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Abstract

The present work is devoted to study a viscous, incompressible, and

electrically conducting fluid on an MHD fluid flowing past a semi-infinite

porous plate in the presence of chemical reaction and inclined magnetic

parameter. The governing equations are expressed in non-dimensional form

and the resulting nonlinear equations are solved employing the Homotopy

perturbation method for the nondimensional velocity, temperature, and

concentration profiles. The effects of various controlling parameters such

as Casson parameter, Hartmann number, inclined magnetic parameter,

porosity parameter, Grashof number, angle of inclination, Prandtl number,

Eckert number, radiation parameter, Schmidt number and thermal radiation

parameters are presented graphically and discussed in detail. It was found

that, velocity profile is enhanced in the presence of Casson, magnetic field

and inclined angle parameters whereas it declined with positive increase in

the porosity, Grashof and inclined angle numbers. Similarly, increase in

Prandtl, Eckert, radiation and inclined angle numbers lead to increase in the

Received: April 23, 2023; Accepted: June 7, 2023; Published: June 15, 2023

2020 Mathematics Subject Classification: 35Q53.

Keywords and phrases: homotopy perturbation method (HPM), chemical reaction, inclined
magnetic field MHD, radiation absorption, porosity.
*Corresponding author Copyright c© 2023 Authors



210 L. Ebiwareme, K. W. Bunonyo and O. A. Davies

temperature distribution of the fluid, while it deceased as the magnetic field

parameter increased. The effect of increased thermal radiation parameter is

proportional to the concentration profile, whereas it declines for increase in

values of Schmidt number.

1 Introduction

Convective heat and mass transfer flows over diverse influencing parameters in

several media have caught the attention of scholars for some time now. From

industrial point of view, these flows have great importance especially in the

metallurgical industry, meteorology, cooling towers, spray drying of milk, burning

of haystacks, fluidised-bed catalysis, respiratory gas exchange in lungs, polymer

production, dispersion of fog [1].

Anghel et al. [2] have investigated the combined heat and mass transfer of free

convection past an inclined flat plate using analytical technique. Heat and mass

transfer in magnetohydrodynamic flow of natural convection through a permeable

inclined surface influenced by variable wall temperature and concentration has

been explored by Chen [3]. Utilising Lie group analysis, Sivasankaran et al. [4]

examined the natural convection heat and mass transfer flow in an inclined surface.

Based on the Adomian decomposition method, Ebiwareme et al. [5] conducted

theoretically a heat transfer analysis of an MHD flow through an infinite vertical

porous plate under the influence of suction. Ebiwareme et al. [6] studied an

MHD Casson fluid flow past an inclined semi-infinite porous plate in the presence

of magnetic field and radiation absorption for analytical solution using Adomian

decomposition method (ADM). The result in this study showed the control flow

parameters have significant influence on the nondimensional velocity, temperature,

and concentration gradients of the fluid. Noor et al. [7] analysed the heat and

mass transfer of thermophoretic MHD flow over an inclined radiate isothermal

permeable surface in the presence of heat source/sink. A numerical study of an

unsteady free convective magnetohydrodynamic flow of a dissipative fluid along
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a vertical plate subjected to a constant heat flux have been examined by Jordán

[8]. Mass transfer effects on a mixed convective flow past a heated vertical flat

permeable plate with thermophoresis was investigated numerically using RKFM

by Selim [9]. Sandeep and Sugunamma [10] researched on the impact of inclined

magnetic field on unsteady free convective flow of dissipative fluid through a

vertical plate. Investigative solution on the consequences of chemical reaction and

radiation on unsteady MHD free convective flow and mass transfer through viscous

incompressible fluid past a heated vertical plate immersed in porous medium in

the presence of heat source has been analysed by Sharma et al. [11]. Mahaptra et

al. [12] have discussed the chemical reaction impact on free convection through a

porous medium bounded by a vertical surface. Combined effects on Casson MHD

fluid flow over a vertical plate with heat source/sink in the presence of chemical

reaction, radiation and Dufour have been studied analytically by Vedavathi et

al. [13]. Ramaprasad et al. [14] have examined an unsteady MHD convective

heat and mass transfer flow past an inclined moving surface with heat absorption.

Similarly, Srinivas Reddy [15] have explored the effect of chemical reaction on

MHD free convection heat and mass transfer from vertical surfaces in porous

media considering thermal diffusion and thermo diffusion effects.

In recent times, many scientific problems encountered in science and

engineering are strongly nonlinear in nature, hence are not amenable to traditional

mathematical techniques for analytical solution. Due to simplicity and growing

interest, semi-analytical or semi-exact methods have been developed and deployed

to solve these problems for approximate analytical solution. These methods have

strong appeal among the academia because of their ease of implementation and

degree of accuracy even when only very few terms are needed to obtain the

solution. Some of these innovative methods includes: Adomian decomposition

method (ADM), variational iteration method (VIM), Differential transformation

method (DTM), Differential Quadrature method (DQM), Homotopy perturbation

method (HPM), Homotopy analysis method (HAM), Abkari-Ganji method

(AGM), Optimal Homotopy asymptotic method (OHAM), Chebyshev Wavelet

method (CWM), Hermite Wavelet method (HWM), Legendre-Wavelet method
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(LWM), Petro-Galerkin method and others. These methods have been applied to

a great effect in solving diverse problems [16-19]

The homotopy perturbation method (HPM) was first developed by Ji-Huan He

in 1999 [20-24]. Using this method, the required solution is considered as the sum

of an infinite series which converges rapidly to the accurate solution. The main

advantages of homotopy perturbation method (HPM) over other semi-analytical

methods is that it obtains the exact solutions with higher accuracy, minimal

calculations without loss of physical verification, gives the solution by using

initial conditions only and solves nonlinear problems without using Adomian

polynomials as is the case with the Adomian decomposition method for nonlinear

terms. This method has found application in different fields of nonlinear science

and have been favorably applied to solve different problems. Many authors

and researchers studied the homotopy perturbation method and used it for

solving nonlinear ordinary differential equations, solved the Nonlinear ordinary

differential equations with nth order, the oscillators equation with discontinuities,

one dimensional nonlinear wave equation, physical models, chemical ion transport

through the soil, Dengue disease model, nonlinear partial differential equation,

MHD Jefferey-Hamel problem, heat transfer analysis for Squeezing flow between

parallel disk and unsteady squeezing nanofluid flow problem [25-34].

In this paper, we have successfully employed the homotopy perturbation

method to explore an MHD fluid flow past a semi-infinite porous plate under the

influence of chemical reaction and inclined magnetic field which is an extension

of earlier work by Ebiwareme et al. [6]. The dimensionless flow gradients are

obtained, and the result displayed in graphical form and discussed quantitatively.

The study is arranged as follows: In the next section, governing partial differential

equation that characterize the flow are presented. In Section 3, solution of the

problem in the form of nondimensional profiles under the influence of pertinent

parameters are obtained using the solution technique. The discussion of results

in graphical form and their accompanying discussion for the influence of different

parameters is given in Section 4. Major findings of the study are summarized in

itemized form in Section 5 and finally Section 6 draw the conclusion of the study.
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2 Governing Equation

∂v∗

∂y∗
= 0, ⇒ v∗ = −V0 > 0 (1)

v∗
∂u∗

∂y∗
= v

(
1 +

1

β

)
∂2u∗

∂y∗2
+ gβ (T ∗ − T∞)− σB2

0

ρ
sin2 γu∗ − vu∗

K∗
(2)

v∗
∂T ∗

∂y∗
=

κ

ρCρ

∂2T ∗

∂y∗2
+

v

Cρ

(
∂u∗

∂y∗

)2

+
σB2

0

ρ
u∗2 +

Q0

ρCρ
(T ∗ − T∞) +

R∗

ρCρ
(C∗ − C∞)

(3)

v∗
∂C∗

∂y∗
= D

∂2C∗

∂y∗2
−K1 (C∗ − C∞) (4)

The boundary conditions are as follows:

u∗ = 0, C∗ = Cw, T ∗ = Tw at y∗ = 0

u∗ → 0, C∗ → C∞, T ∗ → T∞ as y∗ →∞
(5)

Using the following non-dimensional numbers:

u =
u∗

v0
, y =

v0y
∗

v
,Pr =

vρCρ
κ

, θ =
T ∗ − T∞
T0 − T∞

, φ =
C∗ − C∞
Cw − C∞

, Gr =
vgβ (Tw − T∞)

v30
(6)

Putting Eq. (6) into Eqs. (1-4), we obtain the following simplified

non-dimensional equations as follows:(
1 +

1

β

)
∂2u

∂y2
+
∂u

∂y
−
(
M2 sin2 γ +K0

)
u+Gr cosαθ = 0 (7)

∂2θ

∂y2
+ Pr

∂θ

∂t
+ PrEc

(
∂u

∂y

)2

+ PrEcM2 sin2 γu2 +Rϕ = 0 (8)

Sc
∂2ϕ

∂y2
+
∂ϕ

∂t
−Krϕ = 0 (9)

The resulting boundary conditions are

u = 0, θ = 1, ϕ = 1, at y = 0

u→ 0, θ → 1, ϕ→ 1 as y →∞
(10)
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3 Fundamentals of Homotopy Perturbation Method

(HPM)

In this section, we illustrate the basic principle of the Homotopy perturbation

method as expounded by He [20-26]. For this, we consider a functional differential

equation of the form

A(u)− f(r) = 0, r ∈ Ω (11)

subject to the boundary condition

B

(
u,
∂u

∂n

)
= 0, r ∈ T (12)

Here A represents a general differential operator, B is a boundary operator, u(x, t)

is an unknown function, T is the boundary of the domain Ω, f(x, t) is a known

analytic function and ∂
∂n denotes the differentiation along the normal vector drawn

outwards from Ω.

Decomposing the differential operator into two parts comprising linear, (L)

and nonlinear (N) respectively. Therefore, we rewrite Eq. (11) in the form

L(u) +N(u)− f(r) = 0 (13)

Embedding an artificial parameter p on Eq. (13) as follows

L(u) + p(N(u)− f(r)) = 0, (14)

where p ∈ [0, 1] is the embedding also called artificial parameter.

By the standard Homotopy procedure proposed by He [20-26], we construct a

Homotopy of the form H(r, p) : Ω× [0, 1]→ < to Eq. (14) that satisfies

H(v, p) = (1− p) [L(v)− L (u0)] + p[L(v) +N(v)− f(r)] = 0 (15)

which is equivalent to

H(v, p) = L(v)− L (u0) + pL (u0) + p[N(v)− f(r)] = 0 (16)
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where u0(x, t) is the initial approximation which satisfies the boundary condition

of Eq. (12)

Substituting p = 0 and p = 1 into Eq. (13), we obtain the following equations

H(v, 0) = L(v)− L (u0) , H(v, 1) = A(v)− f(r) (17)

The changing process of p monotonically from zero to unity is that of H(v, p) from

L(v)−L (u0) to A(v)− f(r). This is called deformation in topology, whereas the

terms L(v)− L (u0) and A(u)− f(r) are homotopic to each other.

Since p ∈ [0, 1] is a small parameter, we consider the solution of Eq. (16) as

power series of p follows

v =
∞∑
n=0

p(n)vn = v0 + pv1 + p2v2 + · · · (18)

The approximate solution of Eq. (18) can be obtained by setting p = 1

u(x, t) = lim
p→1

vn = v0 + v1 + v2 + · · · (19)

Similarly, the nonlinear term, N(u) can be expressed in He’s polynomial [27]

N(u) =

∞∑
n=0

p(m)Hm (v0 + v1 + · · ·+ vm) (20)

where

Hm (v0 + v1 + · · ·+ vm) =
1

m!

∂m

∂pm

[
N

(
m∑
k=0

pkvk

)]
p=0

,m = 0, 1, 2, . . . (21)

H0 = N (u0)

H1 = u1N
′ (u0)

H2 = u2N
′ (u0) + 1

2N
2
1N
′′ (u0)

H3 = u3N
′ (u0) + u1u2N

′′ (u0) + 1
6N

3
1N
′′′ (u0)

H4 = u4N
′ (u0) +

(
1
2u

2
2 + u1u3

)
N ′′ (u0) + 1

2u
2
1u2N

3
1N
′′′ (u0) + 1

24u
3
4N

(iv) (u0)
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4 Solution Procedure using HPM

By the so-called HPM procedure, we construct the following homotopy

H1(u, p) : φ× [0, 1]→ R

H2(θ, p) : v × [0, 1]→ R

H3(ϕ, p) : ω × [0, 1]→ R

Now, the above is equivalent to the expression below

H1(u, p) =(1− p)
(
∂2u

∂y2
− ∂2u0

∂y2

)
+ p

[(
1 +

1

β

)
∂2u

∂y2
+
∂u

∂y
−
(
M2 sin2 γ +K0

)
u+Gr cosαθ

] (22)

H2(θ, p) =(1− p)
(
∂2θ

∂y2
− ∂2θ0
∂y2

)
+ p

[
∂2θ

∂y2
+ Pr

∂θ

∂y
+ PrEc

(
∂u

∂y

)2

+ PrEcM2 sin2 γu2 +Rϕ

] (23)

H3(ϕ, p) = (1− p)
(
∂2ϕ

∂y2
− ∂2ϕ0

∂y2

)
+ p

[
Sc
∂2ϕ

∂y2
+
∂ϕ

∂t
−Krϕ

]
(24)

By letting H1(u, p) = H2(u, p) = H3(u, p) = 0, we have the equivalent equations

of the form

(1− p)
(
∂2u

∂y2
− ∂2u0

∂y2

)
+ p

[(
1 +

1

β

)
∂2u

∂y2
+
∂u

∂y
−
(
M2 sin2 γ +K0

)
u+Gr cosαθ

]
= 0

(25)

(1− p)
(
∂2θ

∂y2
− ∂2θ0
∂y2

)
+ p

[
∂2θ

∂y2
+ Pr

∂θ

∂y
+ PrEc

(
∂u

∂y

)2

+ PrEcM2 sin2 γu2 +Rϕ
]

= 0 (26)
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(1− p)
(
∂2ϕ

∂y2
− ∂2ϕ0

∂y2

)
+ p

[
Sc
∂2ϕ

∂y2
+
∂ϕ

∂t
−Krϕ

]
= 0 (27)

Assuming the solutions of Eqs. (25-27) in power series of the form, we get

u(y, t) =
∞∑
p→1

pnun(y, t) = u0 + pu1 + p2u2 + · · ·

θ(y, t) =
∞∑
p→1

pnθn(y, t) = θ0 + pθ1 + p2θ2 + · · ·

ϕ(y, t) =

∞∑
p→1

pnϕn(y, t) = ϕ0 + pϕ1 + p2ϕ2 + · · ·

(28)

Putting Eq. (12) into Eqs. (12-14), we obtain the following system in the powers

of the perturbation parameter.

p0 :
∂2u

∂y2
= 0,

∂2θ

∂y2
= 0,

∂2ϕ

∂y2
= 0 (29)

The corresponding boundary conditions are given as

u0(0) = 0, θ0(0) = 1, ϕ0(0) = 1

u0(∞)→ 0, θ0(∞)→ 1, ϕ0(∞)→ 1
(30)

p1 :
∂2u1
∂y2

+
1

β

∂2u0
∂y2

+
∂u0
∂y
−
(
M2 sin2 γ +K0

)
u0 + Gr cosαθ0 = 0 (31)

∂2θ1
∂y2

+ Pr
∂θ0
∂t

+ PrEcu′0 + PrEcM2 sin γu′0 +Rϕ0 = 0 (32)

∂2ϕ1

∂y2
+
∂ϕ0

∂y
−Krϕ0 = 0 (33)

subject to the boundary conditions

u1(0) = 0, θ1(0) = 1, ϕ1(0) = 1

u1(∞)→ 0, θ1(∞)→ 1, ϕ1(∞)→ 1
(34)

p2 :
∂2u2
∂y2

+
1

β

∂2u1
∂y2

+
∂u1
∂y
−
(
M2 sin2 γ +K0

)
u1 + Gr cosαθ1 = 0 (35)
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∂2θ2
∂y2

+ Pr
∂θ1
∂t

+ PrEcu′1 + PrEcM2 sin γu′1 +Rϕ1 = 0 (36)

∂2ϕ2

∂y2
+
∂ϕ1

∂y
−Krϕ1 = 0 (37)

subject to the appropriate boundary conditions

u2(0) = 0, θ2(0) = 1, ϕ2(0) = 1

u2(∞)→ 0, θ2(∞)→ 1, ϕ2(∞)→ 1
(38)

Solving Eqs. (29), (31-33) and (35-37) subject the boundary conditions in Eqs.

(30), (34) and (38), the approximate solutions for the different orders become

u0(y) = α1y, θ0(y, t) = 1 + α2y, ϕ0(y, t) = 1 + α3y (39)

u1(y) = y2
(

CosGrα

2
− α1

2

)
+ y3

(
−Koα1

3
− 1

3
M2 Sin2 γα1 +

1

3
CosGrαα2

)
(40)

θ1(y, t) =
1

4
EcM2 PrSin2 y4γα2

1 + y2
(
−R

2
− 1

2
EcPrα2

1

)
− 1

3
Ry3α3 (41)

ϕ1(y, t) =
Kry2

2Sc
+

Kr3α3

3Sc
(42)

u2(y) =− 1

24
CosEcGrMM2 PrSin2 y6αγα2

1 + y2
(
−CosGrα

2β
+
α1

2β

)
+ y4

(
−1

8
CosGrKoα− 1

8
CosGrRα− 1

8
CosGrM2 Sin2 αγ +

3 Ko1
8

+
3

8
M2 Sin2 γα1 −

1

8
CosEcGrPrαα2

1 −
1

4
CosGrαα2

)
+ y3

(
−1

3
CosGrα+

α1

3
+

2 Ko1
3β

+
2M2 Sin2 γα1

3β
− 2 CosGrαα2

3β

)
+ y5

(
Ko2α1

15
+

2

15
KoM2 Sin2 γα1 +

1

15
M4 Sin4 γ2α1

− 1

15
CosGrKoαα2 −

1

15
CosGrM2 Sin2 αγα2 −

1

15
CosGrRαα3

)
(43)
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θ2(y, t) =−
y4
(
KrR +2 Cos2 EcGr2 PrScα2 + 2EcPrScα1 (−2 CosGrα+ α1)

)
8Sc

+
1

21
EcM2 PrSin2 y7γ (CosGrα− α1) ((Ko +M2 Sin2 γ)α1 − CosGrαα2)

− 1

72
Ec2 PrSin2 y8γ

((
Ko +M2 Sin2 γ

)
α1 − CosGrαα2

)2
− 1

24
EcPr6

((
M2 Sin2 γ + 4

(
Ko +M2 Sin2 γ

)2)
α2
1

− 2 CosGrαα1

(
M2 Sin2 γ + 4

(
Ko2 +M2 Sin2 γ

)
α2

)
+

Cos2 Gr2α2
(
M2 Sin2 γ + 4α2

2

))
− 1

15Sc
y5
(
6Ec PrSc (CosGrα− α1)

(
−
((

Ko +M2 Sin2 γ
)
α1

)
+ CosGrαα2) + KrRα3

(44)

ϕ2(y, t) =
Kr2y4

8Sc2
+

Kr2y5α3

15Sc2
(45)

The terms, un(y, t), θn(y, t) and ϕn(y, t) when n ≥ 3 are too large to be mentioned

graphically. The three-term solution of Eq. (28), when p → 1 is expressed as

follows:

u(y, t) = u0(y, t) + u1(y, t) + u2(y, t) + · · ·

θ(y, t) = θ0(y, t) + θ1(y, t) + θ2(y, t) + · · ·

ϕ(y, t) = ϕ0(y, t) + ϕ1(y, t) + ϕ2(y, t) + · · ·

(46)

5 Results and Discussions

In this work, we have successfully applied the Homotopy perturbation

method (HPM) to obtain approximate analytical solution to the problem of

magnetohydrodynamics fluid flowing past a vertical porous plate in the presence of

inclined magnetic field and chemical reaction for various values of the controlling

parameters for the velocity, temperature and concentration profiles are obtained.

The approximate analytical solution obtained for the dimensionless velocity,

temperature and concentration using HPM are compared with those in literature
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using MATLAB bvp4c routine. The result showed excellent agreement. This

confirmed the proposed solution technique is efficient, accurate and feasible

to solve variety of nonlinear differential equations. The influence of the

flow characteristics on velocity, temperature and concentration are analyzed

graphically, displayed in Figures 1-13 and discussed.

Figure 1: Velocity profile for variation in the Casson Parameter when M = 2,

Ko = 0.15, Gr = 5, α = γ = π/3, P r = 0.71, Ec = 0.001, R = 0.62,M = 2, Sc =

0.6,Kr = 1.5.
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Figure 2: Velocity profile for variation Hartmann in Parameter when Ko = 0.15,

Gr = 5, α = γ = π/3, β = 4.5, P r = 0.71, Ec = 0.001, R = 0.62,M = 2, Sc =

0.6,Kr = 1.5.

Figure 3: Velocity profile for variation in porosity Parameter when M = 2, Gr =

5, α = γ = π/3, β = 4.5, P r = 0.71, Ec = 0.001, R = 0.62,M = 2, Sc = 0.6,Kr =

1.5.
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Figure 4: Velocity profile for variation in Grashof Parameter when M = 2,Ko =

0.15, α = γ = π/3, β = 4.5, P r = 0.71, Ec = 0.001, R = 0.62,M = 2, Sc =

0.6,Kr = 1.5.

Figure 5: Velocity profile for variation in inclined magnetic Parameter when M =

2, Ko = 0.15, Gr = 5, α = π/3, β = 4.5, Pr = 0.71, Ec = 0.001, R = 0.62,M =

2, Sc = 0.6,Kr = 1.5.
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Figure 6: Velocity profile for variation in angle of inclination Parameter when

M = 2,Ko = 0.15, Gr = 5, β = π/3, β = 4.5, Pr = 0.71, Ec = 0.001, R =

0.62,M = 2, Sc = 0.6,Kr = 1.5.

Figure 7: Temperature profile for variation in Prandtl number for fixed Ko = 0.15,

Gr = 5, γ = π/3, β = 4.5,M = 2, R = 0.62, Sc = 0.6,Kr = 1.5, α = π/3, Ec =

0.001.
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Figure 8: Temperature profile for variation in Eckert number for fixed Ko = 0.15,

Gr = 5, γ = π/3, β = 4.5,M = 2, R = 0.62, Sc = 0.6,Kr = 1.5, α = π/3,Pr =

0.71.

Figure 9: Temperature profile for variation in Hartmann umber for fixed Ko =

0.15, Gr = 5, γ = π/3, β = 4.5, R = 0.62, Sc = 0.6,Kr = 1.5, α = π/3, Ec =

0.001,Pr = 0.71.
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Figure 10: Temperature profile for variation in radiation parameter for fixed Ko =

0.15, Gr = 5, γ = π/3, β = 4.5,M = 2, Sc = 0.6, Kr = 1.5, α = π/3, Ec =

0.001, P r = 0.71.

Figure 11: Temperature profile for variation in inclined angle parameter for fixed

Ko = 0.15, Gr = 5, β = 4.5,M = 2, R = 0.62, Sc = 0.6,Kr = 1.5, α = π/3, Ec =

0.001, P r = 0.71.
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Figure 12: Concentration profile for variation in chemical reaction parameter for

fixed Ko = 0.15, Gr = 5, γ = π/3, β = 4.5, M = 2, R = 0.62, Sc = 0.6, α =

π/3, Ec = 0.001, P r = 0.71.

Figure 13: Concentration profile for variation in Schmidt number for fixed Ko =

0.15, Gr = 5, γ = π/3, β = 4.5,M = 2, R = 0.62,Kr = 1.5, α = π/3, Ec =

0.001,Pr = 0.71.
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Figure 1 depicts the effect of Casson parameter for heat and mass transfer

on the velocity profile of the fluid. It is observed that positive increment in the

values of Casson parameter keeping other parameters fixed enhanced the velocity

distribution of the fluid where the values of the velocity increases rapidly near the

porous plate before decaying gradually to the free stream velocity.

The influence of magnetic field parameter (Hartmann number) on the velocity

distribution is displayed in Figure 2. The result shows, the velocity profile of the

fluid increased with increase in the Hartmann number. In Figure 3, the angle of

inclination effects to the vertical direction of the fluid is presented. It is obtained

that, the velocity profile of the fluid increase in the presence of inclined angle

magnetic parameter.

Figure 4 illustrates the variations of porosity parameter for fixed values of the

other parameters. It is found that the velocity decrease with increasing values of

the porosity parameter.

The impact of variation in the Grashof number against the velocity distribution

of the fluid for constant values of the other parameters is shown in Figure 5. The

result revealed, the presence of Grashof number lead to a decrease in the velocity

profile of the fluid.

In Figure 6, the angle of inclination and the velocity distribution of the fluid

vary proportionally to each other. Figure 7 shows the relationship between the

temperature curve and y using different values of the Prandtl number (Pr).

This number showed that the temperature profile decreases as Prandtl number

increases. This is because the fluid is highly conductive to the small values of the

Prandtl number. The influence of the Eckert number (Ec) on the temperature

profile is seen in Figure 8. From this figure, an increment of temperature is

enhanced by the positive increase in the values of the Eckert number.

The effect of radiation parameter on temperature profiles against y is displayed

in Figure 9. It is observed from Figure 9 that the temperature profiles increase as

radiation parameter increases. The influence of inclined magnetic parameter on
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the temperature profile is shown in Figure 10. It is observed that the temperature

profile is enhanced in the presence of positive increase in the inclined magnetic

angle parameter.

In Figure 11, the relationship between the temperature distribution and

increase in the magnetic field parameter (Hartmann number) is presented. The

finding showed that, increase in the Hartmann number lead to a decrease in the

temperature profile of the fluid.

Influence of Schmidt number on concentration profile is shown in Figure

12, from this figure it is noticed that concentration decreases with an increase

in Schmidt number. This agrees with the fact that, Schmidt number as

a dimensionless number defines the ratio of momentum diffusivity and mass

diffusivity, as it characterizes fluid flows in which there is combined momentum

and mass diffusion convection processes. Therefore, an increase in Schmidt

number decreases the concentration boundary layer of the fluid. Figure 13

portrays the influence of chemical reaction effect (Kr) on the concentration profile.

The concentration profile increases with positive increase in the values of the

chemical reaction parameter, which leads to a thinner solutal boundary layer

thickness of the fluid.

6 Conclusion

In this paper, HPM is successfully implemented to solve for the approximate

analytical solution on the effects of chemical reaction on magnetohydrodynamic

fluid flowing past an inclined porous plate in the presence of magnetic field.

Effects of different controlling parameters on dimensionless velocity, temperature

and concentration profiles are investigated. The obtained results using HPM are

compared with established literature and excellent agreement is observed. The

main findings of the study are summarized as follows:

i. The dimensionless velocity of the fluid increased with an increase in the
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Casson parameter, magnetic field parameter, and inclined magnetic angle

parameters, respectively.

ii. In the presence of the porosity parameter, Grashof number, and angle of

inclination, the fluid velocity declines rapidly.

iii. Increase in Prandtl number, Eckert number, and inclined angle parameters

enhanced the temperature profile of the fluid.

iv. Positive increment in the radiation parameters decreases the temperature

distribution of the fluid.

v. In the existence of Schmidt number, the fluid concentration declines,

whereas it rises in the presence of the thermal radiation parameter.
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