On Inequalities for the Ratio of v-Gamma and v-Polygamma Functions

Inci Ege
Department of Mathematics, Aydın Adnan Menderes University, Aydın, Turkey
e-mail: iege@adu.edu.tr

Abstract

In this paper, the author presents some double inequalities involving a ratio of v-Gamma and v-polygamma functions. The approach makes use of the log-convexity property of v-Gamma function and the monotonicity property of v-polygamma function. Some of the results also give generalizations and extensions of some previous results.

1 Introduction and Preliminaries

Logarithmically convex (log-convex) functions are of interest in many areas of mathematics. They have been found to play an important role and have many applications, especially in the theory of special functions, [3, 6, 9, 15].

Let $C \in \mathbb{R}$ be a convex set. The function $f: C \rightarrow[0, \infty)$ is said to be convex on C if it satisfies the inequality

$$
f(c r+(1-c) t) \leq c f(r)+(1-c) f(t), \quad r, t \in C, 0 \leq c \leq 1
$$

Also, a function $f: C \rightarrow[0, \infty)$ is said to be logarithmically convex (log-convex) if $\log f$ is convex or equivalently it satisfy the inequality

$$
f(c r+(1-c) t) \leq(f(r))^{c}(f(t))^{1-c}, \quad r, t \in C, 0 \leq c \leq 1
$$

Note that, a log-convex function is convex, and a family of log-convex functions is closed under both addition and multiplication.

[^0]Perhaps, the most known and used of the special functions is Euler's Gamma function. It is defined by

$$
\Gamma(t)=\int_{0}^{\infty} x^{t-1} e^{-x} d x, \quad t>0
$$

The Psi (or digamma) function is defined as the logarithmic derivative of the Gamma function, and the polygamma function is defined as the r th order derivative of the digamma function.

The subject of present new inequalities including the Gamma function has attracted the attention of many mathematicians. For example, Shabani, in [13] proved the following inequalities:

$$
\begin{equation*}
\frac{\Gamma(a+b)^{c}}{\Gamma(d+e)^{f}} \leq \frac{\Gamma(a+b t)^{c}}{\Gamma(d+e t)^{f}} \leq \frac{\Gamma(a)^{c}}{\Gamma(d)^{f}}, \quad t \in[0,1] \tag{1}
\end{equation*}
$$

where a, b, c, d, e and f are real numbers such that $a+b t>0, d+e t>0, a+b t \leq$ $d+e t, e f \geq b c>0$ and $\psi(a+b t)>0$ or $\psi(d+e t)>0$.

Also, Vinh and Ngoc, in [14] proved the following inequalities:

$$
\frac{\prod_{i=1}^{n} \Gamma\left(1+\alpha_{i}\right)}{\Gamma\left(\beta+\sum_{i=1}^{n} \alpha_{i}\right)} \leq \frac{\prod_{i=1}^{n} \Gamma\left(1+\alpha_{i} t\right)}{\Gamma\left(\beta+\sum_{i=1}^{n} \alpha_{i} t\right)} \leq \frac{1}{\Gamma(\beta)}, \quad t \in[0,1] .
$$

where $\beta \geq 1, \alpha_{i}>0, n \in \mathbb{N}$.
Some new extensions of the Gamma function and including inequalities of them have been given by many researchers, [1, [5, [7, 8, 11, 12, 13]. Recently, a new one-parameter deformation of the classical Gamma function is introduced as a v-analogue (v-deformation or v-generalization) of the Gamma function, 4]. It is defined as

$$
\Gamma_{v}(t)=\int_{0}^{\infty}\left(\frac{x}{v}\right)^{\frac{t}{v}-1} e^{-x} d x, \quad t, v>0
$$

Note that when $v=1$, we have $\Gamma_{v}(t)=\Gamma(t)$. The logarithmic derivative of Γ_{v} is called v-digamma or v-psi function and denoted by ψ_{v} and the r th order derivative
of ψ_{v} is called v-polygamma function. The series representations are given in (4) as

$$
\begin{equation*}
\psi_{v}(t)=-\frac{\ln v+\gamma}{v}-\frac{1}{t}+\sum_{n=1}^{\infty}\left[\frac{1}{n v}-\frac{1}{t+n v}\right] \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{v}^{(r)}(t)=(-1)^{r+1} r!+\sum_{n=0}^{\infty} \frac{1}{(t+n v)^{r+1}} \tag{3}
\end{equation*}
$$

The main aim of the present study is to give some new generalized inequalities including the functions Γ_{v} and $\psi_{v}^{(r)}$ by using similar methods, used in [10, 13]. This method is based on some monotonicity properties of certain functions associated with v-Gamma and v-polyamma functions.

2 Main Results

Theorem 1. Let $0<a_{i}+\sum_{j=1}^{m} b_{j} t \leq d_{i}+\sum_{k=1}^{l} e_{k} t,\left(\sum_{k=1}^{l} e_{k}\right) f_{i} \geq\left(\sum_{j=1}^{m} b_{j}\right) c_{i}$,
$a_{i}, c_{i}, d_{i}, f_{i}>0$, and $\left(\sum_{j=1}^{m} b_{j}\right) c_{i}>0$ for $i=1,2, \ldots n$. If

$$
\begin{equation*}
\psi_{v}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right)>0 \text { or } \psi_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k} t\right)>0 \tag{4}
\end{equation*}
$$

then the function

$$
F(t)=\prod_{i=1}^{n} \frac{\Gamma_{v}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right)^{c_{i}}}{\Gamma_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k} t\right)^{f_{i}}}
$$

is decreasing on $[0, \infty)$ and the following inequalities bounding a ratio of the v-Gamma function hold for $v>0$:

$$
\begin{equation*}
\prod_{i=1}^{n} \frac{\Gamma_{v}\left(a_{i}+\sum_{j=1}^{m} b_{j}\right)^{c_{i}}}{\Gamma_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k}\right)^{f_{i}}} \leq F(t) \leq \prod_{i=1}^{n} \frac{\Gamma_{v}\left(a_{i}\right)^{c_{i}}}{\Gamma_{v}\left(d_{i}\right)^{f_{i}}}, \quad t \in[0,1], \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
F(t) \leq \prod_{i=1}^{n} \frac{\Gamma_{v}\left(a_{i}+\sum_{j=1}^{m} b_{j}\right)^{c_{i}}}{\Gamma_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k}\right)^{f_{i}}}, \quad t \in(1, \infty) . \tag{6}
\end{equation*}
$$

Proof. Let $G(t)=\ln F(t)$. Then

$$
G(t)=\sum_{i=1}^{n} c_{i} \ln \Gamma_{v}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right)-\sum_{i=1}^{n} f_{i} \ln \Gamma_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k} t\right),
$$

and

$$
\begin{aligned}
G^{\prime}(t) & =\left(\sum_{j=1}^{m} b_{j}\right) \sum_{i=1}^{n}\left[c_{i} \psi_{v}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right)\right]-\left(\sum_{k=1}^{l} e_{k}\right) \sum_{i=1}^{n}\left[f_{i} \psi_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k} t\right)\right] \\
& =\sum_{i=1}^{n}\left[\left(\sum_{j=1}^{m} b_{j}\right) c_{i} \psi_{v}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right)-\left(\sum_{k=1}^{l} e_{k}\right) f_{i} \psi_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k} t\right)\right] .
\end{aligned}
$$

Let $\psi_{v}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right)>0$ for $i=1,2, \ldots n$. Since from the equation $\left.\int_{2}\right\}$ we have that ψ_{v} is an increasing function on $[0, \infty)$ we get

$$
\psi_{v}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right) \leq \psi_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k} t\right)
$$

so we have $\psi_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k} t\right)>0$. Then

$$
\begin{aligned}
\left(\sum_{j=1}^{m} b_{j}\right) c_{i} \psi_{v}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right) & \leq\left(\sum_{j=1}^{m} b_{j}\right) c_{i} \psi_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k} t\right) \\
& \leq\left(\sum_{k=1}^{l} e_{k}\right) f_{i} \psi_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k} t\right)
\end{aligned}
$$

This proves the inequality

$$
\begin{equation*}
\left(\sum_{j=1}^{m} b_{j}\right) c_{i} \psi_{v}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right)-\left(\sum_{k=1}^{l} e_{k}\right) f_{i} \psi_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k} t\right) \leq 0 \tag{7}
\end{equation*}
$$

for $i=1,2, \ldots n$. Now, let $\psi_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k} t\right)>0$. Then if $\psi_{v}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right)>0$, we have the inequality (7) with the above discussion.

If $\psi_{v}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right) \leq 0$ with $\psi_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k} t\right)>0$, we can write

$$
\begin{aligned}
\left(\sum_{k=1}^{l} e_{k}\right) f_{i} \psi_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k} t\right) & \geq\left(\sum_{j=1}^{m} b_{j}\right) c_{i} \psi_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k} t\right) \\
& \geq\left(\sum_{j=1}^{m} b_{j}\right) c_{i} \psi_{v}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right)
\end{aligned}
$$

and the inequality (7) again follows for $i=1,2, \ldots n$. Then we have $G^{\prime}(t) \leq 0$. It implies that G and so F is decreasing on $[0, \infty)$. Then for every $t \in[0,1]$, we have

$$
F(1) \leq F(t) \leq F(0)
$$

and for $t \in(1, \infty)$ we have

$$
F(t) \leq F(1)
$$

and the inequalities (5) and (6) are valid.

Theorem 2. Let F be a function given in the Theorem 1, where
$0<a_{i}+\sum_{j=1}^{m} b_{j} t \leq d_{i}+\sum_{k=1}^{l} e_{k} t,\left(\sum_{j=1}^{m} b_{j}\right) c_{i} \geq\left(\sum_{k=1}^{l} e_{k}\right) f_{i}, \quad a_{i}, c_{i}, d_{i}, f_{i}>0$, and
$\sum_{k=1}^{l} e_{k} f_{i}>0$ for $i=1,2, \ldots n$. If $\psi_{v}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right)<0$ or $\psi_{v}\left(d_{i}+\sum_{k=1}^{l} e_{k} t\right)<0$, then the function F is decresing for $t \in[0, \infty)$ and the inequalities (5) and (6) hold.

Proof. It can be proved by using the similar way in the Theorem 1 .
Now, we give the following remarks by using the Theorems 1 and 2 .
Remark 3. If in the Theorem 1 we take $n=m=l=v=1$, we obtain the inequality (1).

Remark 4. If we take $F:[0, \infty) \rightarrow \mathbb{R}$ as any differentiable log-convex function instead of Γ_{v} satisfying the conditions in the Theorems 1 and 2 , the results of the Theorems still hold, since the logarithmic convexity of F on $[0, \infty)$ implies that its logarithmic derivative is an increasing function on $[0, \infty)$. For example, one can take the log-convex function Γ or any log-convex generalizations such as $\Gamma_{k}, \Gamma_{q, k}$, $\Gamma_{p, q, k}$ functions instead of Γ_{v}, [1, [2, [5].

Now, we give some inequalities including the v-polygamms functions.
Theorem 5. Let $0<a+b t \leq c+d t, a, c, \alpha, \beta>0, \alpha b>0$ and

$$
H(t)=\frac{\left[\psi_{v}^{(r)}(a+b t)\right]^{\alpha}}{\left[\psi_{v}^{(r)}(c+d t)\right]^{\beta}}
$$

If $\alpha b \leq \beta d$ and $r=2 k+1, k \in \mathbb{N} \cup\{0\}$, then H is decreasing function on $[0, \infty)$ and the following inequalities hold for $t \in[0,1]$:

$$
\begin{equation*}
\frac{\left[\psi_{v}^{(r)}(a+b)\right]^{\alpha}}{\left[\psi_{v}^{(r)}(c+d)\right]^{\beta}} \leq H(t) \leq \frac{\left[\psi_{v}^{(r)}(a)\right]^{\alpha}}{\left[\psi_{v}^{(r)}(c)\right]^{\beta}} \tag{8}
\end{equation*}
$$

and if $\alpha b \geq \beta d$ and $r=2 k, k \in \mathbb{N} \cup\{0\}$, then H is increasing function on $[0, \infty)$ and the inequalities (8) are reversed.

Proof. Let $I(t)=\ln H(t)$. Then

$$
\begin{aligned}
I^{\prime}(t) & =\alpha b \frac{\psi_{v}^{(r+1)}(a+b t)}{\psi_{v}^{(r)}(a+b t)}-\beta d \frac{\psi_{v}^{(r+1)}(c+d t)}{\psi_{v}^{(r)}(c+d t)} \\
& =\frac{\alpha b \psi_{v}^{(r+1)}(a+b t) \psi_{v}^{(r)}(c+d t)-\beta d \psi_{v}^{(r+1)}(c+d t) \psi_{v}^{(r)}(a+b t)}{\psi_{v}^{(r)}(a+b t) \psi_{v}^{(r)}(c+d t)}
\end{aligned}
$$

Now, by using equation (3) observe that we have $\psi_{v}^{(r)}>0$ for $r=2 k+1, k \in \mathbb{N} \cup\{0\}$ and $\psi_{v}^{(r)}<0$ for $r=2 k, k \in \mathbb{N} \cup\{0\}$. Firstly, let $\alpha b \leq \beta d$ and $r=2 k+1$, $k \in \mathbb{N} \cup\{0\}$. Then $\psi_{v}^{(r)}(a+b t)>0, \psi_{v}^{(r)}(c+d t)>0, \psi_{v}^{(r+1)}(a+b t)<0$ and $\psi_{v}^{(r+1)}(c+d t)<0, \psi_{v}^{(r)}$ is decreasing and $\psi_{v}^{(r+1)}$ is increasing. Then we have $\psi_{v}^{(r)}(a+b t) \geq \psi_{v}^{(r)}(c+d t)$ and $\psi_{v}^{(r+1)}(a+b t) \leq \psi_{v}^{(r+1)}(c+d t)$. Then we have

$$
\begin{aligned}
\psi_{v}^{(r)}(c+d t) \psi_{v}^{(r+1)}(a+b t) & \leq \psi_{v}^{(r)}(c+d t) \psi_{v}^{(r+1)}(c+d t) \\
& \leq \psi_{v}^{(r)}(a+b t) \psi_{v}^{(r+1)}(c+d t)
\end{aligned}
$$

Now, using the condition $\alpha b \leq \beta d$ we get

$$
\begin{aligned}
\alpha b \psi_{v}^{(r)}(c+d t) \psi_{v}^{(r+1)}(a+b t) & \leq \alpha b \psi_{v}^{(r)}(c+d t) \psi_{v}^{(r+1)}(c+d t) \\
& \leq \alpha b \psi_{v}^{(r)}(a+b t) \psi_{v}^{(r+1)}(c+d t) \\
& \leq \beta d \psi_{v}^{(r)}(a+b t) \psi_{v}^{(r+1)}(c+d t)
\end{aligned}
$$

that is

$$
\alpha b \psi_{v}^{(r)}(c+d t) \psi_{v}^{(r+1)}(a+b t)-\beta d \psi_{v}^{(r)}(a+b t) \psi_{v}^{(r+1)}(c+d t) \leq 0
$$

so we have $I^{\prime}(t) \leq 0$. That implies that I is decreasing on $[0, \infty)$. Hence H is decreasing on $[0, \infty)$. Then for $t \in[0,1]$ we have

$$
H(1) \leq H(t) \leq H(0)
$$

and the inequalities (8) follow.

Let $\alpha b \geq \beta d$ and $r=2 k, k \in \mathbb{N} \cup\{0\}$. Then we have $\psi_{v}^{(r)}(a+b t)<0$, $\psi_{v}^{(r)}(c+d t)<0, \psi_{v}^{(r+1)}(a+b t)>0$ and $\psi_{v}^{(r+1)}(c+d t)>0, \psi_{v}^{(r)}$ is increasing and $\psi_{v}^{(r+1)}$ is decreasing. Then we have

$$
\begin{aligned}
\psi_{v}^{(r+1)}(c+d t) \psi_{v}^{(r)}(a+b t) & \leq \psi_{v}^{(r+1)}(c+d t) \psi_{v}^{(r)}(c+d t) \\
& \leq \psi_{v}^{(r+1)}(a+b t) \psi_{v}^{(r)}(c+d t),
\end{aligned}
$$

and using the condition $\alpha b \geq \beta d$ we get

$$
\begin{aligned}
\alpha b \psi_{v}^{(r+1)}(a+b t) \psi_{v}^{(r)}(c+d t) & \geq \alpha b \psi_{v}^{(r+1)}(c+d t) \psi_{v}^{(r)}(c+d t) \\
& \geq \alpha b \psi_{v}^{(r+1)}(c+d t) \psi_{v}^{(r)}(a+b t) \\
& \geq \beta d \psi_{v}^{(r+1)}(c+d t) \psi_{v}^{(r)}(a+b t),
\end{aligned}
$$

so we have $I^{\prime}(t) \geq 0$, means that I is increasing for $t \in[0, \infty)$. Hence H is increasing on $[0, \infty)$. Then the reverse of the inequality (8) is valid.

Theorem 6. Let $0<a_{i}+\sum_{j=1}^{m} b_{j} t \leq c_{i}+\sum_{k=1}^{l} d_{k} t, \quad a_{i}, c_{i}, \alpha_{i}, \beta_{i}>0$ for $i=1,2, \ldots n$, $r \in \mathbb{N} \cup\{0\}$ and

$$
J(t)=\prod_{i=1}^{n} \frac{\left[\psi_{v}^{(r)}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right)\right]^{\alpha_{i}}}{\left[\psi_{v}^{(r)}\left(c_{i}+\sum_{k=1}^{l} d_{k} t\right)\right]^{\beta_{i}}}
$$

If $\left(\sum_{j=1}^{m} b_{j}\right) \alpha_{i}<0$ and $\left(\sum_{k=1}^{l} d_{k}\right) \beta_{i}>0$ for $i=1,2, \ldots n$. Then J is increasing on $[0, \infty)$ and the following inequalities hold on $[0,1]$:

$$
\begin{equation*}
\prod_{i=1}^{n} \frac{\left[\psi_{v}^{(r)}\left(a_{i}\right)\right]^{\alpha_{i}}}{\left[\psi_{v}^{(r)}\left(c_{i}\right)\right]^{\beta_{i}}} \leq J(t) \leq \prod_{i=1}^{n} \frac{\left[\psi_{v}^{(r)}\left(a_{i}+\sum_{j=1}^{m} b_{j}\right)\right]^{\alpha_{i}}}{\left[\psi_{v}^{(r)}\left(c_{i}+\sum_{k=1}^{l} d_{k}\right)\right]^{\beta_{i}}} \tag{9}
\end{equation*}
$$

and if $\left(\sum_{j=1}^{m} b_{j}\right) \alpha_{i}>0$ and $\left(\sum_{k=1}^{l} d_{k}\right) \beta_{i}<0$ for $i=1,2, \ldots n$. Then J is increasing function and the inequalities (9) are reversed.

Proof. Let $K(t)=\ln J(t)$. Then
$K^{\prime}(t)=\sum_{i=1}^{n}\left[\left(\sum_{j=1}^{m} b_{j}\right) \alpha_{i} \frac{\psi_{v}^{(r+1)}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right)}{\psi_{v}^{(r)}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right)}-\left(\sum_{k=1}^{t} d_{k}\right) \beta_{i} \frac{\psi_{v}^{(r+1)}\left(c_{i}+\sum_{k=1}^{l} d_{k} t\right)}{\psi_{v}^{(r)}\left(c_{i}+\sum_{k=1}^{l} d_{k} t\right)}\right]$.
Now, observe that $\frac{\psi_{v}^{(r+1)}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right)}{\psi_{v}^{(r)}\left(a_{i}+\sum_{j=1}^{m} b_{j} t\right)}<0$ and $\frac{\psi_{v}^{(r+1)}\left(c_{i}+\sum_{k=1}^{l} d_{k} t\right)}{\psi_{v}^{(r)}\left(c_{i}+\sum_{k=1}^{l} d_{k} t\right)}<0$.
For the case $\left(\sum_{j=1}^{m} b_{j}\right) \alpha_{i}<0$ with $\left(\sum_{k=1}^{l} d_{k}\right) \beta_{i}>0$ for $i=1,2, \ldots n$, we get $K^{\prime}(t)>0$. Then we have J is increasing on $[0, \infty)$ and the inequalities 9 follow on $[0,1]$. Now, for the second case $\left(\sum_{j=1}^{m} b_{j}\right) \alpha_{i}>0$ with $\left(\sum_{k=1}^{l} d_{k}\right) \beta_{i}<0$ for $i=1,2, \ldots n$, we get J is decreasing and then the inequalities (9) are reversed on $[0,1]$.

References

[1] R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulgaciones Matematicas 15 (2007), 179-192.
[2] R. Diaz and C. Teruel, q, k-Generalized Gamma and beta functions, Journal of Nonlinear Mathematical Physics 12(1) (2005), 118-134.
https://doi.org/10.2991/jnmp.2005.12.1.10
[3] S. S. Dragomir and C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Science direct working paper (S1574-0358), 04 (2003).
[4] E. Djabang, K. Nantomah and M. M. Iddrisu, On a v-analogue of the Gamma function and some associated inequalities, J. Math. Comput. Sci. 11(1) (2020), 74-86. https://doi.org/10.28919/jmcs/5047
[5] İ. Ege, On defining the generalized Gamma function, Note di Matematica 39(1) (2019), 107-116. https://doi.org/10.1285/i15900932v39n1p107
[6] D. Karp and S. M. Sitnik, Log-convexity and log-concavity of hypergeometric-like functions, Journal of Mathematical Analysis and Applications 364(2) (2010), 384-394. https://doi.org/10.1016/j.jmaa.2009.10.057
[7] V. Krasniqi and F. Merovci, Generalization of some inequalities for the special functions, J. Inequal. Spec. Funct. 3 (2012), 34-40.
[8] V. Krasniqi, H. M. Srivastava and S. S. Dragomir, Some complete monotonicity properties for the (p, q)-gamma function, Applied Mathematics and Computation 219(21) (2013), 10538-10547. https://doi.org/10.1016/j.amc.2013.04.034
[9] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis. Mathematics and its Applications (East European Series), Vol. 61, Springer, 2010.
[10] K. Nantomah and M. M. Iddrisu, The k-analogue of some inequalities for the gamma function, Electronic Journal of Mathematical Analysis and Applications 2(2) (2014), 172-177.
[11] K. Nantomah and I Ege, A lambda analogue of the Gamma function and its properties, Researches in Mathematics 30(2) (2022), 18-29.
https://doi.org/10.15421/242209
[12] K. Nantomah, E. Prempeh and S. B. Twum, On a (p, k)-analogue of the Gamma function and some associated Inequalities, Moroccan Journal of Pure and Applied Analysis 2(2) (2016), 79-90. https://doi.org/10.7603/s40956-016-0006-0
[13] A. S. Shabani, Generalization of some inequalities for the Gamma function, Mathematical Communications 13(2) (2008), 271-275.
[14] N. V. Vinh and N. P. N. Ngoc, An inequality for the Gamma function, International Mathematical Forum 4(28) (2009), 1379-1382.
[15] Z.-H. Yang, On the log-convexity of two-parameter homogeneous functions, Mathematical Inequalities and Applications 10(3) (2007), 499-506.
https://doi.org/10.7153/mia-10-47

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.

[^0]: Received: April 27, 2023; Revised \& Accepted: May 16, 2023; Published: May 20, 2023 2020 Mathematics Subject Classification: 33B15, 26D07, 26A48.
 Keywords and phrases: Gamma function, v-Gamma function, v-polygamma function, convexity, inequality, monotonicity.

