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Abstract

In this paper, a new distribution is proposed by mixing the exponential

distribution and the Shanker distribution with a mixing proportion being

the same as those that yielded the Shanker distribution. The proposed

distribution is referred to as the XShanker distribution. The distributional

properties of the XShanker distribution namely, quantile function, moments

and their associated measures,the mode, moment generating function,

characteristic function, distribution of order statistics, and entropy are

derived and studied. The reliability analysis shows that the failure rate is a

strictly increasing function. The parameter of the model was estimated using

the maximum likelihood function. We illustrated the usefulness of XShanker

distribution using data on waiting times of 100 bank customers and vinyl

chloride from clean ungradient ground-water monitoring wells in (g/L).

Received: September 7, 2023; Accepted: September 11, 2023; Published: September 15, 2023

2020 Mathematics Subject Classification: 60E05.

Keywords and phrases: exponential distribution, model fitting, Shanker distribution, XShanker
distribution.
*Corresponding author Copyright c© 2023 Authors



510 Harrison O. Etaga, Ekwuribe C. Celestine, Chrisogonus K. Onyekwere et al.

1 Introduction

Since [2] proposed a two-component distribution called Lindley distribution using

an exponential distribution with scale parameter θ and a gamma distribution

having shape parameter 2 and scale parameter θ with mixing proportion p = θ
θ+1 ,

the statistical literature has evolved with so many researches of this nature. [3]

introduced a one-parameter distribution named Chris-Jerry distribution from a

two-component mixture of the exponential distribution having a scale parameter

θ and gamma distribution with shape parameter 3 and scale parameter θ with

mixing proportion p = θ
θ+2 . [1] derived a one-parameter distribution called

Pranav distribution from two distributions namely exponential distribution with

scale parameter θ and gamma distribution having shape parameter 4 and scale

parameter θ. [11] introduced a two-parameter lifetime distribution named,

‘Shukla distribution’ which includes several one-parameter lifetime distributions.

A new one-parameter lifetime distribution named Sujatha Distribution with an

increasing hazard rate for modeling lifetime data was suggested by [10]. [9]

studied a one-parameter lifetime distribution named Ishita distribution based on a

two-component mixture of an Exponential distribution having a shape parameter

θ and a Gamma distribution having a shape parameter 3 and scale parameter θ

with mixing proportion θ3

θ3+2
. [4] studied a one-parameter lifetime distribution

named Akash distribution based on a two-component mixture of an exponential

distribution having a shape parameter θ and a Gamma distribution having a

shape parameter 2 and scale parameter θ with mixing proportion θ
θ+1 . [8]

studied a one-parameter lifetime distribution named Rani distribution based on a

two-component mixture of an exponential distribution having a shape parameter

θ and a gamma distribution having a shape parameter 5 and scale parameter θ

with mixing proportion θ5

θ5+24
. [7] studied a one-parameter lifetime distribution

named Rama distribution based on a two-component mixture of an exponential

distribution having a shape parameter θ and a gamma distribution having a shape

parameter 4 and scale parameter θ with mixing proportion θ3

θ3+6
. [6] studied

a one-parameter lifetime distribution named Aradhana distribution based on a
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two-component mixture of an exponential distribution having a shape parameter

θ and a gamma distribution having a shape parameter 2 and scale parameter θ

with mixing proportion 1
θ+1 . [5] studied a one-parameter lifetime distribution

named Shanker based on a two-component mixture of an exponential distribution

having a shape parameter θ and a gamma distribution having a shape parameter

2 and scale parameter θ with mixing proportion θ2

θ2+1
.

In this paper, we suggest a one-parameter lifetime distribution and call it

the XShanker distribution. The pdf is a mixture of two distributions namely

exponential distribution and Shanker distribution having a scale parameter θ with

a mixing proportion p = θ2

θ2+1
. The mixture is of the form fXShanker(x, θ) =

pExp(x, θ) + (1− p)Shanker(x, θ).

Let X ∼ XShanker(θ), then the pdf and cdf are respectively

f(x) =
θ2

(θ2 + 1)2
[
θ3 + 2θ + x

]
e−θx; x > 0, θ > 0 (1)

and

F (x) = 1−
[
1 +

θx

(θ2 + 1)2

]
e−θx (2)

The behaviour of the distribution is such that lim
x→0

f(x) = θ5+2θ3

θ4+2θ2+1
, which is

monotonic increasing for θ ≥ 1 and lim
x→∞

f(x) = 0 which is an extinction point of

mortality rate.

The survival and hazard rate functions are respectively

S(x) =

[
1 +

θx

(θ2 + 1)2

]
e−θx (3)

and

hrf(x) =
θ2
(
θ3 + 2θ + x

)
θ4 + 2θ2 + θx+ 1

(4)

The limiting values of the XShanker hazard function are

lim
x→0

hrf(x) =
θ5 + 2θ3

θ4 + 2θ2 + 1
and lim

x→∞
hrf(x) = θ.
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Hence, the hazard function is monotonic increasing as x→ 0 for θ ≥ 1 and there

is stability as x→∞.

The plots are displayed in the Figures 1, 2, 3, and 4 below
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Figure 1: pdf of XShanker distribution.
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Figure 2: cdf of XShanker distribution.
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Figure 3: survival function of XShanker

distribution.
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Figure 4: hazard function of XShanker

distribution.

The XShanker distribution has a unique mode Xmode = 1−2θ2−θ4
θ
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Figure 5: The graph of the Mode of XShanker distribution.

The remaining part of this article is in the following sequence; Section 2,

discusses the basic distributional properties of the proposed distribution. Section

3 is on the maximum likelihood estimation of the parameter. In Section 4,

application to real-life data is executed and the article is concluded in Section

5.

2 Distributional Properties of XShanker Distribution

In this section, we derive the basic distributional properties of the proposed model.

2.1 Quantile function

Let X ∼ XShanker (θ), suppose u ∼ U(0, 1), we obtain by inverting the cdf of

the XShanker distribution in eq 2 the quantile function as follows

ln

{
1− u

(θ2 + 1)2

}
= ln (θ4 + 2θ2 + 1 + θxq)− θxq (5)

which is analytically not tractable and hence numerically implemented.
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2.2 Moment

Let X ∼ XShanker (θ) with pdf in eq 1, the rth crude moment is obtained as

follows

µ
′
r = E(Xr) =

∫ ∞
0

xrf(x)dx =

∫ ∞
0

xr
[

θ2

(θ2 + 1)2
[
θ3 + 2θ + x

]
e−θx

]
dx

=
θ2

(θ2 + 1)2

{(
θ3 + 2θ

) ∫ ∞
0

xre−θxdx+

∫ ∞
0

x(r+1)e−θxdx

} (6)

Recall that Gamma function is defined as∫ ∞
0

x(r−1)e−λxdx =

(
1

λ

)α
Γα

hence

µ
′
r =

θ2

(θ3 + 1)2

{(
θ3 + 2θ

) ∫ ∞
0

x(r+1)−1e−θxdx+

∫ ∞
0

x(r+2)−1e−θxdx

}
=

θ2

(θ3 + 1)2

{(
θ3 + 2θ

) 1

θ(r+1)
Γ(r+1) +

1

θ(r+2)
Γ(r+2)

} (7)

The first crude moment which is the mean is obtained by substituting r = 1

in eq 7. That is;

µ =

(
θ4 + 2θ2 + 2

)
θ (θ2 + 1)2

(8)

The second, third, and fourth crude moments are obtained by substituting

r = 2, 3 and 4 in eq 7 which are respectively

µ
′
2 =

(
2θ3 + 4θ2 + 6

)
θ2 (θ2 + 1)2

; µ
′
3 =

(
6θ4 + 12θ2 + 24

)
θ3 (θ2 + 1)2

and µ
′
4 =

(
24θ4 + 48θ2 + 120

)
θ4 (θ2 + 1)2

(9)
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To obtain the variance, recall from the basic statistical theory that V ar(x) =

E(X2)− (EX)2, but

E(X) =

(
θ4 + 2θ2 + 2

)
θ (θ2 + 1)2

and E(X2) =

(
2θ3 + 4θ2 + 6

)
θ2 (θ2 + 1)2

therefore V ar(x) =
2θ7 + 4θ5 + 6θ4 + 2θ3 + 4θ2 + 2− θ8

θ2 (θ2 + 1)4

(10)

Table 1: Mean (µ), Variance (σ2), Coefficient of Variation (CV ), Skewness and

Kurtosis at various parameters (θ) and sample sizes (n).

n θ µ σ2 CV Skewness Kurtosis

25

0.1 82.73493 7214.78264 1.02665 2.01822 7.39351

0.5 4.27394 19.25314 1.02665 2.01822 7.39351

2 3.13102 10.33276 1.02665 2.01822 7.39351

2.5 4.17576 18.37880 1.02665 2.01822 7.39351

50

0.1 106.10849 12744.83837 1.06394 2.97375 14.64380

0.5 5.48137 34.01047 1.06394 2.97375 14.64380

2 4.01556 18.25270 1.06394 2.97375 14.64380

2.5 5.35546 32.46595 1.06394 2.97375 14.64380

75

0.1 99.70269 10108.38523 1.00840 2.95429 16.21497

0.5 5.15046 26.97491 1.00840 2.95429 16.21497

2 3.77314 14.47687 1.00840 2.95429 16.21497

2.5 5.03215 25.74990 1.00840 2.95429 16.21497

100

0.1 98.16215 9505.39882 0.99321 2.79002 15.11934

0.5 5.07088 25.36580 0.99321 2.79002 15.11934

2 3.71484 13.61329 0.99321 2.79002 15.11934

2.5 4.95440 24.21387 0.99321 2.79002 15.11934

2.3 Moment generating function

Let X ∼ XShanker (θ) with pdf in eq 1, the moment generating function is

Earthline J. Math. Sci. Vol. 13 No. 2 (2023), 509-526
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MX(t) = E(ext) =

∫ ∞
0

extf(x)dx

=
θ6 − θ5t+ 2θ4 − 2θ3t+ θ2

θ6 − 2θ5t+ θ4t2 + 2θ4 − 4θ3t+ 2θ2t2 + θ2 − 2θt+ t2

(11)

2.4 Characteristic function

Let X ∼ XShanker (θ) with pdf in eq 1, the characteristic function is

ΦX(it) = E(eitx) =

∫ ∞
0

eitxf(x)dx

=
θ6 − θ5it+ 2θ4 − 2θ3it+ θ2

θ6 − 2θ5it− θ4t2 + 2θ4 − 4θ3it− 2θ2t2 + θ2 − 2θit− t2
(12)

2.5 Entropy of XShanker distribution

Entropy is a measure of disorder in a system and the most popular is the Reny

entropy which is defined and derived as follows

Iω(x; θ) =
1

1− ω
log

∫ ∞
0

fω(x)dx (13)

Where f(.) is defined in eq 1. hence;

Iω(x; θ) =
1

1− ω
log

θ2ω

(θ2 + 1)2ω

[
(θ3 + 2θ + x)ωe−θωxdx

]
=

1

1− ω
log

 θ2ω

(θ2 + 1)2ω

ω∑
j=0

(
ω

j

)
(θ3 + 2θ)j

Γ(ω − j + 1)

(θω)ω−j+1


(14)
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2.6 Distribution of the Order Statistics

Let X1, X2, ..., Xn be a random sample of X(r); (r = 1, 2, ..n) and the r(th) order

statistics obtained by arranging Xr in ascending order of magnitude from the

XShanker distribution is

fr:n(x; θ) =

(
n

r

)
f(x) {F (x)}r−1 {1− F (x)}n−r

=

(
n

r

)
θ2

(θ2 + 1)2
(θ3 + 2θ + x)e−θx

{
1−

[
1 +

θx

(θ2 + 1)2

]
e−θx

}r−1
×
{

1 +

[
θx

(θ2 + 1)2

]
e−θx

}n−r
(15)

The pdf of the largest order statistics is obtained when r = n and that is;

fn:n(x; θ) =
nθ2

(θ2 + 1)2
(θ3 + 2θ + x)e−θx

{
1−

[
1 +

θx

(θ2 + 1)2

]
e−θx

}n−1
(16)

The pdf of the smallest order statistics is obtained when r = 1 and it is

f1:n(x; θ) =
nθ2

(θ2 + 1)2
(θ3 + 2θ + x)

{
1 +

θx

(θ2 + 1)2

}n−1
e−θnx (17)

3 Maximum Likelihood Estimation

Let x1, x2, ..., xn random samples of size n independently drawn from an XShanker

distribution. The likelihood function is defined as

L(xi; θ) =

n∏
i=1

f(xi, θ) =
θ2ne

−θ
n∑

i=1
xi

(θ2 + 1)2n

n∏
i=1

(3 + 2θ + x) (18)

where f(.) is defined in eq 1 The log-likelihood function becomes

logL(xi; θ) = φ = 2n log θ− 2n log (θ2 + 1)− θ
n∑
i=1

xi +
n∑
i=1

log (3 + 2θ + x) (19)
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Differentiating with respect to θ gives the following non-linear equation to be

implemented in R using optim() function

dφ

dθ
=

2n

θ
− 4θn

θ2 + 1
−

n∑
i=1

xi +
n∑
i=1

3θ2 + 2

θ3 + 2θ + x
(20)

4 Applications

The first real-life data is on the waiting times of 100 bank customers studied by

[12] in Table 2.

Table 2: Waiting time of 100 bank customers.

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7 2.9 3.1

3.2 3.3 3.5 3.6 4 4.1 4.2 4.2 4.3 4.3 4.4 4.4

4.6 4.7 4.7 4.8 4.9 4.9 5 5.3 5.5 5.7 5.7 6.1

6.2 6.2 6.2 6.3 6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6

7.7 8 8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6

9.7 9.8 10.7 10.9 11 11 11.1 11.2 11.2 11.5 11.9 12.4

12.5 12.9 13 13.1 13.3 13.6 13.7 13.9 14.1 15.4 15.4 17.3

17.3 18.1 18.2 18.4 18.9 19 19.9 20.6 21.3 21.4 21.9 23

27 31.6 33.1 38.5

The log-likelihood profile of the two data sets are

http://www.earthlinepublishers.com
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Figure 6: Log-likelihood Profile for the

waiting time data.
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Figure 7: Log-likelihood Profile for the

Vinyl Chloride data.

From Figure 6, the maximum value occurred at θ = 2.0 for the waiting time

data while in the case of the vinyl Chloride data in Figure 7, the maximum is

way below θ = 0.5. The analytical measures computed for the fitted distribution

are the negative Log-Likelihood (NLL), Akaike Information Criterion (AIC),

Corrected AIC (CAIC), Bayesian Information Criterion (BIC), HannanâQuinn

information criterion (HQIC), Cramer von Mises (W ∗), Anderson Darling (A∗),

Kolmogorov-Smirnov (K-S) statistic and the p-value. Whereas the rest of the

measures represent the model performance the K-S statistic and the p-value

determine the fitness of the distribution to the data.

Table 3: Analytical Measures of Fitness and Performance for waiting time data.

Method NLL AIC CAIC BIC HQIC W∗ A∗ K-S P-value θ Std Error

XShanker 317.98 637.963 638.004 640.569 639.018 0.035 0.226 0.049 0.970 0.195 0.013

Lindley 319.04 640.078 640.116 642.680 641.129 0.042 0.267 0.068 0.749 0.187 0.013

Ishita 321.85 645.700 645.740 648.305 646.754 0.036 0.235 0.109 0.186 0.302 0.017

Akash 320.96 643.929 643.970 646.534 644.984 0.053 0.341 0.100 0.267 0.296 0.017

Pranav 332.96 667.915 667.956 670.520 668.970 0.037 0.249 0.160 0.012 0.405 0.020

Chris-Jerry 320.34 642.686 642.727 645.291 643.741 0.089 0.570 0.075 0.628 0.279 0.017

Rama 331.61 665.224 665.265 667.829 666.279 0.049 0.331 0.158 0.014 0.402 0.020

XLindley 320.76 643.523 643.564 646.129 644.578 0.047 0.297 0.090 0.386 0.174 0.013

From Table 3 results, the proposed XShanker distribution is the best fit for the

data on the waiting time of 100 bank customers. This is because the K-S statistic

is the minimum while the p-value is the largest. Similarly, for the performance

Earthline J. Math. Sci. Vol. 13 No. 2 (2023), 509-526
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metrics namely NLL, AIC, CAIC, BIC, and HQIC, the values are minimum for

the proposed distribution compared to those of other competing distributions.
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Figure 8: The density, CDF, empirical reliability, and TTT plots for the waiting

time of 100 bank customer data.

Figure 8 reveals also that XShanker is best for modeling the waiting time of

100 bank customers’ data.
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Figure 9: PP plots for the waiting time of 100 bank customer data.

The second data is on Vinyl chloride data from clean upgradient ground-water

monitoring wells in (g/L) studied by [13] in Table 4. Again, the measures

for fitness used are the negative Log-Likelihood (NLL), Akaike Information

Criterion (AIC), Corrected AIC (CAIC), Bayesian Information Criterion (BIC),

HannanâQuinn information criterion (HQIC), Cramer von mises (W ∗), Anderson

Darling (A∗), Kolmogorov-Smirnov (K-S) statistic and the p-value. Whereas the

rest of the measures represent the model performance the K-S statistic and the

p-value determine the fitness of the distribution to the data.
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Table 4: Vinyl chloride data from clean upgradient ground-water monitoring wells

in (g/L).

5.1 1.2 1.3 0.6 0.5 2.4 0.5 1.1 8.0 0.8 0.4 0.6 0.9 0.4 2.0

0.5 5.3 3.2 2.7 2.9 2.5 2.3 1.0 0.2 0.1 0.1 1.8 0.9 2.0 4.0

6.8 1.2 0.4 0.2

Table 5: Analytical Measures of Fitness and Performance for the Vinyl Chloride

data.

Method NLL AIC CAIC BIC HQIC W∗ A∗ K-S P-value θ Std Error

XShanker 55.85 113.693 113.818 115.219 114.213 0.057 0.369 0.111 0.798 0.757 0.083

Lindley 56.3 114.607 114.732 116.134 115.128 0.063 0.405 0.133 0.588 0.824 0.105

Ishita 57.3 116.606 116.731 118.132 117.126 0.095 0.604 0.141 0.514 1.157 0.096

Akash 57.57 117.149 117.274 118.676 117.670 0.099 0.630 0156 0.376 1.166 0.113

Pranav 58.34 118.672 118.797 120.198 119.192 0.136 0.847 0.146 0.461 1.466 0.098

Chris-Jerry 57.93 117.854 117.979 119.380 118.374 0.103 0.655 0.178 0.230 1.164 0.132

Shanker 56.46 114.913 115.038 116.440 115.433 0.064 0.413 0.131 0.607 0.853 0.095

Rama 59.34 120.683 120.808 122.210 121.204 0.154 0.952 0.177 0.238 1.531 0.118

From Table 5 results, the proposed XShanker distribution is the best fit for

the data on Vinyl chloride data from clean upgradient ground-water monitoring

wells in (g/L). This is because the K-S statistic is the minimum while the p-value

is the largest. Similarly, for the performance metrics namely NLL, AIC, CAIC,

BIC, and HQIC, the values are minimum for the proposed distribution compared

to those of other competing distributions.
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Figure 10: The density, CDF, empirical reliability, and TTT plots for the Vinyl

Chloride data.

Figure 10 reveals also that XShanker is best for modeling the Vinyl chloride

data from clean upgradient ground-water monitoring wells in (g/L) data.
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Figure 11: PP plots for the Vinyl Chloride data.

The P-P plots in Figure 11 show that the proposed XShanker distribution

is best suited for the modeling of Vinyl chloride data from clean upgradient

ground-water monitoring wells in (g/L).

5 Conclusion

In this article, a one-parameter XShanker distribution was proposed. The

proposed distribution is better than the parent distribution Shanker in some
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scenarios. We derived some basic distributional properties which include the

quantile function, moments and related measures, the variance, the mode, the

moment generating function, the characteristic function, the distribution of order

statistics, and reny entropy. The parameter of the model was estimated using

the maximum likelihood estimation procedure. Two real data sets were used to

explain the usability of the proposed distribution in the face of competition.
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