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Abstract

In this paper, the author presents some double inequalities involving a ratio

of v-Gamma and v-polygamma functions. The approach makes use of the

log-convexity property of v-Gamma function and the monotonicity property

of v-polygamma function. Some of the results also give generalizations and

extensions of some previous results.

1 Introduction and Preliminaries

Logarithmically convex (log-convex) functions are of interest in many areas of

mathematics. They have been found to play an important role and have many

applications, especially in the theory of special functions, [3, 6, 9, 15].

Let C ∈ R be a convex set. The function f : C → [0,∞) is said to be convex

on C if it satisfies the inequality

f(cr + (1− c)t) ≤ c f(r) + (1− c) f(t), r, t ∈ C, 0 ≤ c ≤ 1.

Also, a function f : C → [0,∞) is said to be logarithmically convex (log-convex)

if log f is convex or equivalently it satisfy the inequality

f(cr + (1− c)t) ≤ (f(r))c(f(t))1−c, r, t ∈ C, 0 ≤ c ≤ 1.

Note that, a log-convex function is convex, and a family of log-convex functions

is closed under both addition and multiplication.
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Perhaps, the most known and used of the special functions is Euler’s Gamma

function. It is defined by

Γ(t) =

∫ ∞
0

xt−1e−x dx, t > 0.

The Psi (or digamma) function is defined as the logarithmic derivative of the

Gamma function, and the polygamma function is defined as the rth order

derivative of the digamma function.

The subject of present new inequalities including the Gamma function has

attracted the attention of many mathematicians. For example, Shabani, in [13]

proved the following inequalities:

Γ(a+ b)c

Γ(d+ e)f
≤ Γ(a+ bt)c

Γ(d+ et)f
≤ Γ(a)c

Γ(d)f
, t ∈ [0, 1] (1)

where a, b, c, d, e and f are real numbers such that a+ bt > 0, d+ et > 0, a+ bt ≤
d+ et, ef ≥ bc > 0 and ψ(a+ bt) > 0 or ψ(d+ et) > 0.

Also, Vinh and Ngoc, in [14] proved the following inequalities:

n∏
i=1

Γ(1 + αi)

Γ(β +
n∑
i=1

αi)

≤

n∏
i=1

Γ(1 + αit)

Γ(β +
n∑
i=1

αit)

≤ 1

Γ(β)
, t ∈ [0, 1].

where β ≥ 1, αi > 0, n ∈ N.

Some new extensions of the Gamma function and including inequalities of

them have been given by many researchers, [1, 5, 7, 8, 11, 12, 13]. Recently, a

new one-parameter deformation of the classical Gamma function is introduced as

a v-analogue (v-deformation or v-generalization) of the Gamma function, [4]. It

is defined as

Γv(t) =

∫ ∞
0

(x
v

) t
v
−1
e−x dx, t, v > 0.

Note that when v = 1, we have Γv(t) = Γ(t). The logarithmic derivative of Γv is

called v-digamma or v-psi function and denoted by ψv and the rth order derivative
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of ψv is called v-polygamma function. The series representations are given in [4]

as

ψv(t) = − ln v + γ

v
− 1

t
+

∞∑
n=1

[
1

nv
− 1

t+ nv

]
, (2)

and

ψ(r)
v (t) = (−1)r+1r! +

∞∑
n=0

1

(t+ nv)r+1
. (3)

The main aim of the present study is to give some new generalized inequalities

including the functions Γv and ψ
(r)
v by using similar methods, used in [10, 13]. This

method is based on some monotonicity properties of certain functions associated

with v-Gamma and v-polyamma functions.

2 Main Results

Theorem 1. Let 0 < ai +

m∑
j=1

bjt ≤ di +

l∑
k=1

ekt,

(
l∑

k=1

ek

)
fi ≥

 m∑
j=1

bj

 ci,

ai, ci, di, fi > 0, and

 m∑
j=1

bj

 ci > 0 for i = 1, 2, . . . n. If

ψv

ai +

m∑
j=1

bjt

 > 0 or ψv

(
di +

l∑
k=1

ekt

)
> 0 (4)

then the function

F (t) =

n∏
i=1

Γv

ai +

m∑
j=1

bjt

ci

Γv

(
di +

l∑
k=1

ekt

)fi
is decreasing on [0,∞) and the following inequalities bounding a ratio of the

v-Gamma function hold for v > 0:
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n∏
i=1

Γv

ai +
m∑
j=1

bj

ci

Γv

(
di +

l∑
k=1

ek

)fi ≤ F (t) ≤
n∏
i=1

Γv (ai)
ci

Γv (di)
fi
, t ∈ [0, 1], (5)

and

F (t) ≤
n∏
i=1

Γv

ai +

m∑
j=1

bj

ci

Γv

(
di +

l∑
k=1

ek

)fi , t ∈ (1,∞). (6)

Proof. Let G(t) = lnF (t). Then

G(t) =
n∑
i=1

ci ln Γv

ai +
m∑
j=1

bjt

− n∑
i=1

fi ln Γv

(
di +

l∑
k=1

ekt

)
,

and

G
′
(t) =

 m∑
j=1

bj

 n∑
i=1

ciψv

ai +

m∑
j=1

bjt

−( l∑
k=1

ek

)
n∑

i=1

[
fiψv

(
di +

l∑
k=1

ekt

)]

=

n∑
i=1

 m∑
j=1

bj

 ciψv

ai +

m∑
j=1

bjt

−( l∑
k=1

ek

)
fiψv

(
di +

l∑
k=1

ekt

) .

Let ψv

ai +
m∑
j=1

bjt

 > 0 for i = 1, 2, . . . n. Since from the equation (2) we

have that ψv is an increasing function on [0,∞) we get

ψv

ai +
m∑
j=1

bjt

 ≤ ψv (di +
l∑

k=1

ekt

)
,
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so we have ψv

(
di +

l∑
k=1

ekt

)
> 0. Then

 m∑
j=1

bj

 ciψv

ai +
m∑
j=1

bjt

 ≤

 m∑
j=1

bj

 ciψv

(
di +

l∑
k=1

ekt

)

≤

(
l∑

k=1

ek

)
fiψv

(
di +

l∑
k=1

ekt

)
.

This proves the inequality m∑
j=1

bj

 ciψv

ai +
m∑
j=1

bjt

−( l∑
k=1

ek

)
fiψv

(
di +

l∑
k=1

ekt

)
≤ 0 (7)

for i = 1, 2, . . . n. Now, let ψv

(
di +

l∑
k=1

ekt

)
> 0. Then if ψv

ai +

m∑
j=1

bjt

 > 0,

we have the inequality (7) with the above discussion.

If ψv

ai +
m∑
j=1

bjt

 ≤ 0 with ψv

(
di +

l∑
k=1

ekt

)
> 0, we can write

(
l∑

k=1

ek

)
fiψv

(
di +

l∑
k=1

ekt

)
≥

 m∑
j=1

bj

 ciψv

(
di +

l∑
k=1

ekt

)

≥

 m∑
j=1

bj

 ciψv

ai +
m∑
j=1

bjt

 ,

and the inequality (7) again follows for i = 1, 2, . . . n. Then we have G
′
(t) ≤ 0. It

implies that G and so F is decreasing on [0,∞). Then for every t ∈ [0, 1], we have

F (1) ≤ F (t) ≤ F (0),

and for t ∈ (1,∞) we have

F (t) ≤ F (1),

and the inequalities (5) and (6) are valid.
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Theorem 2. Let F be a function given in the Theorem 1, where

0 < ai +

m∑
j=1

bjt ≤ di +

l∑
k=1

ekt,

 m∑
j=1

bj

 ci ≥

(
l∑

k=1

ek

)
fi, ai, ci, di, fi > 0, and

l∑
k=1

ekfi > 0 for i = 1, 2, . . . n. If ψv

ai +
m∑
j=1

bjt

 < 0 or ψv

(
di +

l∑
k=1

ekt

)
< 0,

then the function F is decresing for t ∈ [0,∞) and the inequalities (5) and (6)

hold.

Proof. It can be proved by using the similar way in the Theorem 1.

Now, we give the following remarks by using the Theorems 1 and 2.

Remark 3. If in the Theorem 1 we take n = m = l = v = 1, we obtain the

inequality (1).

Remark 4. If we take F : [0,∞) → R as any differentiable log-convex function

instead of Γv satisfying the conditions in the Theorems 1 and 2, the results of the

Theorems still hold, since the logarithmic convexity of F on [0,∞) implies that its

logarithmic derivative is an increasing function on [0,∞). For example, one can

take the log-convex function Γ or any log-convex generalizations such as Γk, Γq,k,

Γp,q,k functions instead of Γv, [1, 2, 5].

Now, we give some inequalities including the v-polygamms functions.

Theorem 5. Let 0 < a+ bt ≤ c+ dt, a, c, α, β > 0, αb > 0 and

H(t) =

[
ψ
(r)
v (a+ bt)

]α
[
ψ
(r)
v (c+ dt)

]β .
If αb ≤ βd and r = 2k + 1, k ∈ N ∪ {0}, then H is decreasing function on [0,∞)

and the following inequalities hold for t ∈ [0, 1]:[
ψ
(r)
v (a+ b)

]α
[
ψ
(r)
v (c+ d)

]β ≤ H(t) ≤

[
ψ
(r)
v (a)

]α
[
ψ
(r)
v (c)

]β , (8)
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and if αb ≥ βd and r = 2k, k ∈ N ∪ {0}, then H is increasing function on [0,∞)

and the inequalities (8) are reversed.

Proof. Let I(t) = lnH(t). Then

I
′
(t) = αb

ψ
(r+1)
v (a+ bt)

ψ
(r)
v (a+ bt)

− βd ψ
(r+1)
v (c+ dt)

ψ
(r)
v (c+ dt)

=
αbψ

(r+1)
v (a+ bt)ψ

(r)
v (c+ dt)− βdψ(r+1)

v (c+ dt)ψ
(r)
v (a+ bt)

ψ
(r)
v (a+ bt)ψ

(r)
v (c+ dt)

.

Now, by using equation (3) observe that we have ψ
(r)
v > 0 for r = 2k+1, k ∈ N∪{0}

and ψ
(r)
v < 0 for r = 2k, k ∈ N ∪ {0}. Firstly, let αb ≤ βd and r = 2k + 1,

k ∈ N ∪ {0}. Then ψ
(r)
v (a + bt) > 0, ψ

(r)
v (c + dt) > 0, ψ

(r+1)
v (a + bt) < 0 and

ψ
(r+1)
v (c + dt) < 0, ψ

(r)
v is decreasing and ψ

(r+1)
v is increasing. Then we have

ψ
(r)
v (a+ bt) ≥ ψ(r)

v (c+ dt) and ψ
(r+1)
v (a+ bt) ≤ ψ(r+1)

v (c+ dt). Then we have

ψ(r)
v (c+ dt)ψ(r+1)

v (a+ bt) ≤ ψ(r)
v (c+ dt)ψ(r+1)

v (c+ dt)

≤ ψ(r)
v (a+ bt)ψ(r+1)

v (c+ dt).

Now, using the condition αb ≤ βd we get

αbψ(r)
v (c+ dt)ψ(r+1)

v (a+ bt) ≤ αbψ(r)
v (c+ dt)ψ(r+1)

v (c+ dt)

≤ αbψ(r)
v (a+ bt)ψ(r+1)

v (c+ dt)

≤ βdψ(r)
v (a+ bt)ψ(r+1)

v (c+ dt),

that is

αbψ(r)
v (c+ dt)ψ(r+1)

v (a+ bt)− βdψ(r)
v (a+ bt)ψ(r+1)

v (c+ dt) ≤ 0,

so we have I
′
(t) ≤ 0. That implies that I is decreasing on [0,∞). Hence H is

decreasing on [0,∞). Then for t ∈ [0, 1] we have

H(1) ≤ H(t) ≤ H(0),

and the inequalities (8) follow.
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Let αb ≥ βd and r = 2k, k ∈ N ∪ {0}. Then we have ψ
(r)
v (a + bt) < 0,

ψ
(r)
v (c+ dt) < 0, ψ

(r+1)
v (a+ bt) > 0 and ψ

(r+1)
v (c+ dt) > 0, ψ

(r)
v is increasing and

ψ
(r+1)
v is decreasing. Then we have

ψ(r+1)
v (c+ dt)ψ(r)

v (a+ bt) ≤ ψ(r+1)
v (c+ dt)ψ(r)

v (c+ dt)

≤ ψ(r+1)
v (a+ bt)ψ(r)

v (c+ dt),

and using the condition αb ≥ βd we get

αbψ(r+1)
v (a+ bt)ψ(r)

v (c+ dt) ≥ αbψ(r+1)
v (c+ dt)ψ(r)

v (c+ dt)

≥ αbψ(r+1)
v (c+ dt)ψ(r)

v (a+ bt)

≥ βdψ(r+1)
v (c+ dt)ψ(r)

v (a+ bt),

so we have I
′
(t) ≥ 0, means that I is increasing for t ∈ [0,∞). Hence H is

increasing on [0,∞). Then the reverse of the inequality (8) is valid.

Theorem 6. Let 0 < ai+
m∑
j=1

bjt ≤ ci+
l∑

k=1

dkt, ai, ci, αi, βi > 0 for i = 1, 2, . . . n,

r ∈ N ∪ {0} and

J(t) =
n∏
i=1

ψ(r)
v

ai +
m∑
j=1

bjt

αi

[
ψ
(r)
v

(
ci +

l∑
k=1

dkt

)]βi .

If

 m∑
j=1

bj

αi < 0 and

(
l∑

k=1

dk

)
βi > 0 for i = 1, 2, . . . n. Then J is increasing

on [0,∞) and the following inequalities hold on [0, 1]:

n∏
i=1

[
ψ
(r)
v (ai)

]αi

[
ψ
(r)
v (ci)

]βi ≤ J(t) ≤
n∏
i=1

ψ(r)
v

ai +

m∑
j=1

bj

αi

[
ψ
(r)
v

(
ci +

l∑
k=1

dk

)]βi , (9)
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and if

 m∑
j=1

bj

αi > 0 and

(
l∑

k=1

dk

)
βi < 0 for i = 1, 2, . . . n. Then J is

increasing function and the inequalities (9) are reversed.

Proof. Let K(t) = lnJ(t). Then

K
′
(t) =

n∑
i=1


 m∑

j=1

bj

αi

ψ
(r+1)
v

ai +

m∑
j=1

bjt


ψ
(r)
v

ai +

m∑
j=1

bjt

 −

(
t∑

k=1

dk

)
βi

ψ
(r+1)
v

(
ci +

l∑
k=1

dkt

)

ψ
(r)
v

(
ci +

l∑
k=1

dkt

)
 .

Now, observe that

ψ
(r+1)
v

ai +
m∑
j=1

bjt


ψ
(r)
v

ai +
m∑
j=1

bjt

 < 0 and

ψ
(r+1)
v

(
ci +

l∑
k=1

dkt

)

ψ
(r)
v

(
ci +

l∑
k=1

dkt

) < 0.

For the case

 m∑
j=1

bj

αi < 0 with

(
l∑

k=1

dk

)
βi > 0 for i = 1, 2, . . . n, we get

K
′
(t) > 0. Then we have J is increasing on [0,∞) and the inequalities (9) follow

on [0, 1]. Now, for the second case

 m∑
j=1

bj

αi > 0 with

(
l∑

k=1

dk

)
βi < 0 for

i = 1, 2, . . . n, we get J is decreasing and then the inequalities (9) are reversed on

[0, 1].

References

[1] R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol,

Divulgaciones Matematicas 15 (2007), 179-192.

[2] R. Diaz and C. Teruel, q, k-Generalized Gamma and beta functions, Journal of

Nonlinear Mathematical Physics 12(1) (2005), 118-134.

https://doi.org/10.2991/jnmp.2005.12.1.10

Earthline J. Math. Sci. Vol. 13 No. 1 (2023), 121-131

https://doi.org/10.2991/jnmp.2005.12.1.10
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[9] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities

in Analysis. Mathematics and its Applications (East European Series), Vol. 61,

Springer, 2010.

[10] K. Nantomah and M. M. Iddrisu, The k-analogue of some inequalities for the gamma

function, Electronic Journal of Mathematical Analysis and Applications 2(2) (2014),

172-177.
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