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Abstract

In this work, we investigate the (p, q)-Gegenbauer polynomials for a class of

analytic and bi-univalent functions defined in the open unit disk, with respect

to subordination. We give an elementary proof to establish some estimates

for the coefficient bounds for functions in the new class. We conclude the

study by giving a result of the Fekete-Szegö theorem. A corollary was given

to show some results of some subclasses of our new class.

1 Preliminaries and Definitions

In this paper, let the unit disk be denoted by ∆ := {z : z ∈ C and |z| < 1}. Let

A be the class of analytic (or holomorphic) functions in ∆. Also let S be the class
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of functions in A that are also univalent in ∆ and normalized by the conditions:

f(0) = f ′(0)− 1 = 0. Functions in S can therefore be represented as

f(z) = z +
∞∑
n=2

anz
n, z ∈ ∆. (1.1)

An important subclass of S in this study is the class S?(s, t, δ) consisting of

functions satisfying the conditions

Re (s− t)zf ′(z)
f(sz)− f(tz)

> δ ∈ [0, 1), f(z) 6= 0, s, t ∈ C, s 6= t, |t| 5 1, z ∈ ∆.

Frasin [7] introduced the class S?(s, t, δ) while the classes S?(1, t, δ), S?(1,−1, δ),

S?(1,−1, 0) ≡ Ss, S?(1, 0, δ) ≡ S?(δ) and S?(1, 0, 0) ≡ S? were introduced by

Owa et al. [17], Sakaguchi [27], Sakaguchi [27], Robertson [26] and Alexander [1]

respectively. The classes Ss and S? are the well-known classes of starlike functions

with respect to symmetrical points in ∆ and starlike functions in ∆.

The Koebe one-quarter theorem (see [30]) declares that the image domain of

every function f ∈ S contains a disk of radius 1/4. This means that every function

f ∈ S has an inverse function f−1 which can be defined by

f−1(f(z)) = z, z ∈ ∆

and

f(f−1(w)) = w, w : |w| < r0(f), r0(f) = 1/4

therefore

f−1(w) = w − a2w2 + (2a22 − a3)w3 − (5a32 − 5a2a3 + a4)w
4 + · · · = F (w). (1.2)

A function f ∈ A is said to be bi-univalent in ∆ if both f and f−1 are univalent

in ∆. Let B denote the class of analytic and bi-univalent functions in ∆. In

1967, Lewin [14] introduced the class of bi-univalent functions and declared that

every bi-univalent function has upper bound |a2| < 1.51. Some other results,

examples, properties, definitions and some historical background, are archived

in [10–13,16,21,25,28,29].
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Suppose c(z) is an analytic function, then

∇ :=

{
c(z) : c(z) =

∞∑
n=1

cnz
n, c(0) = 0, |c(z)| < 1, z ∈ ∆

}
(1.3)

is called the class of Schwarz functions. Let ≺ denote subordination, so if j, J ∈ A,

j ≺ J if j(z) = J(c(z)) and z ∈ ∆. However, if J is a univalent function, then for

z ∈ ∆, j(z) ≺ J(z) if, and only if, j(0) = J(0) and j(∆) ⊂ J(∆).

Lately, orthogonal polynomials have been a focal point of studies in the field

of geometric function theory. Some works in this direction can be found in [3–

6, 9, 10, 18, 20–22, 24, 28]. The Chebyshev polynomials of the second kind is the

natural generalization of Chebyshev polynomials of the first kind. It can be used in

different areas of mathematics such as in theory of approximation, linear algebra,

discrete analysis, representation theory and physics. For n ∈ {2, 3, 4, . . .}, 0 < q <

p 5 1 and a variable s, the generating function of (p, q)-Chebyshev polynomials

of the second kind is defined by

Cp,q(z, x) =
1

1− xpzηp − xqzηq − spqz2ηp,q
=

∞∑
n=0

Un(x, s, p, q)zn, z ∈ ∆ (1.4)

where ηqf(z) = f(qz) is the Fibonacci operator defined by Mason [15] and in

a similar manner, Kizilatecs et al. [10] defined the operator ηp,qf(z) = f(pqz).

The recurrence relation for the (p, q)-Chebyshev polynomials of the second kind

is defined by

Un(x, s, p, q) = (pn + qn)xUn−1(x, s, p, q) + (pq)n−1sUn−2(x, s, p, q) (1.5)

with initial values

U0(x, s, p, q) = 1 and U1(x, s, p, q) = (p+ q)x.

Remark 1.1. A careful observation shows that the recurrence relation in (1.5)

has the following special cases.

1. Un(x/2, s, p, q) = Fn(x, s, p, q) is the (p, q)-Fibonacci polynomial;
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2. Un(x,−1, 1, 1) = Un(x) is the second kind Chebyshev polynomial;

3. Un(x/2, 1, 1) = Fn+1(x) is the Fibonacci polynomials;

4. Un(1/2, 1, 1) = Fn+1 is the Fibonacci numbers;

5. Un(x, 1, 1, 1) = Pn+1(x) is the Pell polynomials,

6. Un(1, 1, 1, 1) = Pn+1 is the Pell numbers;

7. Un(1/2, 2y, 1, 1) = Jn+1(y) is the Jacobsthal polynomials and

8. Un(1/2, 2, 1, 1) = Jn+1 Jacobsthal numbers.

Let α be a nonzero real constant, the generating function for the Gegenbauer

polynomials is defined by

Gα(x, z) =
1

(1− 2xz + z2)α
(1.6)

where x ∈ [−1, 1] and z ∈ ∆. For a fixed x, the function Gα is analytic in ∆ so it

can be expanded in a Taylor’s series as

Gα(x, z) =
∞∑
n=0

Vαn (x) zn (1.7)

where Vαn (x) is known as the Gegenbauer polynomials of degree n. Obviously,

Gα generates nothing when α = 0, therefore the generating function of the

Gegenbauer polynomials is set to

G0(x, z) = 1− log(1− 2xz + z2) =

∞∑
n=0

V0n(x)zn. (1.8)

The Gegenbauer polynomials can as well be defined by the relation

Vαn (x) =
1

n
[2x(n+ α− 1)Vαn−1(x)− (n+ 2α− 2)Vαn−2(x)] (1.9)

which produce some initial values expressed as

Vα0 (x) = 1,

Vα1 (x) = 2αx,

Vα2 (x) = 2α(1 + α)x2 − α.

 (1.10)
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Observe that from (1.10), if α = 1, then we get the second kind Chebyshev

polynomials and if α = 1
2 , then we get the Legendre polynomials. See [2, 19, 23,

31,32] for some details.

It is interesting to know that (1.9) can be generalized by the recurrence relation

Vαn (x, s, p, q) =
1

n
[(pn + qn)x(n+ α− 1)Vαn−1(x, s, p, q)

+ (pq)n−1s(n+ 2α− 2)Vαn−2(x, s, p, q)] (1.11)

where 0 < q < p 5 1, s is an arbitrary variable and the initial values are given by

Vα0 (x, s, p, q) = 1

Vα1 (x, s, p, q) = α(p+ q)x

Vα2 (x, s, p, q) = 1
2 [α(1 + α)(p2 + q2)(p+ q)x2 + 2αpqs].

 (1.12)

We remark that (1.12) are the (p, q)-Gegenbauer polynomials from which for

α = 1, we get the (p, q)-Chebyshev polynomials and for α = 1
2 , we get

the (p, q)-Legendre polynomials. Further, a careful variation of the involving

parameters show that we will get the listed polynomials in Remark 1.1.

2 Associated Lemmas

Let c(z) be as defined in (1.3), then the following lemmas hold to prove our results.

Lemma 2.1 ( [30]). Let c(z) ∈ ∇, then |cn| 5 1 ∀n ∈ N. Equality occurs for

functions c(z) = eiϑzn (ϑ ∈ [0, 2π)).

Lemma 2.2 ( [8]). Let c(z) ∈ ∇, then for σ ∈ C,

|c2 + σc21| 5 max{1; |σ|}.

Equality holds for functions c(z) = z or c(z) = z2.
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3 New Class of Bi-univalent Functions

Let 0 < q < p 5 1, s, t ∈ C (s 6= t, |t| 5 1) and x ∈ (12 , 1], then a function f ∈ B is

a member of class BS(s, t,G) if it satisfies the subordination conditions

(s− t)zf ′(z)
f(sz)− f(tz)

≺ Gp,q(x, z), z ∈ ∆ (3.1)

and
(s− t)wF ′(w)

F (sw)− F (tw)
≺ Gp,q(x,w), w ∈ ∆. (3.2)

where F (w) = f−1(w) is as defined in (1.4) and Gp,q(x, z) is the generating function

of the (p, q)-Gegenbauer polynomials in (1.12).

Remark 3.1. The following are subclasses of class BS(s, t,G).

1. If we set α = 1, then class BS(s, t,G) becomes class BS(s, t, Cp,q) which

consists of Sakaguchi type bi-starlike functions that are subordinate to

(p, q)-Chebyshev function and defined by the conditions

(s− t)zf ′(z)
f(sz)− f(tz)

≺ Cp,q(x, z) and
(s− t)wF ′(w)

F (sw)− F (tw)
≺ Cp,q(x,w), w, z ∈ ∆.

(3.3)

This class was earlier studied in [9].

2. If we set α = 1 = s and t = 0, then class BS(s, t,G) becomes class

BS(Cp,q) which consists of bi-starlike functions that are subordinate to

(p, q)-Chebyshev function and defined by the conditions

zf ′(z)

f(z)
≺ Cp,q(x, z) and

wF ′(w)

F (w)
≺ Cp,q(x,w) z, w ∈ ∆.

3. If we set α = p = q = s = 1 and t = 0, then class BS(s, t,G) becomes

class BS(C) which consists of bi-starlike functions that are subordinate to

Chebyshev function and defined by the conditions

zf ′(z)

f(z)
≺ C(x, z) and

wF ′(w)

F (w)
≺ C(x,w) z, w ∈ ∆.
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In this work, we use the (p, q)-Gegenbauer polynomials to define two new

classes of analytic-bi-univalent functions that are associated with them. The initial

coefficient estimates were afterward established for the two classes.

4 Main Results

In what follows, let all the parameters be as declared in Section 3 unless otherwise

mentioned. Thus, the established results are as follows.

Theorem 4.1. Let f ∈ B be a member of BS(s, t,G). Then

|a2| 5
α
√

2(p+ q)x
√

(p+ q)x√
|2α(3− 2s− 2t+ st)(p+ q)2x2 − (2− s− t)2[(α+ 1)(p2 + q2)(p+ q)x2 + 2pqs]|

|a3| 5 α(p+ q)x

[
1

(3− s2 − t2 + st)
+

α(p+ q)x

(2− s− t)2

]
and for µ ∈ R we get

|a3 − µa22| 5


(p+q)x

(3−2s−2t+st) if |µ− 1| 5 λ

(p+q)3x3|µ−1|
(3−2s−2t+st)(p2+q2)x2−(2−s−t)2[(p2+q2)x2(p+q)+pqs] if |µ− 1| = λ

where

λ =
(3− 2s− 2t+ st)− (2− s− t)2

(
(p2+q2)
(p+q) + pqs

(p+q)2x2

)
(3− s2 − t2 − st)

.

Proof. Let f ∈ BS(s, t,G), then there exists the analytic functions

c(z) = c1z + c2z
2 + c3z

3 + · · · , d(w) = d1w + d2w
2 + d3w

3 + · · · ∈ ∇ (4.1)

such that c(0) = 0 = d(0), |c(z)|, |d(w)| < 1 and

(s− t)zf ′(z)
f(sz)− f(tz)

= Gp,q(x, c(z)), z ∈ ∆ (4.2)

and
(s− t)wF ′(w)

F (sw)− F (tw)
= Gp,q(x, d(w)), w ∈ ∆. (4.3)
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Using (1.12) and (4.1) in (4.2) and (4.3) we get

(s− t)zf ′(z)
f(sz)− f(tz)

= V0(x, s, p, q) + V1(x, s, p, q)c(z) + V2(x, s, p, q)c2(z) + · · · , (4.4)

and

(s− t)wF ′(w)

F (sw)− F (tw)
= V0(x, s, p, q) + V1(x, s, p, q)d(w) + V2(x, s, p, q)d2(w) + · · · .

(4.5)

Also, using (1.1) and some simplifications in (4.2) we get

1 + (2− s− t)a2z +
[
(3− s2 − t2 − st)a3 − (s2 + t2 − 2s− 2t+ 2st)a22

]
z2 + · · ·

= 1 + Vα1 (x, s, p, q)c1z + [Vα1 (x, s, p, q)c2 + Vα2 (x, s, p, q)c21]z
2 + · · · (4.6)

and using (1.1), (1.2) and some simplifications in (4.3) we get

1− (2− s− t)a2w +
[
(6− s2 − t2 − 2s− 2t)a22 − (3− s2 − t2 − st)a3

]
w2 + · · ·

= 1 + Vα1 (x, s, p, q)d1w + [Vα1 (x, s, p, q)d2 + Vα2 (x, s, p, q)d21]w
2 + · · · . (4.7)

In view of the corresponding equations in (4.6) and (4.7) we get

(2− s− t)a2 = Vα1 (x, s, p, q)c1 (4.8)

(3−s2−t2−st)a3−(s2+t2−2s−2t+2st)a22 = Vα1 (x, s, p, q)c2+Vα2 (x, s, p, q)c21 (4.9)

− (2− s− t)a2 = Vα1 (x, s, p, q)d1 (4.10)

and

(6− s2 − t2 − 2s− 2t)a22 − (3− s2 − t2 − st)a3 = Vα1 (x, s, p, q)d2 + Vα2 (x, s, p, q)d21.

(4.11)

Now if we add (4.8) and (4.10) we will get

Vα1 (x, s, p, q)c1 + Vα1 (x, s, p, q)d1 = 0=⇒c1 = −d1 (and c2 = d2). (4.12)

Also, if we add the squares of (4.8) and (4.10), we will get

2(2− s− t)2a22 = [Vα1 (x, s, p, q)]2(c21 + d21) (4.13)
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or
2(2− s− t)2

[Vα1 (x, s, p, q)]2
a22 = c21 + d21. (4.14)

Likewise if we add (4.9) and (4.11), we will get

(6− 4s− 4t− 2st)a22 = Vα1 (x, s, p, q)(c2 + d2) + Vα2 (x, s, p, q)(c21 + d21) (4.15)

and putting (4.14) into (4.15) simplifies to

a22 =
[Vα1 (x, s, p, q)]3(c2 + d2)

{2(3− 2s− 2t− st)[Vα1 (x, s, p, q)]2 − 2(2− s− t)2Vα2 (x, s, p, q)}
(4.16)

so that using (1.12), taking modulus of both sides and applying Lemma 2.1 give

the required result.

Now if we subtract (4.11) from (4.9), we get

a3 =
Vα1 (x, s, p, q)(c2 − d2)

2(3− s2 − t2 − st)
+

[Vα1 (x, s, p, q)]2(c21 + d21)

2(2− s− t)2
(4.17)

and using (1.12), we get

a3 =
α(p+ q)x(c2 − d2)
2(3− s2 − t2 − st)

+
α2(p+ q)2x2(c21 + d21)

2(2− s− t)2
(4.18)

so that taking modulus of both sides and applying Lemma 2.1 give the required

result.

Let µ ∈ R, then in view of (4.16) and (4.17) and noting that

a3 − µa22 = (1− µ)a22 + (a3 − a22),

then we get

a3 − µa22 =
(1− µ)[Vα1 (x, s, p, q)]3(c2 + d2)

(3− 2s− 2t+ st)[Vα1 (x, s, p, q)]2 − (2− s− t)Vα2 (x, s, p, q)

+
Vα1 (x, s, p, q)(c2 − d2)

(3− s2 − t2 − st)
+

[Vα1 (x, s, p, q)]2(c21 + d21)

(2− s− t)2

− [Vα1 (x, s, p, q)]3(c2 + d2)

(3− 2s− 2t+ st)[Vα1 (x, s, p, q)]2 − (2− s− t)Vα2 (x, s, p, q)
.
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a3 − µa22 =
Vα1 (x, s, p, q)

2

[
y(µ)(c2 + d2) +

(c2 − d2)
3− s2 − t2 − st

+
Vα1 (x, s, p, q)(c21 + d21)

(2− s− t)2

− [Vα1 (x, s, p, q)]2(c2 + d2)

(3− 2s− 2t+ st)[Vα1 (x, s, p, q)]2 − (2− s− t)2Vα2 (x, s, p, q)

]
=
Vα1 (x, s, p, q)

2

[(
y(µ) +

1

(3− s2 − t2 − st)

)
c2

+

(
y(µ)− 1

(3− s2 − t2 − st)

)
d2

]
where

y(µ) =
[Vα1 (x, s, p, q)]2(1− µ)

(3− s− t+ st)[Vα1 (x, s, p, q)]2 − (2− s− t)2Vα2 (x, s, p, q)
.

so that the application of triangle inequality gives the required result.

A special case of Theorem 4.1 is given in the following Corollary.

Corollary 4.2. Let f ∈ B be in the class BS(s, t,G). If p = q = 1 and s = −1,

then

|a2| 5
4αx
√
x√

|8α(5− 3t)x2 − 2(3− t)2[2(α+ 1)x2 − 1]|
,

|a3| 5 2αx

[
1

(2− t2 − t)
+

2αx

(3− t)2

]
and for µ ∈ R we get

|a3 − µa22| 5


2x

(3−2s−2t+st) if |µ− 1| 5 λ

8x3|µ−1|
(3−2s−2t+st)2x2−(2−s−t)2[4x2−1] if |µ− 1| = λ

where

λ =
(3− 2s− 2t+ st)− (2− s− t)2(4x2 − 1)

4x2(3− s2 − t2 − st)
.
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