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Abstract

Some new classes of extended general bivariational inclusions are introduced

and analyzed. It is established that the extended general bivariational

inclusions are equivalent to the fixed point problems. This equivalence is used

to discuss the existence of a solution of the extended general bivariational

inequalities. Some new iterative methods for solving bivariational inclusions

and related optimization problems are proposed. Convergence analysis of

these methods is investigated under suitable conditions. Some special cases

are also discussed of the main results as applications of the main results.

1 Introduction

Variational inequalities, which was introduced by Stampacchia [49], can be

viewed as novel and significant extension and generalization of the variational

principles. Variational inclusions contain variational inequalities. It is amazing

that a wide class of unrelated problems can be studied in the unified framework

of variational inclusions. One of the most difficult and important problem
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in variational inequality theory is the development of some efficient numerical

methods. In this direction, several numerical methods have been developed for

solving the variational inclusions and their variant forms. Noor [23,25] suggested

and analyzed some three-step forward-backward splitting algorithms for solving

variational inequalities and quasi variational inclusions by using the updating

techniques of the solution. It is known that three-step schemes are versatile and

efficient. These forward-backward splitting algorithms are similar to those of

Glowinski et al. [10] suggested by using the Lagrangian technique, which are

a natural generalization of the splitting methods for solving partial differential

equations. For applications of the splitting techniques to partial differential

equations, see Ames [2] and the references therein. For novel applications of

the three-step methods, see Ashish et al. [3,4]. These methods include the Mann

and Ishikawa iterative schemes and modified forward backward splitting methods

of Tseng [50], Noor [25–27] and Noor et al. [25, 31,39] as special cases.

Dynamical systems arise naturally in numerous applied and theoretical fields

including celestial mechanics, financial forecasting, environmental applications,

neuroscience, brain modeling and machine learning. Dupuis et al. [8] suggested

the projected dynamical system involving the variational inequalities using the

fixed point technique. This approach is used to study the asymptotic stability of

the solution of the variational inequalities. Noor et al. [42] used this technique

to suggest some efficient iterative schemes for solving variational inequalities.

Noor [24] has proved that mixed variational inclusions are equivalent to the

dynamically systems. This equivalence has been used to study the existence

and stability of the solution of variational inclusions. For the applications and

numerical methods of the dynamical systems, see [8, 18, 24, 25, 28, 33, 39, 42] and

the references therein. Alvarez [1] used the inertial type projection methods

for solving variational inequalities, the origin of which can be traced back to

Polyak [46]. Noor [25] suggested and investigated inertial type projection methods

for solving general variational inequalities. These inertial type methods have

been modified in various directions for solving variational inequalities and related

optimization problems. Recently Shehu et al. [48], Noor et al. [33,39] and Jabeen
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et al. [12] analyzed some inertial projection methods for some classes of general

quasi variational inequalities. Convergence analysis of these inertial type methods

has been considered under some mild conditions. Motivated and inspired by the

research in this dynamic field, we consider some new classes of extended general

bivariational inclusions. It have been shown that the system of absolute value

equations, complementarity problems, general variational inequalities, difference

of two monotone operators and sum of two monotone operators can be obtained

as special cases of extended general bivariational inclusions. We establish

the equivalence between the extended general bivariational inclusions and the

fixed point problems. This alternative formulation is used to suggest and

investigate some new three step implicit and explicit inertial iterative methods

for solving the extended general variational inclusions. These new iterative

methods can be viewed as significant generalization of the three-step methods of

Noor [23,25,27,31,34] and Tseng [46]. We have also used the dynamical systems

technique coupled with finite difference schemes to propose some new iterative

methods for solving the general bivariational inclusions. The convergence criteria

of the proposed implicit methods is discussed under some mild conditions. Several

important special cases are discussed as applications of our results. We have only

considered the theoretical aspects of the proposed methods. It is still an open

problem to implement these methods and compare with other techniques. It is

expected the techniques and ideas of this paper may be starting point for further

research.

2 Formulations and Basic Facts

Let H be a real Hilbert space whose inner product and norm are denoted by

〈., .〉 and ‖.‖ respectively. Let T ,B, A, g, h : H → H be nonlinear operators. Let

Φ(., .) : H×H → H be a continuous bifunction.

We consider the problem of finding µ ∈ H such that

0 ∈ Φ(T u,B(µ)) + h(µ)− g(µ) +A(h(µ)). (2.1)
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Inclusion of the type (2.1) is called the general bivariational inclusion. We

would like to emphasize that the operator T is strongly monotone, the operator

B is Lipschitz continuous and A(.) is a maximal monotone operator. Several

important problems arising in pure and applied sciences can be studied in the

frame work of the form (2.1).

We now discuss several interesting problems, which are special cases of the

general variational inclusions (2.1).

(I). If g = I, the identity operator, then problem (2.1) reduces to finding µ ∈ H
such that

0 ∈ Φ(T u,B(µ)) + h(µ)− g(µ) +A(h(µ)), (2.2)

which is known bivariational inclusion.

(II). If h = I, the identity operator, then problem (2.1) reduces to finding µ ∈ H
such that

0 ∈ Φ(T u,B(µ)) + µ− g(µ) +A(µ), (2.3)

which is also known as general bivariational inclusion.

(III). If Φ(T ,B) = T , the problem (2.1) collapses to finding µ ∈ H such that

0 ∈ T u+ +h(µ)− g(µ) +A(h(µ)) (2.4)

is known as finding the zeros of the sum of two composite monotone operators.

(IV). If A(g(µ)) = 0, h = g = I and Φ(T u,B(µ)) = T u+B(µ), , then problem

(2.1) collapses to finding µ ∈ H such that

0 ∈ T u+ B(µ), (2.5)
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which can be considered as finding the zeros of the sum of two monotone

operators. Problem (2.5) can be interpreted as variational inclusion involving

difference of two monotone operators, which is itself a very difficult problem. This

problem can be viewed as a problem of finding the minimum of two difference of

convex functions, known DC-problem. Such type of problems have applications

in optimization theory and imaging process in medical sciences and earthquake.

(V). We note that, if A(h(.)) = ∂ϕ(h(.)), where ∂ϕ(.) is the subdifferential of a

proper, general convex and lower-semicontinuous function ϕ(.) : H → R∪{+∞, }
then problem (2.1) is equivalent to finding µ ∈ H such that

〈Φ(T µ,B(µ)), g(ν)− h(µ)〉+ ϕ(g(ν))− ϕ(h(µ)) ≥ 0, ∀µ ∈ H. (2.6)

The problem of the type (2.6) is called the mixed general variational inequality

problem, which has many important and significant applications in regional,

physical, mathematical, pure and applied sciences.

(VI). If ϕ(h(.)) is the indicator function of a closed convex set Ω in H, then

problem (2.6) is equivalent to finding µ ∈ Ω such that

〈Φ(T u,B(µ)), g(ν)− h(µ)〉 ≥ 0, ∀ν ∈ Ω, (2.7)

which is called the general bivariational inequality.

(VII). If g = I = h is identity operator and Φ(T u,B(µ)) = T µ + B(µ), then

problem (2.7) reduces to finding µ ∈ Ω such that

〈T u+ B(µ), ν − µ〉 ≥ 0, ∀ν ∈ Ω, (2.8)

which is called the mildly nonlinear variational inequalities, see Noor [18].

(VIII). If Ω = H, Φ(T u,B(µ)) = T u + B|µ|), then the general variational

inequality (2.7) reduces to finding µ ∈ H such that

〈T u+ B|µ|, h(ν)〉 = 0, ∀ν ∈ H, (2.9)
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is known as the system of general absolute values equations.

(IX). For h = I, problem (2.9) reduces to find µ ∈ H such that

T u+ B|µ| = b, ∀ν ∈ H, (2.10)

which is known as the system of absolute value equations, introduced and studied

by Mangasarian [15]. It is worth mentioning that problem (2.10) is a special case

of mildly nonlinear variational inequalities, which was introduced and studied by

Noor [18] in 1975.

(X). If Ω∗ = {µ ∈ H : 〈µ, ν〉 ≥ 0, ∀ν ∈ Ω} is a polar (dual) cone of a cone Ω

in H, then problem (2.7) is equivalent to finding µ ∈ H such that

g(µ) ∈ Ω, Φ(T u,B(µ)) ∈ Ω∗ and 〈Φ(T u,B(µ)), g(µ)〉 = 0, (2.11)

which is known as the general bicomplementarity problems. Obviously general

bicomplementarity problems include the complementarity problems. See also

Noor [21], Cottle [5], and Cottle et al. [6] for applications in mathematical and

engineering sciences

(XI). If Φ(T u,B(µ)) = T µ, then problem (2.8) collapses to finding µ ∈ Ω such

that

〈T µ, ν − µ〉 ≥ 0, ∀ν ∈ Ω, (2.12)

which is called the classical variational inequalities, introduced and studied by

Stampacchia [49]. We would like to emphasize that the Variational inequalities are

the natural and novel extension of the variational principles. For the applications,

formulations, generalizations, numerical methods, sensitivity analysis, dynamical

systems and other aspects of variational inequalities, complementarity problems,

see [1, 7–13,16–24,26–40,40–45,47,48,50] and the references therein.
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Remark 2.1. It is worth mentioning that for appropriate and suitable choices

of the bifunction Φ(., .), operators T ,B, g, h,A, convex set Ω and the spaces,

one can obtain several classes of variational inclusions, variational inequalities,

complementarity problems and optimization problems as special cases of the

general variational inclusion (2.1). This shows that the problem (2.1) is quite

general and unifying one. It is interesting problem to develop efficient and

implementable numerical methods for solving the general variational inclusions

and their variant forms.

Definition 2.1. The bifunction Φ(., .) : H×H → H is said to be:

(i) Strongly monotone with respect to the first argument, if there exist a constant

α > 0, such that

〈Φ(T µ, .)− Φ(T ν, .), µ− ν〉 ≥ α‖µ− ν‖2, ∀µ, ν ∈ H.

(ii) Lipschitz continuous with respect to the first argument, if there exist a

constant β > 0, such that

Φ(T µ, .)− Φ(T ν, .) ≤ β‖µ− ν‖, ∀µ, ν ∈ H.

(iii) Monotone with respect to the first argument, if

〈Φ(T µ, .)− Φ(T ν, .), µ− ν〉 ≥ 0, ∀µ, ν ∈ H.

(iv) Pseudo monotone with respect to the first argument, if

〈Φ(T µ, .), ν − µ〉 ≥ 0 ⇒ 〈Φ(T ν, .), ν − µ〉 ≥ 0, ∀µ, ν,∈ H.

Remark 2.2. Every strongly monotone bifunction Φ(., .) is a monotone bifunction

Φ(., .) and monotone bifunction Φ(., .) is a pseudo monotone bifunction Φ(., .), but

the converse is not true.
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3 Iterative Resolvent Methods

In this section, we prove that the problem (2.1) is equivalent to the fixed point

problem using the resolvent operator technique. We use this alternative fixed

point formulation to study the existences of solution as well as to suggest and

analyze some new implicit methods for solving the general bivariational inclusions

(2.1).

Lemma 3.1. The function µ ∈ H is a solution of the general bivariational

inclusion (2.1), if and only if, µ ∈ H satisfies the relation

h(µ) = JA[g(µ)− ρΦ(T µ,B(µ))], (3.1)

where JA is the resolvent operator and ρ > 0 is a constant.

Proof. Let µ ∈ H be a solution of (2.1), then, for a constant ρ > 0,

ρΦ(T µ,B(µ)) + h(µ)− g(µ) + ρA(h(µ)) 3 0

⇐⇒

−g(µ) + ρΦ(T µ,B(µ)) + (I + ρA)(h(µ)) 3 0

⇐⇒

h(µ) = JA[g(µ)− ρΦ(T µ, ρB(µ))]

the required (3.1).

Lemma 3.1 implies that the general bivariational inclusion (2.1) is equivalent

to the fixed point problem (3.1).

We use this fixed point formulation to study the existence of a solution of the

problem (2.1). We define the mapping Φ associated with (3.1) as:

Φ(µ) = µ− h(µ) + JA[g(µ)− ρΦ)(T µ,B(µ))]. (3.2)
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To prove the existence of the solution of problem (2.1), it is enough that the

mapping Φ defined by (3.2) is a contraction mapping.

Theorem 3.1. Let the bifunction Φ(T ,B) be strongly monotone with respect to the

first argument with constant α > 0 and Lipschitz continuous with constant β > 0,

respectively. Let the operator Φ(T ,B) be Lipschitz continuous with respect to

second argument with constant γ > 0. If the operators h, g are Lipschitz continuous

with constants δ > 0, δ1 > 0 and σ > 0, σ1 > 0, respectively, there exists a constant

ρ > 0, such that∥∥∥∥ρ− α− γ(1− k)

β2 − γ2

∥∥∥∥ <

√
(α− γ(1− k))2 − (β2 − γ2)k(2− k)

β2 − γ2
, k < 1, (3.3)

α > γ(1− k) +
√

(β2 − γ2)k(2− k), ρ <
1− k
γ

,

where

k =
√

(1− 2δ + σ2) +
√

(1− 2δ1 + σ21, (3.4)

then there exists a solution µ ∈ H satisfying problem (2.1).

Proof. Let ν 6= µ ∈ H be two solutions of problem (2.1). Then, from (3.2), we

have

‖Φ(ν)− Φ(µ)‖ ≤ ‖ν − µ− (h(ν)− h(µ))‖

+‖JA[g(ν)− ρΦ(T ν,B(ν))]− JA[g(µ)− ρΦ(T µ,B(µ)))]‖

≤ ‖ν − µ− (h(ν)− h(µ))‖+ ‖ν − µ− (g(ν)− g(µ))‖

+‖ν − µ− ρΦ(T ν,B(ν))− ρΦ(T µ,B(µ))‖

≤ ‖ν − µ− (h(ν)− h(µ))‖+ ‖ν − µ− (g(ν)− g(µ))‖

+‖µ− ν − ρ(Φ(T µ,B(µ))− Φ(T ν,B(µ)))‖

+ρ‖Φ(T ν,B(µ))− Φ(T ν,B(ν))‖

≤ ‖ν − µ− (h(ν)− h(µ))‖+ ‖ν − µ− (g(ν)− g(µ))‖

+‖µ− ν − ρ(Φ(T µ,B(µ))− Φ(T ν,B(µ)))‖

+ργ‖ν)− µ‖, (3.5)
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where γ > 0 is the Lipschitz continuity constant of the operator B.

Since bifunction Φ(T ,B) is strongly monotone with respect to the first

argument with constant α > 0 and Lipschitz continuous with constant β > 0,

so

‖µ− ν − ρ(Φ(T µ,B(µ))− Φ(T ν,B(µ)))‖2 = ‖µ− ν‖2

−ρ〈Φ(T µ,B(µ))− Φ(T ν,B(µ)), µ− ν〉

+ρ2‖Φ(T µ,B(µ))− Φ(T ν,B(µ)))‖2,

≤ (1− 2αρ+ β2ρ2)‖µ− ν‖2. (3.6)

In a similar way, using the strongly monotonicity and Lipschitz continuity of the

operator g and h with constants δ > 0, δ1 > 0 and σ > 0, σ1 respectively, we have

‖µ− ν − ρ(g(µ)− g(ν))‖2 ≤
√

1− 2δ + σ2‖µ− ν‖2. (3.7)

‖µ− ν − ρ(h(µ)− h(ν))‖2 ≤
√

1− 2δ1 + σ21‖µ− ν‖
2. (3.8)

Combining (3.3), (3.6), (3.8) and (3.7), we have

‖Φ(v)− Φ(u)‖

≤ {
√

(1− 2αρ+ β2ρ2) + ργ +
√

1− 2δ + σ2 +
√

1− 2δ1 + σ21}‖µ− ν‖

= θ‖µ− ν‖, (3.9)

where

θ = {
√

(1− 2αρ+ β2ρ2) + ργ +
√

1− 2δ + σ2 +
√

1− 2δ1 + σ21}

= {
√

(1− 2αρ+ β2ρ2) + ργ + k}, (3.10)

and k is defined by (3.4). From (3.3), it follows that θ < 1. Thus it follows that

the mapping Φ(µ) defined (3.2) is a contraction mapping and consequently, the

mapping Φ(µ) has a fixed point Φ(µ) = µ ∈ H satisfying (2.1), the required

result.

This alternative equivalent formulation (3.1) is used to suggest the following

iterative methods for solving the problem (2.1).
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Algorithm 3.1. For a given µ0 ∈ H, compute the approximate solutions {µn},
{wn} and {yn} by the iterative schemes

h(yn) = JA[g(µn)− ρΦ(T µn,B(µn))]

h(wn) = JA[g(yn)− ρΦ(T yn,B(yn))]

h(µn+1) = JA[g(wn)− ρΦ(T wn,B(wn))], n = 0, 1, 2, .. . . .

Algorithm 3.1 is a three step forward-backward splitting algorithm for solving

general variational inclusions (2.1). This method is very much similar to that

of Glowinski and Le Tallec [7], which they suggested by using the Lagrangian

technique.

We now suggested another three step scheme for solving the general variational

inclusion (2.1).

Algorithm 3.2. For a given µ0 ∈ H, compute the approximate solution {µn+1}
by the iterative schemes

yn = (1− γn)µn + γn{µn − h(µn) + JA[g(µn)− ρΦ(T µn,B(µn))]} (3.11)

wn = (1− βn)µn + βn{yn − h(yn) + JA[g(yn)− ρΦ(T yn,B(yn))} (3.12)

µn+1 = (1− αn)µn + αn{wn − h(wn) + JA[g(wn)− ρΦ(T wn,B(wn))]}.(3.13)

For γn = 0, Algorithm 3.2 reduces to:

Algorithm 3.3. For a given µ0 ∈ H, compute {µn+1} by the iterative schemes

wn = (1− βn)µn + βn{µn − h(µn) + JA[g(µn)− ρΦ(T µn,B(µn))}

µn+1 = (1− αn)un + αn{wn − h(wn) + JA[g(wn)− ρΦ(T wn,B(wn))},

which is known as the Ishikawa iterative scheme for the general variational

inclusion (2.1).

Note that for γn = 0 and βn = 0, Algorithm 3.1 collapses to:
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Algorithm 3.4. For a given µ0 ∈ H, compute {µn+1} by the iterative schemes

µn+1 = (1− αn)µn + αn{µn − h(µn) + JA[g(µn)− ρΦ(T µn,B(µn))},

is called the Mann iterative method.

Now we suggest a perturbed iterative scheme for solving the general quasi

variational inclusion (2.1).

Algorithm 3.5. For a given µ0 ∈ H, compute the approximate solution {µn}
by the iterative schemes

yn = (1− γn)µn + γn{µn − h(µn) + JAn [g(µn)− ρΦ(T µn,B(µn))]}+ γnhn

wn = (1− βn)un + βn{yn − h(yn) + JAn [g(yn)− ρΦ(T yn, ρB(yn))]}+ βnfn

µn+1 = (1− αn)un + αn{wn − h(wn) + JAn [g(wn)− ρΦ(T wn,B(wn))]}+ αnen,

where {en}, {fn}, and {hn} are the sequences of the elements of H introduced

to take into account possible inexact computations and JAn is the corresponding

perturbed resolvent operator; and the sequences {αn}, {βn} and {γn} satisfy 0 ≤
αn, βn, γn ≤ 1; ∀n ≥ 0 and

∑∞
n=0 αn =∞.

For γn = 0, we obtain the perturbed Ishikawa iterative method and for γn = 0

and βn = 0, we obtain the perturbed Mann iterative schemes for solving general

variational inclusion (2.1).

We now study the convergence analysis of Algorithm 3.2, which is the main

motivation of our next result.

Theorem 3.2. Let the operators T , g, h satisfy all the assumptions of Theorem

3.1. If the condition (3.21) holds, then the approximate solution {un} obtained

from Algorithm 3.2 converges to the exact solution u of the general bivariational

inclusion (2.1) strongly in H.

Proof. From Theorem 3.1, we see that there exists a unique solution u ∈ H of

the general variational inclusion (2.1). Let µ ∈ H be the unique solution of (2.1).
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Then, using Lemma 3.1, we have

µ = (1− αn)µ+ αn{µ− h(µ) + JA[g(µ)− ρΦ(T µ,B(µ))]} (3.14)

= (1− βn)µ+ βn{µ− h(µ) + JA[g(µ)− ρΦ(T µ,B(µ))]} (3.15)

= (1− γn)µ+ γn{µ− h(µ) + JA[g(µ)− ρΦ(T µ,B(µ))]}. (3.16)

From (3.13),(3.14) and (3.10), we have

‖µn+1 − µ‖ = ‖(1− αn)(µn − µ) + αn(wn − µ− (h(wn)− h(µ)))

+ αn{JA[g(wn)− ρΦ(T wn,B(wn))]− JA[g(µ)− ρΦ(T µ,B(µ))]}‖

≤ (1− αn)‖µn − µ‖+ αn‖wn − µ− (g(wn)− g(µ))‖

+ α‖yn − µ− (g(yn)− g(µ))‖

+ αn‖wn − µ− ρ(Φ(T wn,B(wn))− Φ(T µ,B((wn)))‖

+αnρ‖Φ(T µ,B(wn))− Φ(T µ,B(µ))‖

≤ (1− αn)||µn − µ||+ αn(k + ργ + t(ρ))||wn − µ||+ αnγ‖wn − µ‖,

= (1− αn)‖un − µ‖+ αnθ‖wn − µ‖. (3.17)

In a similar way, from (3.23),(3.15) and (3.10), we have

‖wn − µ‖ ≤ (1− βn)‖µn − µ‖+ βnθ‖yn − µ− (g(yn)− g(µ))‖

+ βnθ‖yn − µ− (h(yn)− h(µ))‖

+ βn‖yn − µ− ρ(Φ(T yn,B(yn))− Φ(T µ,B(yn)))‖

+βnρ‖Φ(T µ,B(yn))− Φ(T µ,B(µ))‖

≤ (1− βn)‖µn − µ‖+ βn(k + ργ + t(ρ))‖yn − µ‖,

≤ (1− βn)‖µn − µ||+ βnθ‖yn − µ‖. (3.18)

Also from (3.23), (3.16) and (3.10), we obtain

‖yn − µ‖ ≤ (1− γn)‖µn − µ‖+ γnθ‖µn − µ‖, using (3.10).

≤ (1− (1− θ)γn)‖µn − µ‖

≤ ||µn − µ||. (3.19)
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From (3.18) and (3.19), we obtain

‖wn − µ‖ ≤ (1− βn)‖µn − µ‖+ βnθ‖µn − µ‖

= (1− (1− θ)βn)‖µn − µ‖

≤ ||µn − µ||. (3.20)

From the above equations, we have

‖µn+1 − µ‖ ≤ (1− αn)‖µn − µ‖+ αnθ‖µn − µ‖

= [1− (1− θ)αn]‖µn − µ‖

≤
n∏

i=0

[1− (1− θ)α1]‖µ0 − µ‖.

Since
∑∞

n=0 αn diverges and 1 − θ > 0, we have
∏n

i=0[1 − (1 − θ)αi] = 0.

Consequently the sequence {un} converges strongly to µ. From (3.19), and (3.20),

it follows that the sequences {yn} and {wn} also converge to µ strongly in H. This

completes the proof.

We now suggest some new iterative methods for solving general bivariational

inclusions of type (2.1).

Algorithm 3.6. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(µn+1) = JA[g(µn)− ρΦ(T µn,B(µn))], n = 0, 1, 2, ...

which is known as the resolvent iterative method.

Algorithm 3.7. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(µn+1) = JA[g(µn)− ρΦ(T µn+1,B(µn+1)], n = 0, 1, 2, ...

which is known as the implicit resolvent method and is equivalent to the following

two-step method.
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Algorithm 3.8. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))]

h(µn+1) = JA[g(µn)− ρΦ(T ωn,B(ωn))], n = 0, 1, 2, ...

We can rewrite the equation (3.1) as:

h(µ) = JA[
g(µ) + g(µ)

2
− ρΦ(T µ,B(µ))].

This fixed point formulation was used to suggest the following implicit method.

Algorithm 3.9. [31] For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(µn+1) = JA
[g(µn) + g(µn+1)

2
− ρΦ(T µn+1,B(µn+1))

]
.

The predictor-corrector technique is applied to suggest the following inertial

iterative method for solving the problem (2.1) .

Algorithm 3.10. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))]

h(µn+1) = JA[
g(ωn) + g(µn)

2
− ρΦ(T ωn,B(ωn))], λ ∈ [0, 1].

From equation (3.1), we have

h(µ) = JA[g(µ)− ρΦ(T (
µ+ µ

2
),B(

µ+ µ

2
))]. (3.21)

This fixed point formulation (3.21) is used to suggest the implicit method for

solving the problem (2.1) as

Algorithm 3.11. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(µn+1) = JA[g(µn)− ρΦ(T (
µn + µn+1

2
),B(

µn + µn+1

2
))].

We can use the predictor-corrector technique to rewrite Algorithm 3.11 as:
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Algorithm 3.12. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))],

h(µn+1) = JA[g(µn)− ρΦ(T (
µn + ωn

2
),B(

µn + ωn

2
))], n = 0, 1, 2, ....

is known as the mid-point implicit method for solving the problem (2.1).

We again use the above fixed formulation to suggest some following implicit

iterative methods.

Algorithm 3.13. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(µn+1) = JA[g(µn+1)− ρΦ(T (
µn + µn+1

2
),B(

µn + µn+1

2
))].

Using the predictor-corrector technique, Algorithm 3.13 can be written as:

Algorithm 3.14. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))],

h(µn+1) = JA[g(ωn)− ρΦ(T (
µn + ωn

2
),B(

µn + ωn

2
))].

which appears to be new one.

We now use the fixed point formulation to suggest a hybrid implicit method

for solving the problem (2.1) and related optimization problems, which is the main

motivation of this paper.

One can rewrite (3.1) as

h(µ) = JA[g(
µ+ µ

2
)− ρΦ(T (

µ+ µ

2
),B(

µ+ µ

2
))]. (3.22)

This equivalent fixed point formulation enables us to suggest the following implicit

method for solving the problem (2.1).
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Algorithm 3.15. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(µn+1) = JA
[
g(
µn + µn+1

2
)− ρΦ(T (

µn + µn+1

2
),B(

µn + µn+1

2
))

]
.

To implement the implicit method, one uses the predictor-corrector technique.

We use Algorithm 3.11 as the predictor and Algorithm 3.15 as corrector. Thus,

we obtain a new two-step method for solving the problem (2.1).

Algorithm 3.16. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))]

h(µn+1) = JA
[
g
(ωn + µn

2

)
− ρΦ(T

(
ωn + µn

2

)
,B
(
ωn + µn

2
)

)]
which is a predictor-corrector two-step method.

For a parameter ξ, one can rewrite the equation (3.1) as

h(µ) = JA[(1− ξ)g(µ) + ξg(µ)− ρΦ(T µ,B(µ))].

This equivalent fixed point formulation enables to suggest the following inertial

method for solving the problem (2.1).

Algorithm 3.17. For given µ0, µ1 ∈ H, compute µn+1 by the iterative scheme

h(µn+1) = JA[(1− ξ)g(µn) + ξg(µn−1)− ρΦ(T µn,B(µn))], n = 0, 1, 2, ....

It is noted that Algorithm 3.17 is equivalent to the following two-step method.

Algorithm 3.18. For given µ0, µ1 ∈ H, compute µn+1 by the iterative scheme

ωn = (1− ξ)un + ξun−1

h(µn+1) = JA[g(ωn)− ρΦ(T µn,B(µn))].

Algorithm 3.18 is known as the inertial resolvent method.

Using this idea, we can suggest the following iterative methods for solving

general bivariational inclusions.

Earthline J. Math. Sci. Vol. 13 No. 1 (2023), 133-163



150 M. A. Noor and K. I. Noor

Algorithm 3.19. For given µ0, µ1 ∈ H, compute µn+1 by the iterative scheme

ωn = (1− ξ)un + ξun−1

h(µn+1) = JA[g(ωn)− ρΦ(T ωn,B(ωn))].

We now suggest a four-step inertial method for solving the extended general

bivariational inclusion (2.1).

Algorithm 3.20. For a given µ0, µ1 ∈ H, compute the approximate solution

{µn+1} by the iterative schemes

ωn = (1− ξ)un + ξun−1

yn = (1− γn)µn + γn{µn − h(µn) + JA[g(µn)− ρΦ(T ωn,B(ωn))]}

wn = (1− βn)µn + βn{yn − h(yn) + JA[g(yn)− ρΦ(T yn,B(yn))}

µn+1 = (1− αn)µn + αn{wn − h(wn) + JA[g(wn)− ρΦ(T wn,B(wn))]},

where γn, βn, αn, ξ ∈ [0, 1] are parameters.

If g = I, then Algorithm 3.20 reduces to

Algorithm 3.21. For a given µ0, µ1 ∈ H, compute the approximate solution

{µn+1} by the iterative schemes

ωn = (1− ξ)un + ξun−1

yn = (1− γn)µn + γn{µn − h(µn) + JA[µn − ρΦ(T ωn,B(ωn))]}

wn = (1− βn)µn + βn{yn − h(yn) + JA[yn − ρΦ(T yn,B(yn))}

µn+1 = (1− αn)µn + αn{wn − h(wn) + JA[wn − ρΦ(T wn,B(wn))]},

where γn, βn, αn, ξ ∈ [0, 1] are parameters.

For h = I, Algorithm 3.21 reduces to
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Algorithm 3.22. For a given µ0, µ1 ∈ H, compute the approximate solution

{µn+1} by the iterative schemes

ωn = (1− ξ)un + ξun−1

yn = (1− γn)µn + γn{JA[µn − ρΦ(T ωn,B(ωn))]}

wn = (1− βn)µn + βn{JA[yn − ρΦ(T yn,B(yn))}

µn+1 = (1− αn)µn + αn{JA[wn − ρΦ(T wn,B(wn))]},

where γn, βn, αn, ξ ∈ [0, 1] are parameters.

Using the technique of Noor et al. [31, 37], Shehu et al. [48] and Jabeen et

al. [12], one can investigate the convergence analysis of these inertial resolvent

methods. One can again use the equation (3.1) to suggest a wide class of

inertial methods for solving the general bivariational inclusions. We have only

conveyed the main ideas and the techniques. To develop the efficient methods

and comparison with other techniques is the open problem.

4 Resolvent Equations Technique

In this section, we discuss the resolvent equations associated with the general

bivariational inclusions (2.1). It is worth mentioning that the resolvent equations

associated with variational inclusions were introduced and studied by Noor [27–29]

and Noor et al. [30] proved that the quasi variational inclusions are equivalent to

the implicit resolvent equations to study the sensitivity analysis.

Related to the general bivariational inclusion (2.1), we consider the problem

of finding z, µ ∈ H such that

Φ(T JAz,BJAz, ) + ρ−1RAz = 0, (4.1)

where ρ > 0 is a constant and RA = I − JA. Here I is the identity operator and

J = (1 + ρA)−1 is the resolvent operator. The equation of the type (4.1) are
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called the implicit resolvent equations.

Lemma 4.1. The general bivariational inclusion (2.1) has a solution µ ∈ H,
if and only if, the resolvent equations (4.1) have a solution z, µ ∈ H, where

h(µ) = JAz (4.2)

and

z = g(µ)− ρΦ(T µ,B(µ)). (4.3)

Proof. Let µ ∈ H be a solution of (2.1), then, for a constant ρ,

ρΦ(T µ,B(µ)) + h(µ)− g(µ) + ρA(h(µ)) 3 0

⇐⇒

−g(µ) + ρΦ(T µ,B(µ)) + h(µ) + ρA(h(µ)) 3 0

⇐⇒

h(µ) = JA[g(µ)− ρΦ(T µ,B(µ))].

Take z = g(µ)− ρΦ(T µ,B(µ)), then z = JAz. Thus

z = JAz − ρΦ(TJAz,BJAz),

that is

Φ(T JA(z,BJAz) + ρ−1RAz = 0,

the required (4.1).

From Lemma 4.1, we see that the general bivariational inclusion (2.1) and the

resolvent equations (4.1) are equivalent. This alternative equivalent formulation

has been used to suggest and analyze a wide class of efficient and robust iterative

methods for solving the general bivariational inclusions and related optimization

problems.
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We use the resolvent equations (4.1) to suggest some new iterative methods

for solving the general bivariational inclusions. From (4.2) and (4.3), we have

z = JAz − ρΦ(T JAz,B(JAz))

= JA[g(µ)− ρΦ(T µ,B(µ))]− ρT JA([g(µ)− ρΦ(T µ,JB(µ))].

Thus, we have

h(µ) = −ρΦ(T µ,B(µ))+
[
JA([g(µ)−ρΦ(T µ,B(µ))]−ρT JA[g(µ)−ρΦ(T µ,B(µ))].

Consequently, for a constant αn > 0, we have

µ = (1− αn)µ+ αnJA{JA[g(µ)− ρΦ(T u,B(µ))] + ρΦ(T µ,B(µ))

−ρT JA[g(µ)− ρT µ− ρB(µ)]}

= (1− αn)µ+ αnJA{g(ω)− ρT ω − ρΦ(T µ,B(µ))}, (4.4)

where

h(ω) = JA[g(µ)− ρΦ(T µ,B(µ))]. (4.5)

Using (4.4) and (4.5), we can suggest the following new predictor-corrector method

for solving the general bivariational inclusion (2.1).

Algorithm 4.1. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))]

h(µn+1) = (1− αn)µn + αnJA
{
g(ω)− ρT ω − ρΦ(T µ,B(µ))

}
.

If αn = 1, then Algorithm 4.1 reduces to

Algorithm 4.2. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(ωn) = JA[g(µn)− ρΦ(T µn,B(µ))]

h(µn+1) = JA[g(ωn)− ρT ωn + ρΦ(T µn,B(µn))],
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which appears to be a new one.

In a similar way, we can suggest and analyse the predictor-corrector inertial

method for solving the general variational inclusion(2.1), which involve only one

resolvent.

Algorithm 4.3. For given u0, u1 ∈ H, compute un+1 by the iterative scheme

h(ωn) = (1− ξ)g(µn) + ξg(µn−1)

h(µn+1) = JA[g(ωn)− ρT ωn + ρΦ(T µn,B(µn))].

One can study the convergence of the Algorithm 4.3 using the technique of

Jabeen et al. [12] and Noor et al. [37].

Remark 4.1. We have only given some glimpse of the technique of the resolvent

equations for solving the general bivariational inclusions. One can explore the

applications of the resolvent equations in developing efficient numerical methods

for solving general bivariational inclusions and related nonlinear optimization

problems.

5 Dynamical Systems Technique

In this section, we consider the dynamical systems technique for solving general

bivariational inclusions. The dynamical systems associated with variational

inequalities using the fixed point problems introduced and studied by Dupuis

and Nagurney [8]. Thus it is clear that the variational inequalities are equivalent

to a first order initial value problem. Variational inequalities, equilibrium and

nonlinear problems arising in various branches in pure and applied sciences can

now be studied in the setting of dynamical systems. Noor et al. [33, 38, 42] have

been shown that the dynamical systems are useful in developing some efficient

numerical techniques for solving variational inequalities and related optimization
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problems. We consider some iterative methods for solving the general bivariational

inclusions using the dynamical system.

We now define the residue vector R(µ) by the relation

R(µ) = h(µ)− JA[g(µ)− ρΦ(T µ,B(µ))]. (5.1)

Invoking Lemma 3.1, one can easily conclude that µ ∈ H is a solution of the

problem(2.1), if and only if, µ ∈ H is a zero of the equation

R(µ) = 0. (5.2)

We now consider a dynamical system associated with the general bivariational

inclusions. Using the equivalent formulation (3.1), we suggest a class of project

dynamical systems as

dh(µ)

dt
= λ{JA[g(µ)− ρΦ(T u,B(µ)]− h(µ))}, µ(t0) = α, (5.3)

where λ is a parameter. The system of type (5.3) is called the resolvent dynamical

system associated with the problem (2.1). Here the right hand is related to the

resolvent and is discontinuous on the boundary. From the definition, it is clear

that the solution of the dynamical system always stays in H. This implies that the

qualitative results such as the existence, uniqueness and continuous dependence

of the solution of the general variational inclusions (5.1) can be studied.

We use the resolvent dynamical system (5.1) to suggest some iterative for

solving the general variational inclusion (2.1). These methods can be viewed in

the sense of Korpelevich [14] and Noor [26].

For simplicity, we take λ = 1. Thus the dynamical system (5.1) becomes

dh(µ)

dt
+ h(µ) = JA

[
g(µ)− ρΦ(T u,B(µ))

]
, µ(t0) = α. (5.4)

The forward difference scheme is used to construct the implicit iterative

method.
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Discretizing (5.4), we have

h(µn+1)− h(µn)

h1
+ h(µn) = JA[g(µn)− ρΦ(T µn+1,B(µn+1))], (5.5)

where h is the step size.

For h1 = 1, we can suggest the following implicit iterative method for solving

the general variational inclusion (2.1).

Algorithm 5.1. For a given µ0, compute µn+1 by the iterative scheme

h(µn+1) = JA
[
g(µn)− ρΦ(T µn+1,B(µn+1))

]
.

This is an implicit method, which is quite different from the implicit method

of [5].

Algorithm 5.1 is equivalent to the following two-step method.

Algorithm 5.2. For a given µ0,, compute µn+1 by the iterative scheme

h(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))]

h(µn+1) = JA
[
g(µn)− ρΦ(T ωn,B(ωn))

]
.

Discretizing (5.5), we now suggest an other implicit iterative method for

solving (2.1).

h(µn+1)− h(µn)

h1
+ h(µn) = JA)[g(µn+1)− ρΦ(T µn+1,B(µn+1))],

where h is the step size.

For h1 = I, this formulation enables us to suggest the two-step iterative

method.

Algorithm 5.3. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(ωn) = JA[g(µn)− ρT µn − ρB(µn)]

h(µn+1) = JA
[
(1− ζ)g(ωn) + ζg(µn)− ρΦ(T ωn,B(ωn)

]
,
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where ζ ∈ [0, 1] is a constant.

Again using the resolvent dynamical systems, we can suggest some iterative

methods for solving the general bivariational inclusion and related optimization

problems.

Algorithm 5.4. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(µn+1) = JA
[
(1− λ)g(µn) + λg(µn+1)− ρΦ(T µn,B(µn))

]
, λ ∈ [0, 1]

or equivalently

Algorithm 5.5. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

h(ωn) = JA[g(µn)− ρΦ(T µn,B(µn))]

h(µn+1) = JA
[
(1− λ)g(µn) + λg(ωn)− ρΦ(T un,B(µn))

]
.

In a similar way, we have

hg(µ)

dt
+h(µ) = JA[g((1−α)µ+αµ)−ρΦ(T ((1−α)µ+αµ),B((1−α)µ+αµ)))],

(5.6)

where α ∈ [0, 1] is a constant.

Discretizating (5.6) and taking h1 = 1, we have

(µn+1) = JA
[
g(1− α)µn) + αµn−1)

−ρΦ(T ((1− α)µn + αµn−1),B((1− α)µn + αµn−1))
]
,

which is an inertial type iterative method for solving the general bivariational

inclusion (2.1). Using the predictor-corrector techniques, we have

Algorithm 5.6. For a given µ0, µ1 ∈ H, compute µn+1 by the iterative schemes

ωn = (1− α)µn − αµn−1
h(µn+1) = JA

[
g(ωn)− ρΦ(T (ωn),B(ωn))

]
,

which is known as the inertial two-step iterative method.
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One can study the convergence criteria of Algorithm (5.6) using essentially

the technique of Jabeen et al. [12], Noor et al. [34, 37] and Shehu et al. [48].

Computational Aspects

In this paper, we have suggested several new iterative methods for solving

extended general bivariational inclusions and related problems using the

techniques of are resolvent method and dynamical systems. The inertial type

iterations need one resolvent only as compared with known methods. Due to these

facts, the newly method Algorithm 5.6 performs better than the other techniques.

To the best of our knowledge, no implementable numerical methods are available.

This is a relatively new field and may be starting point for further applications in

various fields.

Conclusion

In this paper, we have introduced and studied some new classes of general

bivariational inequalities. Some interesting and important known and new classes

of variational inequalities and optimizations are discussed. We have proved that

the general bivariational inclusions are equivalent to this fixed point problems,

resolvent equations and dynamical systems. These alternative formulations are

used to discuss the existence of a solution of the general bivariational inclusions

and suggest some new iterative methods for solving the general bivariational

inclusions. These new methods include extraresolvent method, modified double

resolvent methods and inertial type are suggested using the techniques of resolvent

method, resolvent equations and dynamical systems. Convergence analysis of the

proposed method is discussed for monotone operators. We have given only the

glimpse of the applications of the dynamical systems. This technique is quite

flexible and unified one. Using the ideas and techniques of this paper, one can

suggest and investigate several new implicit methods for solving various classes

of general bivariational inclusions and related problems. The implementation and
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comparison of these methods with other methods needs further efforts.
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