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Abstract

In this paper, as using norms (T and C), we introduce the concepts

of strongest relations, cosets and middle cosets of Q-intuitionistic fuzzy

subgroups and prove some simple but elegant results about them. Also

we discuss few results of them under homomorphism as well as anti

homomorphism.

1 Introduction

After the introduction of fuzzy sets by Zadeh [27], various notions of higher-order

fuzzy sets have been proposed. Among them, intuitionistic fuzzy sets, introduced

by Atanassov [3, 4], have drawn the attention of many researchers in the last

decades. This is mainly due to the fact that intuitionistic fuzzy sets are consistent

with human behavior, by ecting and modeling the hesitancy present in real-life

situations. In fact, the fuzzy sets give the degree of membership of an element

in a given set, while intuitionistic fuzzy sets give both a degree of membership

and a degree of non-membership. As for fuzzy sets, the degree of membership
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is a real number between 0 and 1. This is also the case for the degree of

nonmembership, and furthermore the sum of these two degrees is not greater

than 1. Yuan and Lee [26] defined the fuzzy subgroup and fuzzy subring based

on the theory of falling shadows. Solairaju and Nagarajan [25] introduced the

notion of Q- fuzzy groups. Anthony and Sherwood [2] gave the definition of

fuzzy subgroup based on t-norm. In previous works [6-24], by using norms,

the second author investigated some properties of fuzzy algebraic structures,

specially, we defined and investigated Q-fuzzy subgroups, anti Q-fuzzy subgroups,

Q-intuitionistic fuzzy subgroups with respect to norms [6, 7, 8, 9, 15]. In this

study, we consider the concepts of strongest relations, cosets and middle cosets of

Q-intuitionistic fuzzy subgroups with respect to norms (T and C) and investigate

some of their properties. Moreover, we investigate some related properties of them

under homomorphism and anti homomorphism.

2 Preliminaries

This section contains some basic definitions and preliminary results which will be

needed in the sequal. For more details we refer to [1, 2, 3, 4, 5, 6, 7, 8, 10, 15].

Definition 2.1. A fuzzy subset of X is a function from X into [0, 1]. The set

of all fuzzy subsets of X is called the fuzzy power set of X and is denoted by

FP (X).

Definition 2.2. Let G be an arbitrary group with a multiplicative binary

operation and identity e. A fuzzy subset of G, we mean a function from G into

[0, 1]. The set of all fuzzy subsets of G is called the [0, 1]-power set of G and is

denoted FP (G).

Definition 2.3. Let µ ∈ FP (G). Then µ is called a fuzzy subgroup of G if

(1) µ(xy) ≥ µ(x) ∧ µ(y) for all x, y ∈ G and

(2) µ(x−1) ≥ µ(x) for all x ∈ G.

Denote by F (G), the set of all fuzzy subgroups of G.
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Definition 2.4. For sets X,Y and Z, f = (f1, f2) : X → Y × Z is called a

complex mapping if f1 : X → Y and f2 : X → Z are mappings.

Definition 2.5. Let X be a non-empty set. A complex mapping A = (µA, νA) :

X → [0, 1]× [0, 1] is called an intuitionistic fuzzy set (in short, IFS) in X, where

functions µA ∈ FP (X) and νA ∈ FP (X) define the degree of membership and

the degree of non-membership of the element x ∈ X to the set A, respectively,

and for every x ∈ X
0 ≤ (µA(x) + νA(x)) ≤ 1.

In particular ∅X and UX denote the intuitionistic fuzzy empty set and intuitionistic

fuzzy whole set in X defined by ∅X(x) = (0, 1) and UX(x) = (1, 0), respectively.

We will denote the set of all IFSs in X as IFS(X).

Definition 2.6. Let X be a non-empty set and let A = (µA, νA) and B = (µB, νB)

be IFSs in X. Then

(1) Inclusion: A ⊆ B iff µA ≤ µB and νA ≥ νB.
(2) Equality: A = B iff A ⊆ B and B ⊆ A.

Definition 2.7. A t-norm T is a function T : [0, 1] × [0, 1] → [0, 1] having the

following four properties:

(T1) T (x, 1) = x (neutral element)

(T2) T (x, y) ≤ T (x, z) if y ≤ z (monotonicity)

(T3) T (x, y) = T (y, x) (commutativity)

(T4) T (x, T (y, z)) = T (T (x, y), z) (associativity),

for all x, y, z ∈ [0, 1].

Corollary 2.8. Let T be a t-norm. Then for all x ∈ [0, 1]

(1) T (x, 0) = 0,

(2) T (0, 0) = 0.

Example 2.9. (1) Standard intersection t-norm

Tm(x, y) = min{x, y}.

(2) Bounded sum t-norm

Tb(x, y) = max{0, x+ y − 1}.
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(3) Algebraic product t-norm

Tp(x, y) = xy.

Lemma 2.10. Let T be a t-norm. Then

T (T (x, y), T (w, z)) = T (T (x,w), T (y, z)),

for all x, y, w, z ∈ [0, 1].

Definition 2.11. A t-conorm C is a function C : [0, 1]× [0, 1]→ [0, 1] having the

following four properties:

(C1) C(x, 0) = x

(C2) C(x, y) ≤ C(x, z) if y ≤ z
(C3) C(x, y) = C(y, x)

(C4) C(x,C(y, z)) = C(C(x, y), z) ,

for all x, y, z ∈ [0, 1].

Corollary 2.12. Let C be a C-conorm. Then for all x ∈ [0, 1]

(1) C(x, 1) = 1.

(2) C(0, 0) = 0.

Example 2.13. (1) Standard union t-conorm

Cm(x, y) = max{x, y}.

(2) Bounded sum t-conorm

Cb(x, y) = min{1, x+ y}.

(3) Algebraic sum t-conorm

Cp(x, y) = x+ y − xy.

Recall that t-norm T (t-conorm C) is idempotent if for all x ∈ [0, 1], T (x, x) =

x(C(x, x) = x).
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Lemma 2.14. Let C be a t-conorm. Then

C(C(x, y), C(w, z)) = C(C(x,w), C(y, z)),

for all x, y, w, z ∈ [0, 1].

Definition 2.15. Let (G, .) be a group and Q be a non-empty set. An

intuitionistic fuzzy set A = (µA, νA) ∈ IFS(G×Q) is said to be a Q-intuitionistic

fuzzy subgroup of G with respect to norms (t-norm T and t-conorm C) if the

following conditions are satisfied:

(1)

A(xy, q) = (µA(xy, q), νA(xy, q)) ⊇ A(T (µA(x, q), µA(y, q)), C(νA(x, q), νA(y, q))),

(2)

A(x−1, q) = (µA(x−1, q), νA(x−1, q)) ⊇ A(x, q) = (µA(x, q), νA(x, q))

which mean:

(a) µA(xy, q) ≥ T (µA(x, q), µA(y, q)),

(b) νA(xy, q) ≤ C(νA(x, q), νA(y, q)),

(c) µA(x−1, q) ≥ µA(x, q),

(d) νA(x−1, q) ≤ νA(x, q),

for all x, y ∈ G and q ∈ Q.

Throughout this paper the set of all Q-intuitionistic fuzzy subgroups of G with

respect to norms (t-norm T and t-conorm C) will be denoted by QIFSN(G).

Proposition 2.16. Let A = (µA, νA) ∈ QIFSN(G) such that T and C be

idempotent. Then

A(eG, q) ⊇ A(x, q)

for all x ∈ G and q ∈ Q.
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3 Strongest Relations, Cosets and Middle Cosets of

QIFSN(G)

Definition 3.1. Let A = (µA, νA) ∈ IFS(G × Q) and B = (µB, νB) ∈
IFS((G × G) × Q). We say that B is the strongest relation of G with respect

to A if B((x, y), q) = (µB((x, y), q), νB((x, y), q)) such that µB((x, y), q) =

T (µA(x, q), µA(y, q)) and νB((x, y), q) = C(νA(x, q), νA(y, q)) for all (x, y) ∈ G×G
and q ∈ Q.

Proposition 3.2. Let A = (µA, νA) ∈ IFS(G×Q) and B = (µB, νB) ∈ IFS((G×
G) × Q) such that B be the strongest relation of G with respect to A. Then A ∈
QIFSN(G) if and only if B ∈ QIFSN(G×G).

Proof. Let A = (µA, νA) ∈ QIFSN(G). First we show that

µB((x1, x2)(y1, y2), q) ≥ T (µB((x1, y1), q), µB((x2, y2), q))

for all (x1, x2), (y1, y2) ∈ G×G and q ∈ Q.

µB((x1, x2)(y1, y2), q) = µB((x1y1, x2y2), q)

= T (µA(x1y1, q), µA(x2y2, q))

≥ T (T (µA(x1, q), µA(x2, q)), T (µA(y1, q), µA(y2, q)))

= T (T (µA(x1, q), µA(y1, q)), T (µA(x2, q), µA(y2, q)))

= T (µB((x1, y1), q), µB((x2, y2), q))

Similarly we can see that

νB((x1, x2)(y1, y2), q) ≤ C(νB((x1, y1), q), νB((x2, y2), q))

for all (x1, x2), (y1, y2) ∈ G×G and q ∈ Q.

We now show that

µB((x, y)−1, q) ≥ µB((x, y), q)
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for all (x, y) ∈ G×G and q ∈ Q.

µB((x, y)−1, q) = µB((x−1, y−1), q)

= T (µA(x−1, q), µA(y−1, q))

≥ T (µA(x, q), µA(y, q))

= µB((x, y), q)

Similarly

νB((x, y)−1, q) ≤ νB((x, y), q)

for all (x, y) ∈ G × G and q ∈ Q. Hence, by Definition 2.15,

B = (µB, νB) ∈ QIFSN(G×G).

Conversely, suppose that B = (µB, νB) ∈ QIFSN(G×G).

(1) Let x1, x2, y1, y2 ∈ G with x2 = y2 = eG and q ∈ Q. Then Proposition 2.16

give us that A(e, q) ⊇ A(x1y1, q). Then

µA(x1y1, q) = T (µA(x1y1, q), µA(eG, q))

= T (µA(x1y1, q), µA(x2y2, q))

= µB((x1y1, x2y2), q)

= µB((x1, x2)(y1, y2), q)

≥ T (µB((x1, x2), q), µB((y1, y2), q))

= T (T (µA(x1, q), µA(x2, q)), T (µA(y1, q), µA(y2, q)))

= T (T (µA(x1, q), µA(e, q)), T (µA(y1, q), µA(e, q)))

≥ T (T (µA(x1, q), µA(x1, q)), T (µA(y1, q), µA(y1, q)))

= T (µA(x1, q), µA(y1, q)))

and thus

µA(x1y1, q) ≥ T (µA(x1, q), µA(y1, q))).
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Also

νA(x1y1, q) = C(νA(x1y1, q), νA(eG, q))

= C(νA(x1y1, q), νA(x2y2, q))

= νB((x1y1, x2y2), q)

= νB((x1, x2)(y1, y2), q)

≤ C(νB((x1, x2), q), νB((y1, y2), q))

= C(C(νA(x1, q), νA(x2, q)), C(νA(y1, q), νA(y2, q)))

= C(C(νA(x1, q), νA(e, q)), C(νA(y1, q), νA(e, q)))

≤ C(C(νA(x1, q), νA(x1, q)), C(νA(y1, q), νA(y1, q)))

= C(νA(x1, q), νA(y1, q)))

thus

νA(x1y1, q) ≤ C(νA(x1, q), νA(y1, q))).

(2) Let x, y ∈ G with y = eG and q ∈ Q. Then as Proposition 2.16 we obtain

µA(x−1, q) = T (µA(x−1, q), µA(eG, q))

≥ T (µA(x−1, q), µA(y−1, q))

= µB((x−1, y−1), q)

= µB((x, y)−1, q)

≥ µB((x, y), q)

= T (µA(x, q), µA(y, q))

= T (µA(x, q), µA(e, q))

≥ T (µA(x, q), µA(x, q))

= µA(x, q)

and then

µA(x−1, q) ≥ µA(x, q).
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Also

νA(x−1, q) = C(νA(x−1, q), νA(eG, q))

≤ C(νA(x−1, q), νA(y−1, q))

= νB((x−1, y−1), q)

= νB((x, y)−1, q)

≤ νB((x, y), q)

= C(νA(x, q), νA(y, q))

= C(νA(x, q), νA(e, q))

≤ C(νA(x, q), νA(x, q))

= νA(x, q)

thus

νA(x−1, q) ≤ νA(x, q).

Therefore from (1)-(2) we get that A = (µA, νA) ∈ QIFSN(G). This completes

the proof.

Definition 3.3. Let A = (µA, νA) ∈ QIFSN(G). Then middle coset aAb :

G×Q→ [0, 1] is defined by

(aAb)(x, q) = (aµAb, aνAb)(x, q) = (µA(a−1xb−1, q), νA(a−1xb−1, q))

for all x ∈ G, q ∈ Q and a, b ∈ G.

Proposition 3.4. Let A = (µA, νA) ∈ QIFSN(G). Then aAa−1 ∈ QIFSN(G)

for any a ∈ G.

Proof. Let a, x, y ∈ G and q ∈ Q. Then

(aµAa
−1)(xy, q) = µA(a−1xya, q)

= µA(a−1xaa−1ya, q)

≥ T (µA(a−1xa, q), µA(a−1ya, q))

= T ((aµAa
−1)(x, q), (aµAa

−1)(y, q))
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then

(aµAa
−1)(xy, q) ≥ T ((aµAa

−1)(x, q), (aµAa
−1)(y, q)).

Also

(aνAa
−1)(xy, q) = νA(a−1xya, q)

= νA(a−1xaa−1ya, q)

≤ C(νA(a−1xa, q), νA(a−1ya, q))

= C((aνAa
−1)(x, q), (aνAa

−1)(y, q))

then

(aνAa
−1)(xy, q) ≤ C((aνAa

−1)(x, q), (aνAa
−1)(y, q)).

And

(aµAa
−1)(x−1, q) = µA(a−1x−1a, q)

= µA((a−1xa)−1, q)

≥ µA(a−1xa, q)

= (aµAa
−1)(x, q)

thus

(aµAa
−1)(x−1, q) ≥ (aµAa

−1)(x, q).

Moreover

(aνAa
−1)(x−1, q) = νA(a−1x−1a, q)

= νA((a−1xa)−1, q)

≤ νA(a−1xa, q)

= (aνAa
−1)(x, q)

thus

(aνAa
−1)(x−1, q) ≤ (aνAa

−1)(x, q).

Then aAa−1 ∈ QIFSN(G) for any a ∈ G.
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Definition 3.5. Let A = (µA, νA) ∈ QIFSN(G). Then coset aA = (aµA, aνA) :

G×Q→ [0, 1] is defined by

(aA)(x, q) = (aµA, aνA)(x, q) = (µA(a−1x, q), νA(a−1x, q)) = A(a−1x, q)

for all x ∈ G, q ∈ Q and a ∈ G.

Proposition 3.6. Let A = (µA, νA) ∈ QIFSN(G) and T,C be idempotent

norms. Then

xA = yA

if and only if

A(x−1y, q) = A(y−1x, q) = A(eG, q)

for all x, y ∈ G and q ∈ Q.

Proof. Let x, y, g ∈ G. If xA = yA, then xA(x, q) = yA(x, q), then A(x−1x, q) =

A(y−1x, q) and so A(eG, q) = A(y−1x, q).

Also as xA = yA so xA(y, q) = yA(y, q) and then A(x−1y, q) = A(y−1y, q)

then A(x−1y, q) = A(eG, q). Therefore A(x−1y, q) = A(y−1x, q) = A(eG, q).

Conversely, let A(x−1y, q) = A(y−1x, q) = A(eG, q). Then

xµA(g, q) = µA(x−1g, q)

= µA(x−1yy−1g, q)

≥ T (µA(x−1y, q), µA(y−1g, q))

= T (µA(eG, q), µA(y−1g, q))

≥ T (µA(y−1g, q), µA(y−1g, q))

= µA(y−1g, q)

= yµA(g, q)
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= µA(y−1g, q)

= µA(y−1xx−1g, q)

≥ T (µA(y−1x, q), µA(x−1g, q))

= T (µA(eG, q), µA(x−1g, q))

≥ T (µA(x−1g, q), µA(x−1g, q))

= µA(x−1g, q)

= xµA(g, q)

and then

xµA(g, q) = yµA(g, q).

Also

xνA(g, q) = νA(x−1g, q)

= νA(x−1yy−1g, q)

≤ C(νA(x−1y, q), νA(y−1g, q))

= C(νA(eG, q), νA(y−1g, q))

≤ C(νA(y−1g, q), νA(y−1g, q))

= νA(y−1g, q)

= yνA(g, q)

= νA(y−1g, q)

= νA(y−1xx−1g, q)

≤ C(νA(y−1x, q), νA(x−1g, q))

= C(νA(eG, q), νA(x−1g, q))

≤ C(νA(x−1g, q), νA(x−1g, q))

= νA(x−1g, q)

= xνA(g, q)
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and then

xνA(g, q) = yνA(g, q).

Therefore xA(g, q) = (xµA(g, q), xνA(g, q)) = (yµA(g, q), yνA(g, q)) = yA(g, q)

then xA = yA.

Proposition 3.7. Let A = (µA, νA) ∈ QIFSN(G) and T,C be idempotent

norms. If xA = yA, then A(x, q) = A(y, q) for all x, y ∈ G and q ∈ Q.

Proof. As xA = yA, Proposition 3.6 gives us that A(x−1y, q) = A(y−1x, q) =

A(eG, q) for all x, y ∈ G and q ∈ Q. From

µA(x, q) = µA(yy−1x, q)

≥ T (µA(y, q), µA(y−1x, q))

= T (µA(y, q), µA(eG, q))

≥ T (µA(y, q), µA(y, q))

= µA(y, q)

= µA(xx−1y, q)

≥ T (µA(x, q), µA(x−1y, q))

= T (µA(x, q), µA(eG, q))

≥ T (µA(x, q), µA(x, q))

= µA(x, q)

we get that µA(x, q) = µA(y, q). Also

νA(x, q) = νA(yy−1x, q)

≤ C(νA(y, q), νA(y−1x, q))

= C(νA(y, q), νA(eG, q))

≤ C(νA(y, q), νA(y, q))

= νA(y, q)
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= νA(xx−1y, q)

≤ C(νA(x, q), νA(x−1y, q))

= C(νA(x, q), νA(eG, q))

≤ C(νA(x, q), νA(x, q))

= νA(x, q)

then νA(x, q) = νA(y, q). Thus A(x, q) = (µA(x, q), νA(x, q)) =

(µA(y, q), νA(y, q)) = A(y, q).

Definition 3.8. We say that A = (µA, νA) ∈ QIFSN(G) is a normal if

µA(xyx−1, q) = µA(y, q) and νA(xyx−1, q) = νA(y, q) for all x, y ∈ G and q ∈ Q.
We denote by NQIFSN(G) the set of all normal Q-intuitionistic fuzzy subgroups

of G with respect to norms (t-norm T and t-conorm C).

Proposition 3.9. If A = (µA, νA) ∈ NQIFSN(G), then the set G
A = {xA : x ∈

G} is a group with the operation (xA)(yA) = (xy)A.

Proof. This is straightforward.

Proposition 3.10. Let f : G → H be a homomorphism of groups and let B =

(µB, νB) ∈ NQIFSN(H) and A = (µA, νA) ∈ NQIFSN(G) be homomorphic

pre-image of B. Then ϕ : G
A →

H
B such that ϕ(xA) = f(x)B, for every x ∈ G, is

an isomorphism of groups.

Proof. Firstly, we prove that ϕ is a group homomorphism. Let x, y ∈ G and

q ∈ Q. Then

ϕ((xA)(yA)) = ϕ((xy)A) = f(xy)B = f(x)f(y)B = f(x)Bf(y)B = ϕ(xA)ϕ(yA)

and so ϕ is a group homomorphism. Clearly ϕ is onto and we prove that ϕ is

one-one. If ϕ(xA) = ϕ(yA), then f(x)B = f(y)B and from Proposition 3.6 we

get that

B(f(x)−1f(y), q) = B(f(y)−1f(x), q) = B(f(eG), q)
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and so

B(f(x−1)f(y), q) = B(f(y−1)f(x), q) = B(f(eG), q)

and then

B(f(x−1y), q) = B(f(y−1x), q) = B(f(eG), q)

which implies that

A(x−1y, q) = A(y−1x, q) = A(eG, q)

and thus Proposition 3.6 gives us that xA = yA which implies that ϕ is one-one.

Therefore ϕ will be an isomorphism of groups.

Proposition 3.11. Let f : G → H be an anti homomorphism of groups and

let B = (µB, νB) ∈ NQIFSN(H) and A = (µA, νA) ∈ NQIFSN(G) be anti

homomorphic pre-image of B. Then ϕ : G
A →

H
B such that ϕ(xA) = f(x)B, for

every x ∈ G, is an anti isomorphism of groups.

Proof. Firstly, we prove that ϕ is an anti group homomorphism. Let x, y ∈ G and

q ∈ Q. Then

ϕ((xA)(yA)) = ϕ((xy)A) = f(xy)B = f(y)f(x)B = f(y)Bf(x)B = ϕ(yA)ϕ(xA)

and so ϕ is a group homomorphism. Clearly ϕ is onto and we prove that ϕ is

one-one. If ϕ(xA) = ϕ(yA), then f(x)B = f(y)B and from Proposition 3.6 we

get that

B(f(x)−1f(y), q) = B(f(y)−1f(x), q) = B(f(eG), q)

and so

B(f(x−1)f(y), q) = B(f(y−1)f(x), q) = B(f(eG), q)

and then

B(f(x−1y), q) = B(f(y−1x), q) = B(f(eG), q)

which implies that

A(x−1y, q) = A(y−1x, q) = A(eG, q)

and thus Proposition 3.6 gives us that xA = yA which implies that ϕ is one-one.

Therefore ϕ will be an anti isomorphism of groups.
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