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Abstract

Some new classes of harmonic hemivariational inequalities are introduced and

investigated in this paper. It has been shown that the optimality conditions

of the sum of two harmonic convex functions can be characterized by the

harmonic hemivariational inequalities. Several special cases such as harmonic

complementarity problems and related harmonic problems are discussed. The

auxiliary principle technique is applied to suggest and analyze some iterative

schemes for harmonic hemivariational inequalities. We prove the convergence

of these iterative methods under some weak conditions. Our method of proof

of the convergence criteria is simple compared to other techniques. Results

obtained in this paper continue to hold for new and known classes of harmonic

variational inequalities and related optimization problems. The ideas and

techniques of this paper may inspire further research in various branches of

pure and applied sciences.

1 Introduction

Variational inequalities theory, which was introduced by Stampachia [28] in

potential theory, provides us with a simple, general and unified framework to
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study a wide class of problems arising in pure and applied sciences. Variational

inequalities have been extended and generalized in several directions using novel

and innovative techniques.

It is well known that the minimum of the differentiable convex function F on

the convex set K can be characterized by the variational inequalities. Then the

minimum u ∈ K of the differentiable convex function F is equivalent to finding

u ∈ K such that

〈F ′(u), v − u〉 ≥ 0, ∀v ∈ K, (1.1)

which is called the variational inequality (1.1). Here F ′(u) is the Frechet

derivative of the convex function F at u ∈ K in the direction v − u.

Noor [14] considered the energy (virtual work) functional I[v] defined as

I[v] = F (v) + φ(v), ∀v ∈ H, (1.2)

where F and φ are two different convex functions. The problem (1.2) is called the

sum (difference) of two functions, which was considered by Noor [14] in 1975. It

has been shown that if the functions F and φ are differentiable functions, then the

minimum u ∈ K of energy functional I[v] defined by (1.2) is equivalent to finding

u ∈ K such that

〈F ′(u), v − u〉+ 〈φ′(u), v − u〉 ≥ 0, ∀v ∈ K, (1.3)

which is called the mildly nonlinear variational inequalities.

If the function φ is nonlinear Lipschitz continuous function, then the minimum

of the energy functional I[v] defined by (1.2) can be characterized by the inequality

〈F ′(u), v − u〉+ φ′(u; v − u) ≥ 0, ∀v ∈ K, (1.4)

is known as the Hemivariational inequalities, which was introduced and

investigated by Panagiotopoulos [43,44] with applications in structural analysis.
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In passing, it is worth mentioning that problem (1.4) is a special case of

problem (1.3). Mildly nonlinear variational inequalities and hemivariational

inequalities can be viewed as novel and important generalizations of variational

inequalities.

Anderson et al. [4] have investigated several aspects of the harmonic convex

functions. Noor et al. [29] have shown that the minimum of the differentiable

harmonic convex function F on the harmonic convex set Ch can be characterized

by a class of variational inequalities,

〈F ′(u),
uv

u− v
〉 ≥ 0, ∀v ∈ Ch, (1.5)

which is called harmonic variational inequality. For the numerical methods,

generalizations and other aspects of harmonic variational inequalities, see [11,

29, 30, 33]. Iscan [13] and Noor et al. [9, 32, 34–36, 40] have derived several

Hermite-Hadamard type integral inequalities for the harmonic convex functions

and their variant forms. It is amazing that the harmonic means have applications

in electrical circuits. It is known that the total resistance of a set of parallel

resistors is obtained by adding up the reciprocals of the individual resistance

values, and then taking the reciprocal of their total. More precisely, if η and ζ are

the resistances of two parallel resistors, then the total resistance is computed by

the formula: 1
η + 1

ζ = ηζ
η+ζ , which is half the harmonic means. Al-Azemi et al. [1]

studied the Asian options with harmonic average, which can be viewed a new

direction in the study of the risk analysis and financial mathematics. Noor [20]

used the harmonic mean to suggest some iterative methods for solving nonlinear

equations. We would like to emphasize that the hemivariational inequalities

and harmonic variational inequalities are quite different generalizations of the

variational inequalities and related optimizations problems. It is natural to study

these different problems in a unified framework. This motivated us to introduce

and consider some classes of harmonic hemivariational inequality. Due to structure

of these inequalities, it is not possible to extend the usual projection and resolvent

techniques for solving harmonic heimivariational inequalities. However, these

difficulties can be overcome by using the auxiliary principle, which is mainly due to
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Lions et al. [12] and Glowinski et al. [8]. Noor [14,19,20] and Noor et al. [21–31,37]

have used this technique to develop some iterative schemes for solving various

classes of variational inequalities and equilibrium problems. We point out that

this technique does not involve any projection and resolvent of the operator and

is flexible. In this paper, we show that the auxiliary principle technique can be

applied to suggest and analyze some new classes of inertial iterative methods for

solving harmonic hemivariational inequalities. It is worth mentioning that the

inertial type methods was suggested by Polyak [46] to speed up the convergence

of iterative methods. We also prove that the convergence of these new methods

requires pseudomonotonicity, which is weaker conation than monotonicity. As

special cases, one obtain several known and new results for hemivariational

inequalities, variational inequalities and related optimization problems. Results

obtained in this paper, represent an improvement and refinement of the known

results for nonconvex variational inequalities.

2 Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by

〈·, ·〉 and ‖.‖ respectively. Let K be a nonempty closed convex set in H. Let

j : H −→ R be a locally Lipschitz continuous function.

First of all, we recall the following concepts and results from nonsmooth

analysis, see [5].

Definition 2.1. [1] Let j be locally Lipschitz continuous at a given point x ∈ H
and v be any other vector in H. The Clarke’s generalized directional derivative of

j at x in the direction v, denoted by j0(x; v), is defined as

j0(x; v) = lim
t→0+

sup
h→0

f(x+ h+ tv)− f(x+ h)

t
.

The generalized gradient of j at x, denoted ∂j(x), is defined to be subdifferential
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of the function j0(x; v) at 0. That is

∂j(x) = {w ∈ H : 〈w, v〉 ≤ j0(x; v), ∀v ∈ H}.

Lemma 2.1. Let j be a locally Lipschitz continuous at a given point x ∈ H with

a constant L. Then

(i). ∂j(x) is a non-empty compact subset of H and ‖ξ‖ ≤ L for each

ξ ∈ ∂j(x).

(ii). For every v ∈ H, j0(x; v) = max{〈ξ, c〉 : ξ ∈ ∂j(x)}.

(iii). The function v −→ j0(x; v) is finite, positively homogeneous,

subadditive, convex and continuous.

(iv). j0(x;−v) = (−j)0(x; v).

(v). j0(x; v) is upper semicontinuous as a function of (x; v).

(vi). ∀x ∈ H, there exists a constant α > 0 such that

|j0(x; v)| ≤ α‖v‖, ∀v ∈ H.

If j is convex on K and locally Lipschitz continuous at x ∈ K, then ∂j(x)

coincides with the subdifferential j′(x) of j at x in the sense of convex analysis,

and j0(x; v) coincides with the directional derivative j′(x; v) for each v ∈ H, that

is, j0(x; v) = 〈j′(x), v〉.

For the sake of completeness and to convey the main ideas, we include the

relevant details.

Definition 2.2. [4] The set Ch is said to be a harmonic convex set, if

uv

v + λ(u− v)
∈ Ch, ∀u, v ∈ Ch, λ ∈ [0, 1].

Definition 2.3. [4] The function φ on the harmonic convex set Ch is said to
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be exponentially harmonic convex, if

φ(
uv

v + λ(u− v)
) ≤ (1− λ)φ(u) + λφ(v), ∀u, v ∈ Ch λ ∈ [0, 1].

The function φ is said to be harmonic concave function, if and only if, −φ is

harmonic convex function.

We now show that the minimum of a differentiable harmonic convex function

on the harmonic convex set Ch can be characterized by the variational inequality.

Theorem 2.1. Let φ be a differentiable harmonic convex function on the

harmonic convex set Ch. Then u ∈ Ch is a minimum of φ, if and only if, u ∈ Ch
is the solution of the inequality

〈φ′(u),
uv

u− v
〉 ≥ 0, ∀v ∈ Ch. (2.1)

The inequality of type (2.1) is called the harmonic variational inequality.

Proof. Let u ∈ Ch is a minimum of differentiable harmonic convex function φ.

Then

φ(u) ≤ φ(v), ∀v ∈ Ch. (2.2)

Since Ch is a harmonic convex set, so ∀u, v ∈ Ch, vλ = uv
u+λ(u−v) ∈ Ch. Replacing

v by vλ) in (2.3) and diving by λ and taking limit as λ→ 0, we have

0 ≤
φ( uv

u+λ(u−v))− φ(u)

λ
= 〈φ′(u),

uv

u− v
〉

the required result (2.1). Conversely, let the function φ be exponentially harmonic

convex function on the harmonic convex set Ch. Then

uv

v + λ(u− v)
≤ (1− λ)φ(u) + λφ(v) = φ(u) + λ(φ(v)− φ(u)),
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which implies that

φ(v)− φ(u) ≥ lim
λ→0

φ( uv
v+λ(u−v))− φ(u)

λ
= 〈φ′(u),

uv

u− v
〉 ≥ 0, using (2.1).

Consequently, it follows that

φ(u) ≤ φ(v), ∀v ∈ Ch.

This shows that u ∈ Ch is the minimum of the differentiability harmonic convex

function.

We would like to mention that Theorem 2.1 implies that harmonic

optimization programming problem can be studied via the harmonic variational

inequality (2.1).

Using the ideas and techniques of Theorem 2.3, we can derive the following

result.

Theorem 2.2. Let φ be a differentiable harmonic convex functions on the

harmonic convex set Ch. Then

(i). φ(v)− φ(u) ≥ 〈φ′(u),
uv

u− v
〉, ∀u, v ∈ Ch.

(ii). 〈φ′(u)− φ′(v),
uv

v − u
〉 ≥ 0, ∀u, v ∈ Ch.

Motivated by Theorem 2.1 and Theorem 2.2, we introduce some new concepts.

Definition 2.4. An operator T is said to be a harmonic monotone operator, if

and only if,

〈Tu− Tv,
uv

u− v
〉 ≥ 0, ∀u, v ∈ H.

Definition 2.5. An operator T is said to a harmonic pseudomonotone operator,

if

〈Tu, uv

u− v
〉 ≥ 0 ⇒ −〈Tv, uv

u− v
〉 ≥ 0, ∀u, v ∈ H.
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An harmonic monotone operator is a harmonic pseudomonotone operator, but

the converse is not true.

Consider the energy (virtual) functional

I[v] = F (v) + φ(v), (2.3)

where F (v) and φ(v) are two harmonic convex functions.

We now consider the optimality conditions of the energy function I[v] defined

by (2.4) under suitable conditions.

Theorem 2.3. Let F be a differentiable harmonic convex function and φ(v) be

a directionally differentiable harmonic convex functions on the convex set Ch. If

u ∈ Ch is the minimum of the functional I[v] defined by (2.3), then

〈F ′(u),
uv

u− v
〉+ φ′(u;

uv

u− v
) ≥ 0, ∀v, u ∈ Ch. (2.4)

Proof. Let u ∈ Ch be a minimum of the functional I[v]. Then

I[u] ≤ I[v], ∀v ∈ K

which implies that

F (u) + φ(u) ≤ F (v) + φ(v), ∀v ∈ Ch. (2.5)

Since Ch is a convex set, so, ∀u, v ∈ Ch, λ ∈ [0, 1], vt = uv
(1−λ)v+λu ∈ Ch.

Taking v = vt in (2.5), we have

F (u) + φ(u) ≤ F (vt) + φ(vt), ∀v ∈ Ch. (2.6)

This implies that

0 ≤ F (
uv

(1− λ)v + λu
)− F (u) + φ(

uv

(1− λ)v + λu
)− φ(u), ∀v ∈ Ch. (2.7)

Dividing the above inequality by λ and taking limit as λ→ 0, we have
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0 ≤
F ( uv

(1−λ)v+λu)− F (u)

λ
+
φ( uv

(1−λ)v+λu)− φ(u)

λ

= 〈F ′(u),
uv

u− v
〉+ φ′(u;

uv

u− v
),

which is the required (2.4).

Since F is differentiable harmonic convex function, so

F (
uv

v + λ(u− v))
) ≤ F (u) + λ(F (v)− F (u)), ∀u, v ∈ Ch

from which, we have

F (v)− F (u) ≥ lim
λ→0
{F (

uv

v + λ(u− v)
− F (u)λ} = 〈F ′(u),

uv

u− v
〉. (2.8)

In a similar way,

φ(v)− φ(u) ≥ lim
λ→0
{φ(

uv

v + λ(u− v)
− φ(u)λ} = 〈φ′(u),

uv

u− v
〉. (2.9)

From (2.9) and (2.8), we have

F (v) + φ(v)− (F (u) + φ(u)) ≥= 〈F ′(u),
uv

u− v
〉+ φ′(u;

uv

u− v
) ≥ 0.

Consequently, it follows that u ∈ Ch such that

F (u) + φ(u) ≤ (F (v) + φ(v)), ∀v ∈ Ch,

which shows that u ∈ Ch is the minimum of the function I[v] defined by (2.3).

Remark 2.1. The inequality of the type (2.4) is called the harmonic

hemivariational inequality. In many applications, the inequality of the type (2.4)

may not arise as the minimum of the sum of the two differentiable harmonic

convex functions. These facts motivated us to consider more general harmonic

hemivariaonal inequality, which contains the inequality (2.4) as a special case.
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For given nonlinear continuous operators T,A : H −→ H, we consider the

problem of finding u ∈ K such that

〈Tu, uv

u− v
〉+A(u;

uv

u− v
) ≥ 0, p ≥ 1, ∀v ∈ Ch, (2.10)

which is called the harmonic hemivariational inequality.

We now discuss some new and known classes of variational inequalities and

related optimization problems.

(i). If A(u; uv
u−v ) = φ′(u; uv

u−v ) denotes directional derivative of the harmonic

convex function φ(u) in the direction uv
u−v , then problem (2.10) reduces to finding

u ∈ Ch, such that

〈Tu, uv

u− v
〉+ φ′(u;

uv

u− v
) ≥ 0, ∀v ∈ Ch, (2.11)

which is also called the harmonic directional variational inequality.

(ii). For A(u; v − u) = J0(u; uv
u−v ), the problem (2.10) reduces to finding

u ∈ C such that

〈Tu, uv

u− v
〉+ J0(u;

uv

u− v
) ≥ 0, ∀v ∈ Ch, (2.12)

which is known as harmonic hemivariational inequality. Hemivariational

inequalities have important applications in superpotential analysis of elasticity

and structural analysis.

(iii). If φ(.) is a smooth and convex function, then φ′(u; uv
u−v ) = 〈φ′(u), uv

u−v 〉,
and consequently problem (2.11) is equivalent to finding u ∈ Ch such that

〈Tu, uv

u− v
〉+ 〈φ′(u),

uv

u− v
〉 ≥ 0, ∀v ∈ Ch, (2.13)

which is called the nonlinear harmonic variational inequality.
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(iv). If A(u; uv
u−v ) = −〈Au, uv

u−v 〉 then the problem (2.10) reduces to

finding u ∈ Ch such that

〈Tu, uv

u− v
〉 − 〈A(u),

uv

u− v
〉 ≥ 0, ∀v ∈ Ch, (2.14)

which is called the mildly nonlinear harmonic variational inequality. It is worth

mentioning the problem (2.14) can be viewed as difference of two harmonic

monotone operators, see [20].

(v). If (Ch)? = {u ∈ H : 〈u, uv
u−v 〉 ≥ 0, ∀v ∈ Ch} is a polar harmonic

convex cone of the harmonic convex Ch, then problem (2.10) is equivalent to

fining u ∈ H, such that

uv

u− v
∈ Ch, Tu+A(u) ∈ (Ch)?, 〈Tu+A(u),

uv

u− v
〉 = 0, (2.15)

is called the general harmonic complementarity problem. For the applications,

numerical methods and other aspects of complementarity problems,

see [6, 10,15,16,42,45] the references therein.

(vi). If Ch = H, then problem (2.10) is equivalent to fining u ∈ H, such

that

〈Tu+A(u),
uv

u− v
〉 = 0, ∀v ∈ H (2.16)

which is called the weak formulation of the mildly nonlinear harmonic boundary

value problem. One can easily show that the system of absolute value

equations [19, 20] is a special case of the problem (2.16) and complementarity

problems, see [2, 9].

(viii). If A(.; .) = 0, then problem (2.10) reduces to finding u ∈ K such

that

〈Tu, uv

v − u
〉 ≥ 0, ∀v ∈ Ch, (2.17)

is called the harmonic variational inequality introduced and studied in [29].
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For the recently applications, numerical methods, sensitivity analysis and

local uniqueness of solutions of harmonic variational inequalities and related

optimization problems, see [3, 4, 7–28,30,37,40–46] and the references therein.

This show that the problem (2.10) is quite and unified one. Due to the

structure and nonlinearity involved, one has to consider its own. It is an open

problem to develop unified numerical implementation numerical methods for

solving the harmonic variational inequalities.

3 Main Results

In this section, we use the auxiliary principle technique, which is mainly due

to Glowinski et al. [8] as developed in [14, 19–25, 29–31, 40, 41], to suggest and

analyze some inertial iterative methods for solving harmonic hemivariational

inequalities (2.10).

For a given u ∈ Ch satisfying (2.10), consider the problem of finding w ∈ Ch
such that

〈ρT (w + η(u− w)),
uw

u− w
〉+ 〈w − u, v − w〉+A(w;

uw

u− w
) ≥ 0, ∀v ∈ Ch,(3.1)

where ρ > 0, η ∈ [0, 1] are constants.

Inequality of type (3.1) is called the auxiliary harmonic hemivariational

inequality.

If w = u, then w is a solution of (2.10). This simple observation enables us to

suggest the following iterative method for solving (2.10).
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Algorithm 3.1. For a given u0 ∈ K, compute the approximate solution un+1

by the iterative scheme

〈ρT (un+1 + η(un − un+1)),
unun+1

un − un+1
〉+ 〈un+1 − un, v − un+1〉

≥ −A(un+1;
unun+1

un − un+1
), ∀v ∈ Ch.

Algorithm 3.1 is called the hybrid proximal point algorithm for solving

harmonic hemivariational inequalities (2.10).

Special Cases

We now consider some cases of Algorithm 3.1.

(I). For η = 0, Algorithm 3.1 reduces to:

Algorithm 3.2. For a given u0 ∈ K, compute the approximate solution un+1

by the iterative scheme

〈ρT (un+1,
unun+1

un − un+1
〉+ 〈un+1 − un, v − un+1〉+A(un+1;

unun+1

un − un+1
), ∀v ∈ Ch. (3.2)

(II). If η = 1, then Algorithm 3.1 reduces to:

Algorithm 3.3. For a given u0 ∈ K, compute the approximate solution un+1

by the iterative scheme

〈ρT (un,
unun+1

un − un+1
〉+ 〈un+1 − un, v − un+1〉+A(un+1;

unun+1

un − un+1
),∀v ∈ Ch.

(III). If η = 1
2 , then Algorithm 3.1 collapses to:

Algorithm 3.4. For a given u0 ∈ K, compute the approximate solution un+1

by the iterative scheme

〈ρT (
un+1 + un

2
),

unun+1

un − un+1
〉+ 〈un+1 − un, v − un+1 +A(un+1;

unun+1

un − un+1
),∀v ∈ Ch.

which is called the mid-point proximal method for solving the problem (2.10).
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If A(.; .) = 0, then Algorithm 3.1 reduces to:

Algorithm 3.5. For a given u0 ∈ H, compute the approximate solution un+1

by the iterative scheme

〈ρT (un+1 + η(un − un+1)),
unun+1

un − un+1
〉+ 〈un+1 − un, v − un+1〉 ∀v ∈ Ch.

for solving harmonic variational inequality.

For the convergence analysis of Algorithm 3.2, we recall the following concepts

and results.

Definition 3.1. ∀u, v, z ∈ H, an operator T : H → H is said to be:

(i). harmonic monotone, iff,

〈Tu− Tv, uv

u− v
〉 ≥ 0.

(ii) harmonic pseudomonotone with respect to A(.; .) + η‖v − u‖p, }, if and only

if,

〈Tu, uv

u− v
〉+A(u;

uv

u− v
) ≥ 0

=⇒

〈Tv, uv

u− v
〉 −A(v;

uv

u− v
) ≥ 0.

(iii). partially relaxed strongly harmonic monotone, if there exists a constant

α > 0 such that

〈Tu− Tv, zv

z − v
〉 ≥ −α‖z − u‖2.

Note that for z = u, partially relaxed strongly harmonic monotonicity

reduces to monotonicity. It is known that partially relaxed strongly harmonic

monotonicity, but the converse is not true. It is known that harmonic

monotonicity implies harmonic pseudomonotonicity; but the converse is not true.

Consequently, the class of harmonic pseudomonotone operators is bigger than the

one of harmonic monotone operators.
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Definition 3.2. The operator A(.; .) is called harmonic monotone, if and only

if,

A(u;
uv

u− v
) +A(v;

uv

u− v
) ≤ 0, ∀u, v ∈ H.

Lemma 3.1. ∀u, v ∈ H,

2〈u, v〉 = ‖u+ v‖2 − ‖u‖2 − ‖v‖2. (3.3)

We now consider the convergence criteria of Algorithm 3.2. The analysis is in

the spirit of Noor [10]. We include the proof for the sake of completeness and to

convey an idea of the technique involved.

Theorem 3.1. Let u ∈ Ch be a solution of (2.10) and let un+1 be the

approximate solution obtained from Algorithm 3.2. If the operator T is harmonic

pseudomonotone with respect to A(.; .), then

‖un+1 − u‖2 ≤ ‖un − u‖2 − ‖un+1 − un‖2. (3.4)

Proof. Let u ∈ Ch be a solution of (2.10). Then

〈Tv, uv

v − u
〉 −A(v;

uv

v − u
) ≥ 0, ∀v ∈ Ch. (3.5)

since T is a harmonic pseudomonotone operator with respect to A(.; .).

Now taking v = un+1 in (3.5), we have

〈Tu, uun+1

un+1 − u
〉 −A(un+1;

uun+1

un+1 − u
≥ 0. (3.6)

Taking v = u in (3.2), we get

〈ρT (un+1,
unun+1

un − un+1
〉+ 〈un+1 − un, u− un+1〉+A(un+1;

unun+1

un − un+1
),

which can be written as

〈un+1 − un, u− un+1〉 ≥ 〈ρTun+1,
uun+1

un+1 − u
〉+ ρA(un+1;

uun+1

u− un+1
) ≥ 0, (3.7)
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where we have used (3.6).

Setting u = u− un+1 and v = un+1 − un in (3.3), we obtain

2〈un+1 − un, u− un+1〉 = ‖u− un‖2 − ‖u− un+1‖2 − ‖un+1 − un‖2. (3.8)

Combining (3.7) and (3.8), we have

‖un+1 − u‖2 ≤ ‖un − u‖2 − ‖un+1 − un‖2,

the required result (3.4).

Theorem 3.2. Let H be a finite dimensional space and all the assumptions of

Theorem 3.1 hold. Then the sequence {un}
∞

1
given by Algorithm 3.2 converges to

a solution u of (2.10).

Proof. Let u ∈ K be a solution of (2.10). From (3.4), it follows that the sequence

{||u− un||} is nonincreasing and consequently {un} is bounded. Furthermore, we

have
∞∑
n=0

‖un+1 − un‖2 ≤ ‖u0 − u‖2,

which implies that

lim
n→∞

‖un+1 − un‖ = 0. (3.9)

Let û be the limit point of {un}
∞

1
; a subsequence {unj}

∞

1
of {un}

∞

1
converges to

û ∈ H. Replacing wn by unj in (3.2), taking the limit nj −→ ∞ and using (3.9),

we have

〈T û, ûv

v − û
〉+A(û;

ûv

v − û
) ≥ 0, ∀v ∈ Ch,

which implies that û solves the harmonic hemivariational inequality (2.10) and

‖un+1 − u‖2 ≤ ‖un − u‖2.
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Thus, it follows from the above inequality that {un}
∞

1
has exactly one limit point

û and

lim
n→∞

(un) = û.

the required result.

We again consider the auxiliary principle technique to suggest some hybrid

inertial proximal point methods for solving the problem (2.10).

For a given u ∈ Ch satisfying (2.10), consider the problem of finding w ∈ Ch
such that

〈ρT (w + η(u− w)),
uw

u− w
〉+ 〈w − u+ α(u− u), v − w〉

+A((w + ξ(w − u));
uw

u− w
) ≥ 0, ∀v ∈ Ch, (3.10)

where ρ > 0, α, ξ, η ∈ [0, 1] are constants.

Clearly, for w = u, w is a solution of (2.10). This fact motivated us to to

suggest the following inertial iterative method for solving (2.10).

Algorithm 3.6. For given u0, u1 ∈ K, compute the approximate solution un+1

by the iterative scheme

〈ρT (un+1 + η(un − un+1)),
unun+1

un − un+1
〉+ 〈un+1 − un + α(un − un−1, v − un+1〉

≥ −A((un+1+ξ(un−un+1);
unun+1

un − un+1
), ∀v ∈ Ch.

which is known as the inertial iterative method.

Note that for α = 0, ξ = 0, Algorithm 3.6 is exactly the Algorithm 3.1.

Using essentially the technique of Theorem 3.1 and Noor [10], one can study the

convergence analysis of Algorithm 3.6.
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For different and appropriate values of the parameters, ξ, η, ζ, α, the operators

T,A and spaces, one can obtain a wide class of inertial type iterative methods

for solving the harmonic hemivaritaional inequalities and related optimization

problems.

Conclusion

Some new classes of harmonic hemivariational inequalities are introduced in

this paper. It is shown that several important problems such as harmonic

complementarity problems, system of harmonic absolute value problems and

related problems can be obtained as special cases. The auxiliary principle

technique is applied to suggest several inertial type methods for solving harmonic

hemivariational inequalities with suitable modifications. We note that this

technique is independent of the projection and the resolvent of the operator.

Moreover, we have studied the convergence analysis of these new methods under

weaker conditions. Using the technique of Noor [19], one can introduce the

concept of well-posedness for harmonic hemivariational inequalities and obtain

some results. We have only considered the theoretical aspects of the hybrid inertial

iterative methods. It is an interesting problem to implement these methods

numerically and compare with other iterative schemes.
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