302 1.116502012463072e-07 

4 3.1742294328015e-08  

The computed rotation matrices in Tables 1-4 are named respectively 

�o[ , �"[ , �o2 , �"2 . The �o[  represents the rotation matrix obtained from using Newton’s 

method displayed in Table 1. The �"[  represents the rotation matrix calculated with 

Halley’s method which is displayed in Table 2. We also took another sample matrix and 



Stephen Ehidiamhen Uwamusi 

http://www.earthlinepublishers.com 

72

calculated for the rotation matrices respectively using Newton and Halley’s method 

which we named as �o2  and �"2  as displayed in Tables 3 and 4. Note that in each case 

we calculated for the corresponding rotation angles to the rotation matrices. 

Results in Tables 3 and 4 indicated that the two methods of Newton and Halley 

iterations are good enough for the requested rotation matrices for the sample test problem 

on symmetric matrix of order 5. The two methods provided errors per iteration which 

pointed out clearly the convergence pattern of the methods, see e.g., Table 5. The error 

significantly reduced with each of the two methods per iteration which was a successful 

convergence to the polar decomposition. Each of the two methods has its own advantages 

and disadvantages taking into factor the implementation complexity or computational 

efficiency.  

In another development, we computed with modified Halley’s method in equation 

(2.8) using another randomly generated matrix of order 5 for experiment. Here we 

present the results in the Table 6. 

Sample problem 3. The original randomly generated symmetric matrix A3. 

⎣⎢
⎢⎢
⎡0.39453252    0.5878613    0.75682223   0.6793194     0.44043939
0.5878613      0.2709741     0.30744075   0.89949971   0.76326134
0.75682223    0.30744075  0.77684865   0.71022001   0.56315175
0.6793194      0.89949971   0.71022001   0.40371184   0.3386824
0.44043939   0.76326134   0.56315175   0.3386824      0.69355038⎦⎥

⎥⎥
⎤
 

Table 6. Rotation matrix �"p  computed with Equation (2.8). 

⎣⎢
⎢⎢
⎡    0.22071376 − 0.14155046 − 0.43188722 − 0.24287271     0.84063489
−0.2708229         0.34015211 − 0.72935675 − 0.19462202 − 0.47169573
    0.58557385      0.78797297 − 0.04740694 − 0.20399091      0.02780601
    0.69246072 − 0.44701119 − 0.00612871 − 0.37874468 − 0.38975511
−0.29576857       0.13527976 − 0.52578538      0.82872004 − 0.06747766⎦⎥

⎥⎥
⎤
 

Computed rotation angles (Radians): 

(2.07248728  1.57111134  1.83541351  2.39025284  1.34826502) 

Residual norm: 4.559081480334167e-07. 

4. Discussion 

We discussed a novel approach for computing the rotation matrix and angles of 

rotation based on the polar decomposition of a matrix. The method used the Newton’s 
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and Halley’s methods in the formulation. We computed with a randomly generated 

matrix from the matrix market for a practical experimentation using Sci-py codes in 

Matlab. For instance, Tables 1 and 2 displayed results for the rotation matrices, and their 

corresponding rotation angles (in radians) for Newton and Halley’s methods. 

In Tables 3 and 4, we also computed another randomly generated matrix of order 5 

wherein, the errors associated with iterations for both Newton’s and Halley’s methods 

were obtained. For instance, in Table 3, it took four iterations of computations for 

Newton’s method to converge to a true solution while it was only three iterations for 

Halley’ method to attain the desired solution in Table 4. Meaning that Halley’s method 

converged to the desired solution at the second iteration while it took Newton’s method 

to converged to the solution at the third iteration. The angles of rotations for each method 

were computed using the Chevbyshev’s method in line with Arnoldi iteration [6]. 

5. Conclusion 

We conclude this paper stating a novel approach for the computation of rotation 

matrix and angles of rotation (in radian) obtained free of charge without additional work 

in the course of polar decomposition of a matrix. We have extended the techniques of 

both Newton’s and Halley’s methods from iteratively finding zeros of polynomial 

equation of single variable to the matrix rotation problem. The results computed are of 

high quality which converged to their desired solutions. We paid special attention to the 

computational aspects by implementing our numerical calculations for the Newton’s and 

Halley’s methods in Python codes for Matlab routines in [5]. 

Compliance with Ethical standards: 
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