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Abstract

This paper presents a new class of generalized distributions based on the

inverse Burr (Burr III) distribution. Statistical properties of the proposed

family of distributions such as the density and cumulative distribution

functions, survival and hazard rate functions, quantile, moments, moment

generating function, probability weighted moments, Renyi entropy and

distribution of order statistics are derived. The maximum likelihood

estimation method is employed to obtain the parameter estimates of the

family of distributions. A Monte Carlo simulation study is conducted in

order to investigate the asymptotic behaviour of the parameter estimates of

a sub-model from the proposed family of distributions. Finally, the utility of

proposed family of distributions in lifetime data fittings is illustrated using

two real data sets and the results obtained were compared to some existing

non-nested models. Based on some model selection criteria and goodness

of fit test statistics, it was evident that the sub-model from the proposed

family of distributions performed reasonably better than the competitor

distributions in fitting the two data sets.

Received: April 10, 2023; Accepted: May 26, 2023; Published: July 17, 2023

2020 Mathematics Subject Classification: 60E05, 62F10.

Keywords and phrases: inverse Burr distribution, moments, quantiles, probability weighted
moments.
*Corresponding author Copyright c© 2023 Authors



314 Sunday A. Osagie, Stanley Uyi and Joseph E. Osemwenkhae

1 Introduction

Burr (1942) has introduced various forms of probability distributions (Burr II, III,

X, XII) which have been widely studied and applied to fit lifetime data. Many

researchers have shown interest in the Burr XII distribution since it could be used

to fit almost any form of unimodal (left-skewed, right-skewed or symmetric) data.

Silva et al. (2008) developed the log Burr XII regression model, Silva and Cordeiro

(2015) introduced the Burr XII power series distribution, Lanjoni et al. (2015)

introduced the extended Burr XII regression models, Osatohanmwen et al. (2017)

proposed the Gumbel Burr XII distribution, Bhati et al. (2018) introduced the

generalized log Burr XII distribution, Korkmaz and Chesneau (2021) studied the

unit-Burr XII distribution.

Tadikamalla (1980) noted that while the Burr XII distribution yields a wide

range of values of skewness
(√
β1
)

and kurtosis (β2), the inverse of the Burr

XII distribution referred to as Burr III distribution covers a wider region in the(√
β1, β2

)
plane than the Burr XII distribution, the Weibull family, the gamma

family, the log-normal family, the normal distribution, the logistic distribution,

etc. On this note, Osemwenkhae and Iyenoma (2018) gave a comprehensive study

on the mathematical properties of the inverse Burr (Burr III) distribution and

illustrated the applicability of the distribution in lifetime data analysis. More

study on the Burr III distribution can be found in the works of Burr and Cislak

(1968), Johnson et al. (1995), Modi and Gill (2019).

Let T be a Burr III random variable, then the cumulative distribution function

of T is defined as

G(t) =
(
1 + t−a

)−b
(1)

with the corresponding density function given as

g(t) = abt−(a+1)
(
1 + t−a

)−(b+1)
, t > 0, a, b > 0 (2)

where a and b are shape parameters.

To enhance flexibility, several methods of adding extra parameter(s) to
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existing distributions have been introduced and widely studied in the literature.

It has become unarguably that the flexibility of classical distributions in

fitting lifetime (survival) data can be enhanced through the addition of extra

parameter(s). Eugene et al. (2002) introduced the beta-generated family of

distributions, Marshall and Olkin (2007) studied the Marshall-Olkin extended

family of distributions, Shaw and Buckley (2009) proposed the transmuted-G

family of distributions, Alzaatreh et al. (2013) introduced and extension of the

beta-G family which they called the transformed-transformer (T −X) family of

distributions, Cordeiro and de Castro (2011) studied the Kumaraswamy-G family.

The cdf of the T − X family of distributions suggested by Alzaatreh et al.

(2013) is given by

F (t) =

∫ − log[1−G(t)]

0
r(x)dx, (3)

where r(x) is the density function of a known probability distribution.

Using the idea in equation (3), Bourguignon et al. (2014) proposed the

Weibull-G family of distributions by allowing the density function in Equation (3)

to follow the Weibull distribution. Nadarajah et al. (2015) considered the density

function of the gamma distribution to introduce the Zografos-Balakrishnan-G

family of distributions.

In this paper, we use the inverse Burr III distribution (Burr distribution) as

the generator to introduce the inverse Burr generated family of distributions.

The remaining sections of this paper are organized as follows: the inverse

Burr generated family of distributions is defined in Section 2. Section 3

present sub-models from the inverse Burr-G family. In Section 4, some general

mathematical properties and useful expansions relating to the inverse Burr-G

family of distributions. Section 5 presents the real life data fittings, while Section

6 provides the concluding remark.
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2 The Inverse Burr Generated Family of Distributions

Considering the framework in Alzaatreh et al. (2013) defined in equation (3), and

employing the inverse Burr distribution as the generator, we define the cumulative

distribution function of the inverse Burr generated family of distributions as

F (t, a, b, ξ) = ab

∫ − log[1−G(t,ξ)]

0
x−(a+1)

(
1 + x−a

)−(b+1)
dx,

=
[
1 + {− log[1−G(t, ξ)]}−a

]−b
, t > 0, a, b > 0,

(4)

where a and b are the shape parameters and G(t, ξ) is the baseline distribution

which depends on a parameter vector ξ. The pdf associated with equation (4) is

given by

f(t, a, b, ξ) = abg(t, ξ)[1−G(t, ξ)]−1{− log[1−G(t, ξ)]}−(a+1)

×
[
1 + {− log[1−G(t, ξ)]}−a

]−(b+1)
.

(5)

Subsequently, we shall denote a random variable T having the pdf in equation (5)

by T ∼ IB-G.

The survival and hazard rate functions of the IB-G family of distributions are

defined, respectively, as

S(t, a, b, ξ) = 1−
[
1 + {− log[1−G(t, ξ)]}−a

]−b
, (6)

and

h(t, a, b, ξ) =
abg(t, ξ){− log[1−G(t, ξ)]}−(a+1) [1 + {− log[1−G(t, ξ)]}−a]−(b+1)

[1−G(t, ξ)]
[
1− [1 + {− log[1−G(t, ξ)]}−a]−b

] .

(7)

3 Sub-models of the IB-G family of Distributions

In this section, we introduce five sub-models from IB-G family by letting the

baseline distribution in equation (5) to follow Kumaraswamy, Lomax, Normal,

logistic, and Topp-Leone distributions.
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3.1 Inverse Burr-Kumaraswamy (IB-K) distribution

Kumaraswamy (1980) introduced a unit interval probability distribution and

called it Kumaraswamy distribution. The cumulative distribution function (cdf)

and the probability density function (pdf) of the distribution are, respectively,

defined by

G(t, β, α) = 1−
(

1− tβ
)α

, β, α > 0, 0 < t < 1 (8)

and

g(t, β, α) = αβtβ−1
(

1− tβ
)α−1

, β, α > 0, 0 < t < 1. (9)

Applying equation (8) in equation (4), we define the cumulative distribution

function of the inverse Burr-Kumaraswamy (IB-K) distribution as

F (t, a, b, α, β) =

[
1 +

{
− log

(
1− tβ

)α}−a]−b
, 0 < t < 1, a, b, α, β > 0. (10)

The pdf associated with (10) is defined by

f(t, a, b, α, β) = abαβtβ−1
(

1− tβ
)−1 {

− log
(

1− tβ
)α}−(a+1)

×
[
1 +

{
− log

(
1− tβ

)α}−a]−(b+1)

.

(11)

From equations (10) and (11), we obtained the survival and hazard rate functions

of the inverse Burr Kumaraswamy (IB-K) distribution, respectively, as follows

S(t, a, b, α, β) = 1− F (t, a, b, α, β),

= 1−
[
1 +

{
− log

(
1− tβ

)α}−a]−b
,

(12)

and

h(t, a, b, α, β) =
f(t, a, b, α, β)

S(t, a, b, α, β)
=
abαβtβ−1

(
1− tβ

)−1 {− log
(
1− tβ

)α}−(a+1)

1 +
{
− log (1− tβ)

α}−a
×
[
1 +

{
− log

(
1− tβ

)α}−a]−(b+1)

.

(13)
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3.2 Inverse Burr-Lomax (IB-L) distribution

Suppose a random variable T follow the Lomax distribution, then the cdf and pdf

of t is given by

G(t, β, α) = 1−
(

1 +
t

β

)−α
, β, α > 0, t > 0 (14)

and

g(t, β, α) =
α

β

(
1 +

t

β

)−(α+1)

, β, α > 0, t > 0. (15)

By inserting equations (14) and (15) into equations (4) and (5), we define the cdf

and pdf of the inverse Burr-Lomax (IB-L) distribution, respectively, as

F (t, a, b, α, β) =

[
1 +

{
−α log

(
1 +

t

β

)}−a]−b
, t > 0, a, b, α, β > 0, (16)

and

f(t, a, b, α, β) =
abα

β

(
1 +

t

β

)−1{
−α log

(
1 +

t

β

)}−(a+1)

×

[
1 +

{
−α log

(
1 +

t

β

)}−a]−(b+1)

.

(17)

The survival and hazard rate functions of the inverse Burr-Lomax (IB-L)

distribution are, respectively, defined using equations (16) and (17) as follows

S(t, a, b, α, β) = 1− F (t, a, b, α, β)

= 1−

[
1 +

{
−α log

(
1 +

t

β

)}−a]−b
,

(18)
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and

h(t, a, b, α, β) =
f(t, a, b, α, β)

S(t, a, b, α, β)
,

=
abαβ−1

(
1 + t

β

)−1 {
−α log

(
1 + t

β

)}−(a+1)

1−
[
1 +

{
−α log

(
1 + t

β

)}−a]−b
×

[
1 +

{
−α log

(
1 +

t

β

)}−a]−(b+1)

.

(19)

3.3 Inverse Burr-Logistic (IB-Logistic) distribution

The cdf and pdf of a random variable T following the logistic distribution are,

respectively, defined by

G(t, α) =
(
1 + e−αt

)−1
, α > 0, t > 0, (20)

and

g(t, α) = αe−αt
(
1 + e−αt

)−2
, α > 0, t > 0. (21)

By inserting equations (20) and (21) into equations (4) and (5), we define the cdf

and pdf of the inverse Burr logistic (IB-Logistic) distribution, respectively, as

F (t, a, b, α) =

[
1 +

{
− log

[
1−

(
1 + e−αt

)−1]}−a]−b
, t > 0, a, b, α > 0 (22)

and

f(t, a, b, α) =
abαe−αt

{
− log

[
1−

(
1 + e−αt

)−1]}−(a+1)

(1 + e−αt)2
[
1− (1 + e−αt)−1

]
×
[
1 +

{
− log

[
1−

(
1 + e−αt

)−1]}−a]−(b+1)

.

(23)
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The survival and hazard rate functions of the inverse Burr-logistic (IB-Logistic)

distribution are, respectively, defined using equations (22) and (23) as follows

S(t, a, b, α) =1− F (t, a, b, α),

= 1−
[
1 +

{
− log

[
1−

(
1 + e−αt

)−1]}−a]−b
,

(24)

and

h(t, a, b, α) =
f(t, a, b, α)

S(t, a, b, α)
,

=
abαe−αt

{
− log

[
1−

(
1 + e−αt

)−1]}−(a+1)

(1 + e−αt)2
[
1− (1 + e−αt)−1

] [
1−

[
1 +

{
− log

[
1− (1 + e−αt)−1

]}−a]−b]

×
[
1 +

{
− log

[
1−

(
1 + e−αt

)−1]}−a]−(b+1)

.

(25)

3.4 Inverse Burr Topp-Leone (IBTL) distribution

Suppose a random variable T follow the one-parameter Topp-Leone distribution

reported in Opone et al. (2022), with G(t, λ) = [t(2 − t)]λ, and g(t, λ) = 2λ(1 −
t)[t(2− t)]λ−1, λ > 0, 0 < t < 1. We defined the cumulative distribution function

(cdf) and probability distribution function (pdf) of the inverse Burr-Topp-Leone

(IB-TL) distribution, respectively, as

F (t, a, b, λ) =

[
1 +

{
− log

[
1− [t(2− t)]λ

]}−a]−b
, t > 0, a, b, λ > 0 (26)

and

f(t, a, b, λ) =
2abλ(1− t)[t(2− t)]λ−1

[1− [t(2− t)]λ]

{
− log

[
1− [t(2− t)]λ

]}−(a+1)

×
[
1 +

{
− log

[
1− [t(2− t)]λ

]}−a]−(b+1)

.

(27)
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The survival and hazard rate functions of the inverse Burr Topp-Leone (IB-TL)

distribution are, respectively, defined using equations (26) and (27) as follows

S(t, a, b, λ) = 1− F (t, a, b, λ) = 1−
[
1 +

{
− log

[
1− [t(2− t)]λ

]}−a]−b
(28)

and

h(t, a, b, α) =
f(t, a, b, α)

S(t, a, b, α)

=
2abλ(1− t)[t(2− t)]λ−1

{
− log

[
1− [t(2− t)]λ

]}−(a+1)

[1− [t(2− t)]λ]

[
1−

[
1 + {− log [1− [t(2− t)]λ]}−a

]−b]
×
[
1 +

{
− log

[
1− [t(2− t)]λ

]}−a]−(b+1)

.

(29)

3.5 Inverse Burr-Normal (IB-N) distribution

Suppose a random variable T is normally distributed with G(t, µ, σ) = Φ
( t−µ
σ

)
,

and g(t, µ, σ) = φ
( t−µ
σ

)
, µ, σ > 0,−∞ < t < ∞. The cdf and pdf of the inverse

Burr-Normal (IB-N) distribution are, respectively, defined as

F (t, a, b, µ, σ) =

[
1 +

{
− log

[
1− Φ

(
t− µ
σ

)]}−a]−b
, −∞ < t <∞, a, b, µ, σ > 0

(30)

and

f(t, a, b, µ, σ) =
abφ

(
t−µ
σ

) {
− log

[
1− Φ

(
t−µ
σ

)]}−(a+1)
[
1 +

{
− log

[
1− Φ

(
t−µ
σ

)]}−a]−(b+1)

[
1− Φ

(
t−µ
σ

)] .

(31)

Using equations (30) and (31), we defined the survival and hazard rate functions

of the inverse Burr Normal (IB-N) distribution, respectively, as follows

S(t, a, b, µ, σ) = 1− F (t, a, b, µ, σ)

= 1−

[
1 +

{
− log

[
1− Φ

(
t− µ
σ

)]}−a]−b
,

(32)
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and

h(t, a, b, µ, σ) =
f(t, a, b, µ, σ)

S(t, a, b, µ, σ)

=
abφ

( t−µ
σ

) {
− log

[
1− Φ

( t−µ
σ

)]}−(a+1)
[
1 +

{
− log

[
1− Φ

( t−µ
σ

)]}−a]−(b+1)

[
1− Φ

( t−µ
σ

)] [
1−

[
1 +

{
− log

[
1− Φ

( t−µ
σ

)]}−a]−b] .

(33)

4 Some Mathematical Properties of the IB-G family

of Distributions

This section presents some mathematical properties of the IB-G family of

distributions such as the linear representation of the cumulative distribution

function and probability density function, quantile function, rth ordinary

moments, moment generating function (mgf), probability weighted moments

(PWMs), Renyi entropy and distribution of order statistics.

4.1 Linear Representation

The usefulness of obtaining a linear representation for the density function and

the cumulative distribution function of a new model is to allow easy derivation of

some other mathematical properties of the model such as the moments, probability

weighted moments (PWMs), moment generating function, the distribution of

order statistics, etc. The following lemmas will guide us in the derivation of

the linear representation of the IB-G family of distributions.

Lemma I. For any real number s > 0, consider the generalized binomial series

expansion

(1 + y)−s =

∞∑
k=0

(
s+ k − 1

k

)
(−1)kyk.

http://www.earthlinepublishers.com



The Inverse Burr-Generalized Family of Distributions ... 323

[See Prudnikov et al., 1986, page 712].

Lemma II. For any real parameter α > 0 the convergent series holds

[− log(1− x)]α−1 = xα−1

[ ∞∑
m=0

(
α− 1

m

)
xm

( ∞∑
s=0

xs

s+ 2

)m]
, 0 < x < 1.

Applying the result on power series raised to a positive integer, with as = (s+ 2),

that is, ( ∞∑
s=0

asx
s

)m
=
∞∑
s=0

bs,mx
s

so that

[− log(1− x)]α−1 =

∞∑
m=0

∞∑
s=0

(
α− 1

m

)
bs,mx

α+m+s−1

where

bs,m = (sa0)
−1

s∑
q=0

(m(q + 1)− s)aqbs−q,m, and b0,m = am0

[See Gradsteyn and Ryzhik, 2000].

Now applying the above lemmas to the last expression in equation (5), we

have

[
1 + {− log[1−G(t, ξ)]}−a

]−(b+1)
=

∞∑
j=0

(
b+ j

j

)
(−1)j{− log[1−G(t, ξ)]}−aj

[− log[1−G(t, ξ)]]−a((j+1)+1) =

∞∑
m=0

∞∑
s=0

bs,m

(
−a((j + 1) + 1)

m

)
[G(t, ξ)]m+s−a(j+1)−1

[1− (1−G(t, ξ))]m+s−a(j+1)−1 =

∞∑
k=0

(
m+ s− a(j + 1)− 1

k

)
(−1)k(1−G(t, ξ))k

(1−G(t, ξ))k−1 =

∞∑
n=0

(
k − 1

n

)
(−1)n[G(t, ξ)]n,
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Substituting the expansions into equation (5),

f(t, a, b, ξ) = ab

∞∑
j,m,s=0

m+s−a(j+1)−1∑
k=0

k−1∑
n=0

(
b+ j

j

)(
−a((j + 1) + 1)

m

)

×

(
m+ s− a(j + 1)− 1

k

)

×

(
k − 1

n

)
(−1)j+k+nbs,mg(t, ξ)[G(t, ξ)]n,

=

∞∑
j,m,s=0

ψk,nπ(n+1)(t, a, b, ξ)

(34)

where

ψk,n =
ab

(n+ 1)

m+s−a(j+1)−1∑
k=0

k−1∑
n=0

(
b+ j

j

)(
−a((j + 1) + 1)

m

)

×

(
m+ s− a(j + 1)− 1

k

)(
k − 1

n

)
(−1)j+k+nbs,m

and π(n+1)(t, a, b, ξ) = (n+ 1)g(t, ξ)[G(t, ξ)](n+1)−1.

The density function of IB-G family of distributions defined in equation (34)

is expressed as an infinite linear combination of exp-G densities with power

parameter (n+ 1).

Consequently, the cumulative distribution function of the IB-G family of

distributions is expressed as a linear combination of exp-G cdfs with power

parameter (n+ 1).

F (t, a, b, ξ) =
∞∑

j,m,s=0

ψk,nΠ(n+1)(t, a, b, ξ), (35)

where Π(n+1)(t, a, b, ξ) is the exp-G cdf with (n+ 1) as the power parameter.
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4.2 Quantile Function of IB-G family

The quantile function of IB-G family of distributions is obtained as

QT (u) = G−1
[
1− e−(u−1/b−1)

−1/a
]
, u ∈ (0, 1) (36)

where u is a uniformly generated random variable (0 < u < 1) and G−1(.) is the

inverse function of G(.). In particular, the median of IB-G family of distributions

is obtained by setting u = 0.5 as shown in equation (36a).

QT (0.5) = G−1
[
1− e−((0.5)−1/b−1)

−1/a
]

(36a)

Equation (36) is useful in generating random samples from the IB-G family of

distributions for simulation purposes. Let G−1(.) be the inverse function of the

Topp-Leone distribution. From equation (36), we generate some quantiles from

the inverse IB-TL distribution for some selected parameter values as shown in

Table 1.

Table 1: Some quantiles of the IB-TL distribution (a, b, λ).

u (4.0, 3.0, 0.3) (2.0, 1.5, 0.5) (3.0, 2.5, 0.7) (5.0, 2.0, 4.0)

0.05 0.0863 0.0550 0.2281 0.6229

0.25 0.1501 0.1686 0.3389 0.6709

0.29 0.1606 0.1900 0.3552 0.6770

0.34 0.1737 0.2175 0.3752 0.6841

0.39 0.1870 0.2461 0.3950 0.6911

0.44 0.2009 0.2763 0.4151 0.6979

0.49 0.2155 0.3085 0.4357 0.7047

0.54 0.2312 0.3433 0.4573 0.7116

0.59 0.2485 0.3813 0.4803 0.7188

0.64 0.2676 0.4235 0.5051 0.7265

Table 1 shows some quantiles from the IB-TL distribution at different choice

of parameter values. We observe that the values are bounded within the unit
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interval, which agrees with the support of a random variable T following the

IB-TL distribution.

4.3 The rth moments and related measures of IB-G family

Let T be a random variable having the density function of the IB-G family, then

from equation (34), the rth moments of T is defined by

E (T r) = M′r =

∞∑
j,m,s=0

ψk,n

∫ ∞
−∞

trπ(n+1)(t, a, b, ξ)dt

=

∞∑
j,m,s=0

ψk,nE
[
Y r
(n+1)

]
, r = 1, 2, 3, 4, . . .

(37)

where E
[
Y r
(n+1)

]
is the rth moments of the exp-G family with power parameter

(n+ 1).

The mean (M′1) of the IB-G family is obtained from equation (37) when r = 1.

The variance
(
σ2
)
, skewness (S) and kurtosis (K) are obtained as

variance
(
σ2
)

= M′2 − (M′1)
2 , skewness (s) =

M′3−3M′2M′1+2(M′1)
3(

M′2−(M′1)
2
) 3

2

kurtosis(K) =
M′4−4M′3M′1+6M′3(M′1)

2−3(M′1)
4(

M′2−(M′1)
2
)2 .

Again, allowing the baseline distribution follow the one-parameter Topp-Leone

distribution, the numerical values of the mean (M′1), variance
(
σ2
)
, measures

of skewness (S) and kurtosis (K) of the IB-TL distribution for some selected

parameter values are computed in Table 2.
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Table 2: Theoretical moments of the IB-TL distribution for (λ = 2).

a b M′1 σ2 S K

2.0

0.3 0.3465 0.0468 0.4283 2.5822

0.5 0.4394 0.0502 0.6469 2.8611

0.8 0.5234 0.0413 0.2789 2.5474

4.0

0.3 0.4131 0.0235 0.0334 2.8390

0.5 0.4788 0.0177 0.0773 2.9291

0.8 0.5309 0.0137 0.1692 2.9257

6.0

0.3 0.4473 0.0136 -0.2994 3.0557

0.5 0.4974 0.0090 -0.0935 2.4544

0.8 0.5347 0.0066 -0.0996 8.2257

8.0

0.3 0.4678 0.0090 -0.6451 4.5954

0.5 0.5082 0.0054 0.3382 5.2197

0.8 0.5372 0.0037 0.3723 0.3477

Observations from the table reveal that IB-TL distribution exhibits a

left-skewed, right-skewed, approximately symmetric, platykurtic, leptokurtic as

well as mesokurtic properties.

4.4 Moment generating function of IB-G family

The moment generating function of IB-G family is obtained by

MT (q) = E
[
eqT
]

=
∞∑

j,m,s=0

ψk,n

∫ ∞
−∞

eqtπ(n+1)(t, a, b, ξ)dt

=
∞∑

j,m,s,w=0

ψ∗k,nE
[
Y w
(n+1)

]
, w = 2, 3, 4, . . .

(38)
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where,

ψ∗k,n =
abqw

(n+ 1)w!

m+s−a(j+1)−1∑
k=0

k−1∑
n=0

(
b+ j

j

)(
−a((j + 1) + 1)

m

)

×

(
m+ s− a(j + 1)− 1

k

)(
k − 1

n

)
(−1)j+k+nbs,m

and E
[
Y w
(n+1)

]
is the wth moment of the exp-G family with power parameter

(n+ 1).

4.5 Probability Weighted Moments (PWMs) of IB-G family

Let T be a random variable following the pdf and cdf of a known probability

distribution. Greenwood et al. (1979) defined the probability weighted moments

(PWMs) of random variable T as

ρq,w = E [TwF q(t)] =

∫ ∞
−∞

twf(t)F q(t)dt. (39)

By inserting equation (4) and (5) into equation (39), the (q, w)th PWMs of IB-G

family is obtained as follows

f(t, a, b, ξ)F q(t, a, b, ξ) =abg(t, ξ)[1−G(t, ξ)]−1{− log[1−G(t, ξ)]}−(a+1)

×
[
1 + {− log[1−G(t, ξ)]}−a

]−(b(q+1)+1)
(40)

Applying Lemma I and II into equation (40),

[
1 + {− log[1−G(t, ξ)]}−a

]−(b(q+1)+1)
=

∞∑
j=0

(
b(q + 1) + j

j

)
(−1)j{− log[1−G(t, ξ)]}−aj

[− log[1−G(t, ξ)]]−a((j+1)+1) =

∞∑
m=0

∞∑
s=0

bs,m

(
−a((j + 1) + 1)

m

)
[G(t, ξ)]m+s−a(j+1)−1

[1− (1−G(t, ξ))]m+s−a(j+1)−1 =

m+s−a(j+1)−1∑
k=0

(
m+ s− a(j + 1)− 1

k

)
(−1)k(1−G(t, ξ))k

(1−G(t, ξ))k−1 =

k−1∑
n=0

(
k − 1

n

)
(−1)n[G(t, ξ)]n
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Substituting these expansions into equation (40),

f(t, a, b, ξ)F q(t, a, b, ξ) = ab

∞∑
j,m,s=0

m+s−a(j+1)−1∑
k=0

k−1∑
n=0

(
b(q + 1) + j

j

)

×

(
−a((j + 1) + 1)

m

)

×

(
m+ s− a(j + 1)− 1

k

)(
k − 1

n

)
(−1)j+k+nbs,mg(t, ξ)[G(t, ξ)]n,

=

∞∑
j,m,s=0

ψ∗∗k,nπ(n+1)(t, a, b, ξ).

(41)

where

ψ∗∗k,n =
ab

(n+ 1)

m+s−a(j+1)−1∑
k=0

k−1∑
n=0

(
b(q + 1) + j

j

)(
−a((j + 1) + 1)

m

)

×

(
m+ s− a(j + 1)− 1

k

)(
k − 1

n

)
(−1)j+k+nbs,m.

Hence, the (q, w)th PWMs of IB-G family is obtained as

ρq,w = E [TwF q(t)] =
∞∑

j,m,s=0

ψ∗k,n

∫ ∞
−∞

twπ(n+1)(t, a, b, ξ)dt,

=
∞∑

j,m,s=0

ψ∗k,nE
[
Y w
(n+1)

]
.

(42)

4.6 Renyi entropy of IB-G family

Renyi (1961) defined the entropy of a random variable T following a known

probability distribution with pdf, f(t) as

τR(ω) =
1

1− ω
log

∫ ∞
−∞

fω(t)dt, ω > 0, ω 6= 1. (43)
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By inserting equation (5) into equation (43), the Renyi entropy of IB-G family is

defined as follows:

τR(ω) =
1

1− ω
log

[[
logα

α− 1

]ω
(ab)ω

∫ ∞
−∞

gω(t, ξ)[1−G(t, ξ)]−ω

×{− log[1−G(t, ξ)]}−ω(a+1)
[
1 + {− log[1−G(t, ξ)]}−α

]−ω(b+1)
dt
]
.

(44)
Applying Lemma I and II in equation (44), yields the following expansions

[
1 + {− log[1−G(t, ξ)]}−a

]−ω(b+1)
=

∞∑
j=0

(
ω(b+ 1) + j − 1

j

)
(−1)j{− log[1−G(t, ξ)]}−aj

[− log[1−G(t, ξ)]]−a(ω+j)−ω =

∞∑
m=0

∞∑
s=0

bs,m

(
−a(ω + j)− ω

m

)
[G(t, ξ)]m+s−a(ω+j)−ω

[1− (1−G(t, ξ))]m+s−a(ω+j)−ω =

m+s−a(ω+j)−ω∑
k=0

(
m+ s− a(ω + j)− ω

k

)
(−1)k(1−G(t, ξ))k

(1−G(t, ξ))k−ω =

k−ω∑
n=0

(
k − ω
n

)
(−1)n[G(t, ξ)]n.

Substituting these expansions into equation (44), the Renyi entropy of IB-G family

is obtained as

τR(ω) =
1

1− ω
log

[ logα

α− 1

]ω
(ab)ω

∞∑
j,m,s=0

ψ∗mk,n

∫ ∞
−∞

gω(t, ξ)Gn(t, ξ)dt

 (45)

where,

ψ∗∗∗kk,n =
∑m+s−a(ω+j)−ωk−ω

k=0

∑
n=0

(
ω(b+ 1) + j − 1

j

)(
−a(ω + j)− ω

m

)
(
m+ s− a(ω + j)− ω

k

)(
k − ω
n

)
(−1)j+k+nbs,m.

4.7 Distribution of order Statistics of IB-G family

Suppose that T1, T2, . . . , Tl is a random sample from IB-G family of distributions.

Let Tr:l denote the rth order statistic, then the density function of Tr:n is defined
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as

fr:l(t, a, b, ξ) =
1

B(r, l − r + 1)

l−r∑
p=0

(
l − r
p

)
(−1)pf(t, a, b, ξ)F r+p−1(t, a, b, ξ).

(46)

By inserting equations (4) and (5) into equation (46), the density function of IB-G

rth order statistics is defined as follows.

f(t, a, b, ξ)F r+p−1(t, a, b, ξ) = abg(t, ξ)[1−G(t, ξ)]−1{− log[1−G(t, ξ)]}−(a+1)

×
[
1 + {− log[1−G(t, ξ)]}−a

]−(b(r+p)+1)
.

(47)
Applying Lemma I and II into equation (47),

[
1 + {− log[1−G(t, ξ)]}−a

]−(b(r+p)+1)
=

∞∑
j=0

(
b(r + p) + j

j

)
(−1)j{− log[1−G(t, ξ)]}−aj ,

[− log[1−G(t, ξ)]]−a((j+1)+1) =

∞∑
m=0

∞∑
s=0

bs,m

(
−a((j + 1) + 1)

m

)
[G(t, ξ)]m+s−a(j+1)−1

[1− (1−G(t, ξ))]m+s−a(j+1)−1 =

m+s−a(j+1)−1∑
k=0

(
m+ s− a(j + 1)− 1

k

)
(−1)k(1−G(t, ξ))k

(1−G(t, ξ))k−1 =

k−1∑
n=0

(
k − 1

n

)
(−1)n[G(t, ξ)]n.

Substituting these expansions into equation (47),

f(t, a, b, ξ)F r+p−1(t, a, b, ξ)

= ab

∞∑
j,m,s=0

m+s−a(j+1)−1∑
k=0

k−1∑
l=0

(
b(r + p) + j

j

)(
−a((j + 1) + 1)

m

)

×

(
m+ s− a(j + 1)− 1

k

)(
k − 1

n

)
(−1)j+k+nbs,mg(t, ξ)[G(t, ξ)]n.

(48)

Applying equation (48) in equation (46), we have

fr:l(t, a, b, ξ) =
1

B(r, l − r + 1)

∞∑
j,m,s=0

ψ∗∗∗∗l,k,nπ(n+1)(t, a, b, ξ) (49)
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where,

Ψ∗+∗kl,k,n =
ab

(n+ 1)

l−1∑
l=0

m+−a(j+1)−1∑
k=0

k−1∑
n=0

(
l − r
l

)(
b(r + p) + j

j

)

×

(
−a((j + 1) + 1)

m

)(
m+ s− a(j + 1)− 1

k

)(
k − 1

n

)
(−1)p+j+k+nbs,m.

The wth moment of IB-G rth order statistic can be expressed from equation (49)

as

E (Twr ) =
1

B(r, l − r + 1)

∞∑
j,m,s=0

ψ∗∗∗∗l,k,nE
[
Y w
(n+1)

]
(50)

where E
[
Y w
(n+1)

]
is the wth moment of exp-G family with power parameter (n+1).

4.8 Parameter estimation of IB-G family

4.8.1 Maximum likelihood estimation

Suppose (t1, t2, . . . , tn) are random samples generated from the IB-G family of

distributions. The likelihood function of T is given as

L(t,$) =
n∏
i=1

[
abg (ti, ξ) [1−G (ti, ξ)]

−1 {− log [1−G (ti, ξ)]}−(a+1)

×
[
1 + {− log [1−G (ti, ξ)]}−a

]−(b+1)
]
, $ = (a, b, ξ)T .

(51)

Taking the natural logarithm of equation (51), yields

`(t,$) =n ln(ab) +

n∑
i=1

ln(g(t, ξ))−
n∑
i=1

ln(1−G(t, ξ))

− (a+ 1)

n∑
i=1

ln(− ln(1−G(t, ξ)))

− (b+ 1)

n∑
i=1

ln
[
1 + (− ln(1−G(t, ξ)))−a

]
.

(52)
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The associated gradients are obtained by differentiating the log-likelihood function

in equation (52) with respect to the parameters.

`(t,$)

∂a
=
n

a
−

n∑
i=1

ln (− ln (1−G (ti, ξ)))

+ (b+ 1)

n∑
i=1

(− ln (1−G (ti, ξ)))
−a ln [− ln (1−G (ti, ξ))][

1 + (− ln (1−G (ti, ξ)))
−a] ,

`(t,$)

∂b
=
n

b
−

n∑
i=1

ln
[
1 + (− ln (1−G (ti, ξ)))

−a] ,
`(t,$)

∂ξ
=

n∑
i=1

g′(t, ξ)

g(t, ξ)
+

n∑
i=1

g′ (ti, ξ)

(1−G (ti, ξ))

− (a+ 1)

n∑
i=1

g(b+ 1)
∑n

i=1
g(ti,ξ)

(1−G(ti,ξ))(− ln(1−G(ti,ξ)))
[− ln (1−G (ti, ξ)))

−(a+1)

[1−G (ti, ξ)))
−a] (1−G (ti, ξ))

(53)

where g′ (ti, ξ) = ∂g(ti,ξ)
∂ξi

and ∂ξi is the ith element of the vector of parameter ξ.

The maximum likelihood estimates (MLEs) of $ say $̂ = (â, b̂, ξ̂)T , is obtained

from the solution of the score function U (ti, $) =
[
`(t,$)
∂a , `(t,$)

∂b , `(t,$)
∂ξ

]T
= 0.

These numerical solutions can be obtained using Statistical packages such as

fitdisrtplus and optim in R program.

4.8.2 Simulation study

Again, taking the Topp-Leone distribution as the generator, the study investigates

the performance of the parameter estimates of the IBTL distribution via Monte

Carlo simulation study. Random samples of size n = (25, 50, 100, 200, 500) are

generated from the IBTL distribution at three distinct sets of parameter values

(a = 2.0, b = 0.4, λ = 0.5), (a = 2.5, b = 0.3, λ = 0.7) and (a = 3.0, b =

0.2, λ = 2.0). At each case, the simulation is repeated 1000 times and the following

quantities are computed:

i) mean estimate (ψ̄) = 1
N

∑N
i=1 ψ̂i,
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ii) average bias = 1
N

∑N
i=1

(
ψ̂i − ψ̄

)
,

iii) root mean square error (RMSE) =

√
1
N

∑N
i=1

(
ψ̂i − ψ̄

)2
,

iv) Coverage Probability of the 95% confidence interval of the estimates ψ̂i

given by

CP (ψ̂) =
1

N

N∑
i=1

I
(
ψ̂i − Zδ/2

√
var(ϕ̂) < ψ0 < ψ̂i + Zδ/2

√
var(ϕ̂)

)
,

where I(.) is an indicator function and (ψ̂) is the standard error of the estimate

ψi.

Tables 3 - 6 display the mean estimate, average bias, root mean square error

and coverage probability of the 95% confidence interval of the parameter estimates

of the IBTL distribution.
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Table 3: Simulation results for the mean estimates of the parameters of the IBTL

distribution.

Parameters n Mean(a) Mean(b) Mean(λ)

25 2.6236 1.2405 0.4995

a = 2.0 50 2.3530 0.6628 0.5271

b = 0.4 100 2.1743 0.5744 0.5386

λ = 0.5 200 2.0890 0.4898 0.5317

500 2.0350 0.4114 0.5279

25 3.4615 0.6818 0.7209

a = 2.5 50 2.9798 0.4156 0.7458

b = 0.3 100 2.7051 0.3524 0.7459

λ = 0.7 200 2.5948 0.3112 0.7384

500 2.5227 0.3091 0.7082

25 3.9173 0.3282 1.8407

a = 3.0 50 3.7643 0.2670 2.0193

b = 0.2 100 3.3766 0.2135 2.0686

λ = 2.0 200 3.1830 0.2075 2.0547

500 3.0535 0.2025 2.0185
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Table 4: Simulation results for the Bias of the parameters of the IBTL distribution.

Parameters n Bias(a) Bias(b) Bias(λ)

25 0.6236 0.8405 -0.0005

a = 2.0 50 0.3530 0.2628 0.0271

b = 0.4 100 0.1743 0.1744 0.0386

λ = 0.5 200 0.0890 0.0898 0.0316

500 0.0350 0.0114 0.0279

25 0.9615 0.3815 0.0209

a = 2.5 50 0.4798 0.1156 0.0458

b = 0.3 100 0.2051 0.0524 0.0459

λ = 0.7 200 0.0948 0.0112 0.0384

500 0.0227 0.0091 0.0082

25 0.9173 0.1282 -0.1592

a = 3.0 50 0.7643 0.0670 0.0193

b = 0.2 100 0.3766 0.0135 0.0686

λ = 2.0 200 0.1830 0.0075 0.0548

500 0.0535 0.0025 0.0185
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Table 5: Simulation results for the RMSE of the parameters of the IBTL

distribution.

Parameters n RMSE(a) RMSE(b) RMSE(λ)

25 1.1339 2.6137 0.3869

a = 2.0 50 0.7507 0.8872 0.3596

b = 0.4 100 0.3720 0.7533 0.3422

λ = 0.5 200 0.2447 0.3679 0.2626

500 0.1437 0.1285 0.1689

25 2.0986 1.9290 0.4556

a = 2.5 50 1.2833 0.4496 0.3948

b = 0.3 100 0.6162 0.2365 0.3367

λ = 0.7 200 0.3252 0.1188 0.2355

500 0.1701 0.0718 0.1375

25 2.0161 0.4124 0.9454

a = 3.0 50 1.1198 0.3365 0.8416

b = 0.2 100 0.9885 0.1135 0.6522

λ = 2.0 200 0.5888 0.0833 0.5267

500 0.2830 0.0419 0.3007
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Table 6: Simulation results of the CP of 95% CI of the parameters of the IBTL

distribution.

Parameters n CP(a) CP(b) CP(λ)

25 1.1339 0.912 0.826

a = 2.0 50 0.7507 0.904 0.842

b = 0.4 100 0.3720 0.920 0.866

λ = 0.5 200 0.2447 0.938 0.888

500 0.1437 0.920 0.912

25 2.0986 0.866 0.862

a = 2.5 50 1.2833 0.876 0.872

b = 0.3 100 0.6162 0.896 0.906

λ = 0.7 200 0.3252 0.924 0.926

500 0.1701 0.940 0.934

25 2.0161 0.934 0.828

a = 3.0 50 1.1198 0.888 0.888

b = 0.2 100 0.9885 0.886 0.926

λ = 2.0 200 0.5888 0.906 0.926

500 0.2830 0.946 0.958

Simulation results from Tables 3− 6 are discussed as follows:

i) The mean estimates in Table 3 approaches the true parameter value as the

sample size n increases;

ii) Table 4 shows that the parameter estimate â and b̂ are positively biased

while λ̂ is both negatively and positively biased. Furthermore, the bias of â and

b̂ decrease as the sample size n increases;

iii) From Table 5, the root mean square error of the parameter estimates â, b̂

and λ̂ decrease as the sample size n increases;
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iv) Finally, Table 6 shows that the coverage probability of the 95% confidence

interval of the estimates are very close to the nominal level of 95%.

These properties are what one should expect from a good estimator.

5 Data Analysis

This section is devoted to illustrate the applicability of the proposed family of

distributions in lifetime data fittings. In order to achieve this, two real data

sets are employed and the fits of the sub-model from the proposed family of

distributions together with the fits attained by some non-nested distributions are

compared. The non-nested distributions with their density function are defined

as follows:

1. Marshall-Olkin extended Kumaraswamy distribution (MOEKD) introduced

by George and Thobias (2017);

f(t, a, b, α) =
αabta−1 (1− ta)b−1[

1− α (1− ta)b
]2 .

2. Unit-Burr XII distribution (UBXIID) developed by Korkmaz and Chesneau

(2021);

f(t, α, β) = αβt−1(− log t)β−1
(

1 + (− log t)β
)−(α+1)

.

3. Unit-Burr III distribution (UBIIID) proposed by Modi and Gill (2020);

f(t, λ, β) = λβt−2
(
t−1 − 1

)β−1 (
1 +

(
t−1 − 1

)β)−(λ+1)
.

4. Unit-Weibull distribution (UWD) proposed by Mazucheli et al. (2019);
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f(t, α, β) =
1

t
αβ(− log t)β−1 exp

[
−α(− log t)β

]
.

5. Unit-Gompertz distribution (UGD) proposed by Mazucheli et al. (2019);

f(t, a, b) = abt−(a+1)e−b(t
−a−1).

6. Log-weighted exponential distribution (LWED) proposed by Altun (2019);

f(t, α, β) =
α+ 1

α
β exp(−βt)

(
1− e−αβt

)
.

7. Alpha power Topp-Leone distribution (APTLD) proposed by Ehiwario et

al. (2023);

f(t, α, λ) =
logα

α− 1
2λ(1− t)

[
1− (1− t)2

]λ−1
α[1−(1−)2]

λ

.

8. Marshall-Olkin extended Topp-Leone distribution (MOETLD) due to

Opone and Iwerumor (2021);

f(t, α, λ) =
2αλ(1− t)

[
1− (1− t)2

]λ−1[
1− ᾱ

{
1− (1− (1− t)2)λ

}]2 .
9. Power continuous Bernoulli distribution proposed by Chesneau and Opone

(2022);

f(t, α, λ) =
λα

α
(1− λ)1t

α
+ λ− 1

2λ− 1
.

10. Beta distribution reported in Opone and Ekhosuehi (2017);

f(t, a, b) =
ta−1(1− t)b−1

B(a, b)
, B(a, b) =

Γ(a)Γ(b)

Γ(a+ b)
.
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11. Kumaraswamy distribution (KwD) developed by Kumaraswamy (1980);

f(t, a, b) = abta−1 (1− ta)b−1 .

Data set 1: The first data set consists of trade share data from Bantan et al.

(2021). The trade share data are as follows:

0.140501976, 0.156622976, 0.157703221, 0.160405084, 0.160815045, 0.22145839,

0.299405932, 0.31307286, 0.324612707, 0.324745566, 0.329479247, 0.330021679,

0.337879002, 0.339706242, 0.352317631, 0.358856708, 0.393250912, 0.41760394,

0.425837249, 0.43557933, 0.442142904, 0.444374621, 0.450546652, 0.4557693,

0.46834656, 0.473254889, 0.484600782, 0.488949597, 0.509590268, 0.517664552,

0.527773321, 0.534684658, 0.543337107, 0.544243515, 0.550812602, 0.552722335,

0.56064254, 0.56074965, 0.567130983, 0.575274825, 0.582814276, 0.603035331,

0.605031252, 0.613616884, 0.626079738, 0.639484167, 0.646913528, 0.651203632,

0.681555152, 0.699432909, 0.704819918, 0.729232311, 0.742971599, 0.745497823,

0.779847085, 0.798375845, 0.814710021, 0.822956383, 0.830238342, 0.834204197,

and 0.979355395.

Details of this data set can be accessed in Stock and Watson (2007).

Data set 2: The second data set reported in Nigm et al. (2003) is concerned

with ordered failure of components. The data are presented as follows:

0.0009, 0.004, 0.0142, 0.0221, 0.0261, 0.0418, 0.0473, 0.0834, 0.1091, 0.1252,

0.1404, 0.1498, 0.175, 0.2031, 0.2099, 0.2168, 0.2918, 0.3465, 0.4035, 0.6143.

Figures 1 and 2 present the boxplot and histogram of the two data sets,

respectively. From the boxplot in Figure 1, we observe that there is no presence

of outliers, whereas, Figure 2 shows the presence of outlier in the data set.

To obtain the appropriate model for analyzing the two data sets, we considered

some model selection criteria such as the maximized log-likelihood (LogL), Akaike

Information Criteria (AIC), and some goodness of fit test statistics such as the

Komolgorov-Smirnov (K-S), Crammer von Mises (W ∗) and Anderson Darling

(A∗) test statistics.
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Figure 1: The Boxplot and Histogram of Data set 1.

Figure 2: The Boxplot and Histogram of Data set 2.

Tables 7 and 8 present the summary results of the fit of the distributions for

the two data sets, respectively.
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Table 7: Summary Statistics for Data set 1.

Models
Parameter

estimates
log L AIC

K − S
(p-value)

W ∗

(p-value )

A∗

(p-value )

IB-TL a = 2.1881 15.2310 -25.4621 0.0528 0.0257 0.2545

b = 0.3003 (0.9924) (0.9888) (0.9679)

λ = 4.4174

MOEK a = 3.0578 14.3183 -22.6366 0.0582 0.0439 0.4014

b = 1.9514 (0.9784) (0.9137) (0.8568)

α = 0.3015

UBXII α = 2.1247 14.1186 -24.2371 0.0538 0.0314 0.2858

β = 2.2237 (0.9904) (0.9724) (0.9482)

UBIII λ = 1.0984 14.6571 -25.3142 0.0500 0.0291 0.2742

β = 1.8704 (0.9961) (0.9799) (0.9560)

UW α = 1.3396 14.2436 -24.4872 0.0615 0.0617 0.5034

β = 1.7346 (0.9210) (0.8049) (0.7427)

UG a = 0.6162 10.8759 -17.7518 0.1098 0.0276 1.4468

b = 1.0921 (0.4235) (0.2535) (0.1897)

LWE α = −0.00003 13.0830 -22.1660 0.1025 0.1356 0.8576

λ = 2.6578 (0.5108) (0.4376) (0.4408)

APTL α = 0.4158 14.4209 -24.8417 0.0575 0.0416 0.3765

λ = 3.3733 (0.9808) (0.9260) (0.8713)

MOETL α = 0.6630 14.3606 -24.7211 0.0568 0.0447 0.3925

λ = 3.3521 (0.9831) (0.9092) (0.8557)

PCB α = 2.8491 15.1002 -25.2005 0.0565 0.0305 0.2964

λ = 0.0094 (0.9837) (0.9754) (0.9406)

Beta a = 2.7940 13.9561 -23.9121 0.0618 0.0470 0.3760

b = 2.6038 (0.9629) (0.8958) (0.8717)

Kum a = 2.3301 13.6251 -23.2503 0.0690 0.0558 0.4115

b = 2.7638 (0.9143) (0.8423) (0.8367)
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Table 8: Summary Statistics for Data set 2.

Models
Parameter

estimates
log L AIC

K − S
(p-value)

W ∗

(p-value )

A∗

(p-value)

IB-TL a = 3.3104 17.3080 -30.6159 0.0846 0.0175 0.1139

b = 0.2589 (0.9963) (0.9992) (0.9999)

λ = 0.6771

MOEK a = 0.6225 17.3089 -28.6179 0.0878 0.0206 0.1320

b = 3.7649 (0.9941) (0.9972) (0.9996)

α = 2.1331

UBXII α = 0.2783 14.3451 -24.6902 0.2274 0.1781 0.9250

β = 4.3784 (0.2163) (0.3159) (0.3978)

UBIII λ = 0.1309 15.4957 -26.9913 0.2159 0.1486 0.7819

β = 3.1866 (0.2678) (0.3965) (0.4925)

UW α = 0.1598 16.4575 -28.9150 0.1319 0.0531 0.3117

β = 1.7269 (0.8335) (0.8625) (0.9284)

UG a = 0.7741 14.7625 -25.5251 0.1494 0.0996 0.6509

b = 0.2782 (0.7093) (0.5911) (0.5991)

LWE α = 0.0003 16.4330 -28.8659 0.1351 0.0521 0.3371

λ = 0.7807 (0.8120) (0.8689) (0.9069)

APTL α = 0.0957 16.8009 -29.6017 0.1158 0.0382 0.2260

λ = 0.8350 (0.9236) (0.9463) (0.9817)

MOETL α = 0.3520 16.5625 -29.1249 0.1096 0.0407 0.2605

λ = 0.8346 (0.9485) (0.9342) (0.9643)

PCB α = 0.8734 16.7779 -29.5558 0.1177 0.0408 0.2403

λ = 0.0067 (0.9145) (0.9336) (0.9752)

Beta a = 0.7134 17.2532 -30.5067 0.0981 0.0261 0.1542

b = 3.7453 (0.9803) (0.9891) (0.9984)

Kum a = 0.7640 17.2047 -30.4095 0.1027 0.0286 0.1678

b = 3.4347 (0.9699) (0.9829) (0.9970)

An appropriate model suitable for analyzing a real data set corresponds to

the model with the maximized log-likelihood value, least value in terms of the

AIC, K-S, W ∗ and A∗ test statistics with the corresponding highest p-value.

Clearly, from Tables 7 and 8, we observe that the inverse Burr Topp Leone

(IBTL) distribution belonging to the proposed family of distributions satisfies
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the conditions and thus, outperforms the competitor distributions in analyzing

the two data sets under study. The density and cumulative distribution fits as

well as the probability-probability (p-p) plots of the distributions for the two data

sets are examined in Figures 3− 6, to further support the flexibility of the ITBL

distribution.

Figure 3: The fitted pdf and cdf of the distributions for Data set 1.

Figure 4: The fitted pdf and cdf of the distributions for Data set 2.
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Figure 5: The probability-probability (p-p) plots of the distributions for Data

set 1.
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Figure 6: The probability-probability (p-p) plots of the distributions for Data

set 2.

6 Conclusion

In this paper, we have introduced a new class of generalized distributions based on

the inverse Burr distribution. Basic Statistical properties of the proposed family

of distributions such as the density and cumulative distribution functions, survival

and hazard rate functions, quantile, moments, moment generating function,

probability weighted moments, Renyi entropy and distribution of order statistics

were derived. The parameter estimates of the family of distributions were

derived via the maximum likelihood estimation method. The performance of

the parameter estimates of sub-model from the proposed family of distributions

were examined through a Monte Carlo simulation study. Finally, we illustrate the
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utility of the proposed family of distributions in lifetime data fittings using two real

data sets and the results obtained were compared with some existing non-nested

models. Based on some model selection criteria and goodness of fit test statistics,

it was evident that the IBTL distribution belonging to the proposed family of

distributions performed reasonably better than the competitor distributions in

fitting the two data sets under study.
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