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Abstract

In recent years, conjugate gradient methods have gained popularity

as efficient iterative techniques for unconstrained optimization problems

without the need for matrix storage. Based on the Dai-Laio conjugacy

condition, this article presents a new hybrid conjugate gradient method that

combines features of the Dai-Yuan and Dai-Laio methods. The proposed

method addresses the numerical instability and slow convergence of the

Dai-Yuan method as well as the potential poor performance of the Dai-Laio

method in highly non-linear optimization problems. The hybrid method

solves optimization problems with faster convergence rates and greater

stability by combining the advantages of both methods. The resulting

algorithm is shown to be more effective and reliable, and theoretical analysis

reveals that it has sufficient descent properties. The proposed method’s

competitive performance is shown through a number of benchmark tests and

comparisons with other approaches, indicating that it has the potential to

be an effective approach for complex, unconstrained optimization.

1 Introduction

Nonlinear conjugate gradient (CG) methods are ideal for handling large-scale

problems because they have simple iterations and minimal memory demands.
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These methods are specifically developed to tackle optimization problems that

are structured in the following manner:

minf(x), x ∈ Rn, (1.1)

where the objective function f is continuously differentiable and Rn is an

n-dimensional space.

Optimization problems given by (1.1) are prevalent in both applied fields

like economics, social sciences, engineering, and theoretical fields since most

optimization problems can be converted to unconstrained optimization problems

[1,2]. The CG method is identified by a search direction that is defined as follows:

dn =

−gn if n = 0,

−gn + βndn−1 if n ≥ 1,
(1.2)

where gn represents the gradient, denoted by ∇fn and βn is called the CG update

parameter. The iterative scheme for solving (1.1) is generated recurrently by:

xn+1 = xn + ωndn, n = 0, 1, 2, · · · (1.3)

where ωn represents the step size, which is commonly determined by a search

technique.

The choice of the update parameter βn in CG methods is a crucial determinant

of the algorithm’s performance, and different formulae for βn have been proposed

over the years. These classical CG formulae are typically used to distinguish

different variants of CG methods. The Hestenes and Stiefel (HS) [3], Fletcher

and Reeves (FR) [4], Polak, Ribiere, and Polyak (PRP) [5,6], Conjugate Descent

(CD) [7], Liu and Storey (LS) [8], and Hager and Zhang (HZ) [9] formulae are

among the most well-known and defined as:

βHSn =
gTn yn−1

dTn−1yn−1
, (1.4)

βFRn =
‖gn‖2

‖gn−1‖2
, (1.5)
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βPRPn =
gTn yn−1

‖gn−1‖2
, (1.6)

βCDn =
‖gn‖2

−dTn−1gn−1
, (1.7)

βLSn =
gTn yn−1

−dTn−1gn−1
, (1.8)

and

βHZn =

(
yn−1 −

2dn−1 ‖yn−1‖2

dTn−1yn−1

)T
gn

dTn−1yn−1
. (1.9)

The approach for the computation of the line search is important in determining

the convergence speed of a CG method. The line search is usually computed

either by an exact or inexact method. The exact method is costly, cumbersome,

and prone to error; thus, the inexact approaches are preferable to researchers,

as there is a need for a line search that can identify a step length that produces

adequate reductions in the objective function’s value at the lowest possible

cost. Therefore, the fundamental goal of the inexact line search is to develop a

yardstick that ensures ωn is not too long or too short, to ensure that a suitable

step size is chosen to kickstart the algorithm, and to design a sequence of updates

such that the criterion generated is satisfied after every few steps.

One of the most popular inexact line searches is the strong Wolfe Powell (SWP)

line search proposed by Wolfe [10] and given by:

f(xn)− f(xn + ωndn) ≥ −ηωngTn dn, (1.10)

and

|g(xn + ωndn)Tdn| ≤ σ|gTn dn|, (1.11)

where 0 ≤ η ≤ σ < 1.

Other inexact search methods include the Goldstein search rule proposed by

Goldstein [11] as follows:

δ1ωng
T
n dn ≤ f(xn + ωndn)− fn ≤ δ2ωngTn dn, (1.12)
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where 0 < δ2 <
1
2 < δ1 < 1, and Armijo line search rule proposed by Armijo [12],

given by:

f(xn + ωndn) ≤ f(xn) + ωε∇f(xn)Tdn, (1.13)

where 0 < ε < 1 and ω > 1.

The need to improve the performance of classical CG methods brought about

the introduction of hybrid CG methods by researchers. In practice, hybrid

methods have been proven to be excellent because they exploit the advantages

of the traditional methods involved in hybridization. Thus, several hybrid CG

methods have been proposed by authors by combining two or more conventional

methods, and the convergence characteristics of these new methods have been

established using a wide range of inexact search criteria. For instance, the author

in [13] presented two hybrid CG methods using the generalized Wolfe search

method, where the resulting update parameters are given by:

β(1)n =

a1βDYn + a2β
HS
n if ‖gn‖2 >

∣∣gTn gn−1∣∣ ,
0 else,

and

β(2)n =

a1βFRn + a2β
PRP
n if ‖gn‖2 >

∣∣gTn gn−1∣∣ ,
0 else,

where a1, a2 are nonnegative parameters.

Djordjevic [14] proposed a new hybrid CG method by combining the LS and

CD update parameters, resulting into the form:

βhybn = (1−$n)βLSn +$nβ
CD
n ,

where the new parameter was made to satisfy the conjugacy condition. Dong et

al. [15] presented a three-term search direction method by affine combination of

variants of HS method. The new search direction is of the form:

dNHSn = (1−Θn)dHS3n + Θnd
HS2
n ,
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where

dHS2n = −gn + βHSn dn−1 − βHSn
gTn dn−1
gTn gn

gn,

and

dHS3n = −gn + βHSn dn−1 −
gTn dn−1

dTn−1yn−1
yn−1.

Osinuga and Olofin [16] proposed a hybrid search direction in the form:

dn =

−Hngn n = 0,

−Hngn + η(−gn + βPRPn dn−1)− ϑnyn, n ≥ 1,

where η > 0, ϑn = gTn dn−1

‖gn−1‖2
.

The global convergence of their method was proved under the Armijo search

method. In [17], Djordjevic developed another hybrid CG method based on LS

and FR update parameters, and it is given by:

βhybn = (1−$n)βLSn +$nβ
FR
n ,

where $n is a scalar parameter. Salihu et al. [18] proposed a hybrid CG method

of Dai-Liao type based on a convex combination of HS and FR methods, resulting

in the following βn formula:

βDHFn = (1− λn)βHSn + λnβ
FR
n ,

where

λn =
−sTngn+1 |gn‖2

(yTn sn) |gn+1‖2 −
(
gTn+1yn

)
|gn‖2

.

The authors in [19] designed a new βn formula for the denominators of PR, HS,

and LS methods while retaining the original numerator. The resulting new βn

method, namely Rivaie-Mustapha-Ismail-Leong (RMIL) method is given by:

βRMIL
n =

gTn+1yn

‖dn‖2
. (1.14)
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Similarly in [20], the authors modified the denominators of the FR, CD, and DY

methods while retaining the original numerator to produce a new βn coefficient,

namely the Mandara-Mamat-Waziri-Usman (MMWU) method, given by:

βMMWU
n =

‖gn+1‖2

‖dn‖2
. (1.15)

Recently, new hybrid CG methods have been proposed by authors in [21–25].

Inspired by earlier works [19, 20, 26, 27], this paper presents a new hybrid

algorithm by combining the Dai-Laio and Dai-Yuan update parameters. The

remainder of this article is organized as follows: The new βn algorithm is described

in Section 2, its sufficient descent property is established in Section 3, numerical

results and a discussion are provided in Section 4, and the conclusion is provided

in Section 5.

2 The New βn Formula

In [26], Dai and Laio proposed a new conjugacy condition, resulting in the

following formula for βn:

βDLn =
gTn (yn−1 − tsn−1)

dTn−1yn−1
, (2.1)

where t ≥ 0. It is evident from (2.1) that:

βDLn = βHSn − t g
T
n sn−1)

dTn−1yn−1
, (2.2)

where βHSn is given by (1.4). By replacing βHSn in the above with βDYn , proposed

by Dai and Yuan in [27], a new hybrid CG method of Dai-Liao type is proposed

as follows:

βHDYDLn = βDYn − t g
T
n sn−1)

dTn−1yn−1
, (2.3)
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where

βDYn =
‖gn‖2

dTn−1yn−1
.

In this case, t > 0, || . || denotes the Euclidean norm, yn−1 = gn − gn−1, and

sn−1 = xn − xn−1. By simplifying (2.3), the following is obtained:

βHDYDLn =
gTn (gn − tsn−1)
dTn−1yn−1

. (2.4)

The algorithm below is used to implement the new βn formula.

HDYDL Algorithm

Step 1: Given that x0 ∈ Rn, set n = 0 and ε ≥ 0.

Step 2: Stop if ‖gn‖ ≤ ε.
Step 3: determine dn by (1.2).

Step 4: Determine the stepsize ωn by (1.13).

Step 5: Determine xn by (1.3), gn = g(xn).

Step 6: Calculate βn by (2.4).

Step 7: Set n := n+ 1, and return to step 2.

3 Sufficient Descent Property of the New CG Formula

For a CG method to globally converge, a sufficient descent property must be

satisfied. The following definition and lemma will be useful for establishing the

sufficient descent property of the HDYDL method.

Definition 3.1. A CG method fulfills the sufficient descent condition if ζ > 0 is

a constant such that:

gTn dn ≤ −ζ ‖gn‖
2 , 0 < ζ ≤ 1. (3.1)

Lemma 3.1. The HDYDL method meets the sufficient descent requirement (3.1)

with ζ = 1
1−σ .
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Proof. By pre-multiplying (1.2) by gTn and using (2.4),

gTn dn = −gTn gn + βHDYDLn

(
gTn dn−1

)
,

= −gTn gn +
gTn (gn − tsn−1)
dTn−1yn−1

(
gTn dn−1

)
.

By SWP line search (1.11) we have that:

dTn−1gn ≤ σdTn−1gn−1, σ ∈ (0, 1] .

With yn−1 = gn − gn−1, the denominator gives:

dTn−1yn−1 = dTn−1gn − dTn−1gn−1,

≤ σdTn−1gn−1 − dTn−1gn−1.

≤ dTn−1gn−1 (σ − 1) .

Therefore,

gTn dn ≤ −‖gn‖
2 +

gTn (gn − tsn−1)
dTn−1gn−1 (σ − 1)

(
σdTn−1gn−1

)
,

≤ −‖gn‖2 +
σdTn−1gn−1

(
gTn gn − tgTn sn−1

)
dTn−1gn−1 (σ − 1)

,

≤ −‖gn‖2 +
σ

σ − 1
‖gn‖2 ,

= ‖gn‖2
(
−1 +

σ

σ − 1

)
,

= ‖gn‖2
(

1

σ − 1

)
,

= −
(

1

1− σ

)
‖gn‖2 .

Therefore,

gTn dn ≤ −
(

1

1− σ

)
‖gn‖2 .

Hence the proof
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4 Numerical Results

This section provides a report that compares the performance of the proposed

new method with that of three existing methods.

The methods were implemented in Matlab and carried out on a computer

running Windows 10 Pro with 4 GB of RAM and a processor speed of 2.16 GHz.

The iterations were stopped when either the norm of the gradient vector was less

than or equal to 10−6 or when the number of iterations exceeded 2000. The study

tested 25 unconstrained problems from the CUTEr library [28] and Andrei [29],

each of dimensions 5000 and 10,000. Table 1 lists the problems solved and their

sources, while Table 2 provides details of the numerical results for the problems

listed in Table 1. The computational details include the number of iterations

(NOI) and the computational time (CPUT). For failed iterations, the notation

“If” is used. The Armijo search technique was used for the computations.

The study compared the efficiency of four methods, namely HDYDL,

RMIL [19], DL [26], and MMWU [20], using the profile of [30]. The comparison

was based on the number of iterations and computational time. The results are

displayed in Figures 1 and 2, which show the performance of each method in terms

of computational time (in seconds), and number of iterations. The vertical axis to

the left of the curves represents the proportion of test problems solved successfully

by each method, with the top curve denoting the fastest method. The HDYDL

method was found to be the most effective, with a success rate of 90%, followed

by MMWU with 76%, DL with 68%, and RMIL with 64%. It is worth noting

that the DL method used t = 0.1, while t = 0.01 was used in the HDYDL method.

The table of results shows that while the DY, RMIL, and MMWU methods

solved some problems faster than the others, the HDYDL method solved most

of the problems with fewer iterations and less computational time than the three

Earthline J. Math. Sci. Vol. 13 No. 2 (2023), 353-368



362 Oluwaseun B. Onuoha

existing methods. Therefore, the HDYDL method is more efficient and robust

than the existing methods.

Figure 1: Iteration profile comparing the HDYDL method with RMIL, DL, and

MMWU methods.

Figure 2: CPU profile comparing the HDYDL method with the RMIL, DL, and

MMWU methods.
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Table 1: List of Problems solved and their references.

S/N Problem Names Sources

1 Qf1 [29]

2 Extended Block Diadonal [29]

3 Qf2 [29]

4 Extended Powell [29]

5 Diagonal 5 [29]

6 Diagonal 4 [29]

7 Staircase1 [29]

8 Staircase2 [29]

9 Extended Beale [29]

10 RMODF COSINE [28]

11 MDF EXPLIN 1 [28]

12 MODF SINE [28]

13 RMODF SINE [28]

14 RMDF GENHUMPS [28]

15 Extended Three Exponential Terms [29]

16 Partial Perturbed Quadratic [29]

17 QUARTC [28]

18 Extended DENSCHNB [28]

19 Generalized Quartic [29]

20 Diagonal 7 [29]

21 Diagonal 8 [29]

22 Full Hessian FH3 [29]

23 SINCOS [29]

24 HIMMELBG [28]

25 Extended Tridiagonal-1 [29]
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Table 2: The Numerical Results.

MMWU Method RMIL Method DL Method HDYDL Method

S/N NOI/CPUT NOI/CPUT NOI/CPUT NOI/CPUT

1 If/If If/If 146/4.175 207/9.672

If/If If/If If/If 270/15.038

2 62/1.441 30/1.044 82/1.954 114/3.237

67/2.179 38/2.184 48/1.299 83/3.397

3 15/0.527 If/If 164/4.778 21/0.611

15/0.415 If/If If/If 21/0.593

4 342/10.441 If/If 291/6.837 If/If

If/If If/If If/If If/If

5 22/0.560 22/0.722 118/3.569 2/0.058

25/0.682 17/0.570 118/4.732 2/0.036

6 28/0.638 38/1.161 If/If 74/2.429

29/1.023 40/1.392 If/If 75/3.846

7 1/0.032 1/0.028 1/0.086 1/0.020

If/If If/If If/If If/If

8 29/1.094 45/1.451 258/8.116 6/0.201

If/If If/If If/If If/If

9 67/3.213 107/6.296 If/If 109/3.427

77/6.051 113/11.781 If/If 110/5.769

10 1/0.058 1/0.028 1/0.029 1/0.027

1/0.026 1/0.028 1/0.035 1/0.023

11 48/1.500 94/2.927 156/6.099 19/0.514

48/1.527 96/3.127 160/6.465 20/0.710

12 42/1.145 If/If 40/1.179 15/0.416

45/1.504 If/If 40/1.124 16/0.510

13 8/0.218 79/2.211 28/0.792 20/0.641

8/0.190 80/1.196 23/0.716 20/0.537

14 70/7.387 124/4.048 113/4.072 16/0.388

72/2.714 128/14.119 116/6.594 17/0.473

15 983/26.274 If/If If/If 853/37.560

746/17.299 If/If If/If If/If

16 19/0.606 37/1.170 315/9.736 4/0.148

953/34.328 1572/63.064 1428/38.546 1308/77.193

17 1/0.038 1/0.040 1/0.039 1/0.028

1/0.031 1/0.025 1/0.026 1/0.021

18 53/1.777 If/If 20/0.920 27/0.748

54/1.822 If/If 20/0.775 29/0.912

19 If/If 25/0.797 If/If 33/0.927

If/If 22/0.801 65/3.053 33/1.048

20 23/0.582 1486/36.459 152/5.441 91/3.335

23/0.578 If/If 155/4.711 93/3.848

21 22/1.524 485/15.128 156/10.374 16/0.663

22/1.483 112/5.324 160/9.110 18/0.549

22 30/1.686 38/1.947 If/If 30/1.068

If/If If/If If/If 26/1.554

23 62/2.801 94/6.398 162/6.753 374/9.728

93/10.085 98/6.913 58/2.777 350/22.885

24 If/If If/If 168/5.776 431/22.771

If/If If/If 172/4.669 466/15.440

25 If/If 3/0.172 If/If 87/3.068

If/If 3/0.306 If/If 87/3.273
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5 Conclusion

In this paper, a new hybrid CG method has been proposed by combining the DY

and DL update parameters based on Dai-Liao conjugacy condition. The proposed

method is easy to implement and does not require any additional parameters. The

new method has been theoretically shown to possess sufficient descent property

under the SWP line search. Numerical experiments conducted on a set of

standard optimization problems demonstrate that the new method outperforms

existing methods in terms of convergence and efficiency. Therefore, the proposed

hybrid CG method is a promising approach for solving unconstrained optimization

problems and can be extended to other optimization problems. Future research

will focus on global convergence.
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