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Abstract 

A new mixed Poisson model is proposed as a better alternative for modelling count data 

in the presence of overdispersion and/or heavy-tail. The mathematical properties of the 

model were derived. The maximum likelihood estimation method is employed to estimate 

the model’s parameters and its applications to the three real data sets discussed. The 

model is used to model sets of frequencies that have been used in different literature on 

the subject. The results of the new model were compared with Poisson, Negative 

Binomial and Generalized Poisson-Sujatha distributions (POD, NBD and GPSD, 

respectively). The parameter estimates expected frequencies and the goodness-of-fit 

statistics under each model are computed using R software. The results show that the 

proposed PSD fits better than POD, NBD and GPSD for all the data sets considered. 

Hence, PSD is a better alternative provided to model count data exhibiting overdispersion 

property. 

1. Introduction 

The Poisson model has been referred to as the standard model in modelling count data. 

The probability mass function (pmf) of the Poisson distribution is: 

ℎ��|�� = �	
��

! ,              for � = 0, 1, 2, . . .  and  � > 0, 

with  !"# =  $"%&"#'! = �. 
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Obviously, the mean and variance of the Poisson distribution are equal, which is a rare 

situation for real life data. More often than none, the variance is often higher than the 

average. In such a scenario, which reflects the presence of overdispersion in the data. 

“The Poisson model fits overdispersed count data poorly” [1]. Therefore, alternative 

distributions such as Negative Binomial distribution (NBD), which have a dispersion 

parameter that accounts for the overdispersion have been proposed [1-5]. The NBD has 

pmf defined as: 

(��|), *� = +) + � − 1� . �1 − *�
*/;    for � = 0, 1,2, . . .   0 ≤ * ≤ 1           �1� 

where   3�4� = )�1 − *�* ,   5"%�4� = )�1 − *�*² . 
The NBD is suitable for overdispersed count data but may not be appropriate for 

modelling data exhibiting heavy-tailed.  

Several other models have been suggested for handling overdispersion issues in 

different fields (see [6-10] for examples and more details), one of the most recent ones is 

a new generalized Poisson-Sujatha distribution [5]. The pmf of the new generalized 

Poisson-Sujatha distribution (NGPSD) was defined as: 

(%�7|8, 9� = :;:< + 9: + 29 =9�7< + : + 3� + �: + 4�97 + �:< + 2: + 1��: + 1�@A; B ;     7 = 0,1 … �2� 

for  : > 0  and  9 ≥ 0, 
with    3�4� = :< + 29�: + 3�:E:< + 9�: + 2�F     and     
5"%�4� = :G�: + 1� + 9:<�16 + 12: + 3:<� + 29<�6 + 12: + 6:< + :;�:<�:< + 9�2 + :��< , 
where : and 9  are the shape and scale parameters, respectively.  

The purpose of this study is to propose a new model that is capable of handling 

overdispersed and/or heavy-tailed count data. The model is to provide a better alternative 

to NBD and other similar models. In Section 2, we derive the new model. In Section 3, 

we present the mathematical properties of the model. Estimation of the model’s 

parameters is provided in Section 4 while Section 5 is dedicated to its application to real 

data sets and concluding remarks are in Section 6. 
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2. The Poisson-Samade Distribution 

Samade distribution (SD) proposed by [11] is a two-parameter lifetime distribution which 

was defined as: 

I��|9, :� = J :G:G + 69 �: + 9�;�!KL
,           for �, 9, : > 00,                                                elsewhere. O 
The distribution is a mixture of exponential (θ) and gamma (4, θ) distributions. 

Definition. A random variable 4 is said to follow a Poisson-Samade distribution (PSD) if 

it follows  

4|� ~ (Q��� 

while  �|9, : ~ Ra�9, :� 

for  � > 0, 9 > 0  and : > 0. Hence, we denote the unconditional distribution of PSD 

by (R�9, :�. 
Theorem. If  4 ~ (R�9, :�, then the probability mass function (pmf) of 4 is  

I�4|9, :� = :G:G + 69 =:�: + 1�; + 9��; + 6�< + 11� + 6��: + 1�
AG B ;     � = 0,1 …       �3� 

IQ%  : > 0  "#S  9 ≥ 0. 
Proof. Suppose 4|� ~ (Q��� and �|9, : ~ Ra�9, :�, then the pmf of unconditional 

random variable 4 is given as: 

I��� = T ℎ�4 = �|��U��|9, :�S�V
W

 

where 

ℎ�4 = �|�� = X�
!K��! , for � = 0, 1,2. . .  and  � > 00, elsewhere O 
and  

U��|9, :� = J :G:G + 69 �: + 9�;�!KL� , for  �, 9, : > 00, elsewhere O  
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∴    I��� = T �
!K��! :G:G + 69 �: + 9�;�!KL�S�V
W

 

= :G�! �:G + 69� T �
!K��LAZ��: + 9�;�S�V
W

 

= :G�! �:G + 69� [: T �
!K��LAZ�S�V
W

+ 9 T �
A;!K��LAZ�S�V
W

\ 

= :G�! �:G + 69� ] :^�� + 1��: + 1�
AZ + 9^�� + 4��: + 1�
AG_ 

= :G�!�! �:G + 69� ] :�: + 1�
AZ + 9�� + 3��� + 2��� + 1��: + 1�
AG _ 

= :G�:G + 69� ] :�: + 1�
AZ + 9�� + 3��� + 2��� + 1��: + 1�
AG _ 

∴ I��� = :G�:G + 69� `:�: + 1�; + 9��; + 6�< + 11� + 6��: + 1�
AG a ;      � = 0,1, 2 …       
where 9 > 0 and  : > 0.  

Note that 

b :G�:G + 69� `:�: + 1�; + 9��; + 6�< + 11� + 6��: + 1�
AG aV

cW = 1, 

which shows I��� is true pmf. 
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Figure 1: Graph of the pmf of PSD when 9d = 0.25, 0.5, 1.0 and 5.0 (in Figure 1A, B, C, 

and D, respectively) at various values of :.e  

 

Figure 2: Graph of the pmf of PSD when 9d = 10, 20, 50 and 100 (in Figure 2E, F, G, and 

H, respectively) at various values of :f. 
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The cumulative distribution function (CDF) is obtained as: 

g��� = b I�h�

icW  

g��� = b :G�:G + 69� `:�: + 1�; + 9�h; + 6h< + 11h + 6��: + 1�iAG a

icW  

g��� = 1�:G + 69��: + 1�
AG [:G�: + 1�;E�1 + :��: + 1�
 − 1F
+ 9�6:G�: + 1�
 + 6��: + 1�
 − 1� + 6:�4�: + 1�
 − � − 4�+ 3:<�12�: + 1�
 − �< − 7� − 12�+ :;�24�: + 1�
 − �; − 9�< − 26� − 24��m 

 

Figure 3: The CDF curve of the PSD. 

3. The Mathematical Properties of Poisson-Samade Distribution 

We present some of the mathematical characteristics of the PSD in this section. The r
th 

moment is defined as: 
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�n = 3�4n� = b �nV

cW I��� 

 = b �n:G�:G + 69� =:�: + 1�; + 9��; + 6�< + 11� + 6��: + 1�
AG BV

cW . 

The first four moments were obtained as: 

�Z = 249 + :G69: + :o , 
�< = 249�: + 5� +  :G�2 + :�69:< + :q , 
�; = 249�30 + 15: + :<� +  :G�6 + 6: + :<�69:; + :r , 
�G = 249�210 + 180: + 35:< + :;� + :G�24 + 36: + 14:< + :;�69:G + :t . 
Recall that �Zis the meanwhile variance is obtained as 5"%�4� = u< = �< − ��Z�² 

u< = 249�: + 5� + :G�2 + :�69:< + :q − =249 +  :G69: + :o B<, 
u< = �1449< + :t��: + 1�  +  69:G�14 + 5:� �69: + :o�² . 
Coefficient of Variation (CV) 

v5 = √u<�Z , 

v5 = x�ZGGyzAL{��LAZ� A qyL|�ZGAoL� �qyLAL}�²<GyA L|qyLAL}
, 

v5 = �69: + :o�xE�1449< + :t��: + 1� +  69:G�14 + 5:�F/�69: + :o�²
�249 +  :G� . 
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Index of Dispersion (ID) is obtained as 

�� = u<�Z = 1449<�1 + :� + :t�1 + :� + 69:G�14 + 5:��249 + :G��69: + :o� . 
The corresponding kurtosis (��) and skewness (R/) were obtained as follows: 

�� = �GuG = �69 + :G�;�:G�24 + 36: + 14:< + :;� + 249�210 + 180: + 35:< + :;���1449<�1 + :� + :t�1 + :� + 69:G�14 + 5:��< , 
R/ = �;u; = :G�6 + 6: + :<� + 249�30 + 15: + :<�

�69:; + :r� �ZGGyz�ZAL�AL{�ZAL�AqyL|�ZGAoL��qyLAL}�z �; <⁄ . 
Table 1 shows the nature of the Mean (µ), variance (u<), Index of Dispersion (ID), 

coefficient of skewness (R/), and coefficient of kurtosis (��) of the PSD for varying 

values of the parameters. 

Table 1: Summary statistics of the moments of PSD. 

� � � �� �� �� �� 

 

0.5 

0.5 7.8775 24.3523 3.0913 9.8594 32.6783 

1.0 7.9381 24.1817 3.0462 10.0603 33.4698 

5.0 7.9875 24.0372 3.0093 10.2303 34.1446 

 

1.0 

0.5 3.2500 8.1875 2.5192 6.0292 19.3443 

1.0 3.5714 8.2448 2.3085 6.7402 21.6434 

5.0 3.9032 8.0874 2.0719 7.7604 25.2491 

 

5.0 

0.5 0.2028 0.2451 1.2084 4.1649 19.0638 

1.0 0.2057 0.2502 1.2164 4.1773 19.2351 

5.0 0.2274 0.2887 1.2691 4.2299 19.8568 

From Table 1, we observed that for varying values of the parameters, the mean (µ) is 

either less than or closer to the variance �u<� which makes the distribution flexible for 

analysing over-dispersed (� < u<) and equal-dispersed (� ≅ u<) data sets. The PSD also 

exhibits positively skewed �R/ > 0� which conform with the plots of the pmf of the 

distribution in Figure 1. 
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4. Estimation of the Parameters of Poisson-Samade Distribution 

The likelihood function of the PSD is given as: 

��:, 9|��� = � :G�:G + 69� =:�: + 1�; + 9���; + 6��< + 11�� + 6��: + 1�
�AG B .�
�cZ            �4� 

The log-likelihood function is: 

ℓ = #�QU�:G� − #�QU�:G + 69� + b logE:�: + 1�; + 9���; + 6��< + 11�� + 6�F�
�cZ  

− b��� + 4� log�: + 1�.�
�cZ                                                                                �5� 

Therefore, the MLE of the parameters can be obtained numerically by solving the 

following partial differential equations 

�ℓ�: = 4#:;:G + 69 + 4#: − b �� + 4: + 1
�

�cZ + b 3:�: + 1�< + :�: + 1�;9���; + 6��< + 11�� + 6� + :�: + 1�;
�

�cZ , 
�<ℓ�:< = 16#:q�:G + 69�< − 12#:<:G + 69 − 4#:< + b �� + 4�: + 1�<

�
�cZ  

+�: + 1� b 12: − �LAZ���GLAZ�z
y�
��Aq
�zAZZ
�Aq�AL�LAZ�� + 69���; + 6��< + 11�� + 6� + :�: + 1�; ,�

�cZ  

�ℓ�9 = − 6#:G + 69 + b ��; + 6��< + 11�� + 69���; + 6��< + 11�� + 6� + :�: + 1�;
�

�cZ , 
�²ℓ�9² = 36#�:G + 69�< − b ���; + 6��< + 11�� + 6�<�9���; + 6��< + 11�� + 6� + :�: + 1�;�<

�
�cZ  . 

Thus, maximum likelihood estimates of (5) can be carried out using iterative methods 

such as Fisher Score Algorithm, Bisection method Regula-Falsi method or Newton-

Raphson (NR) iterative method among others. 

However, we obtained the MLEs of the parameters by direct maximization of the 

log-likelihood function using the “optim” routine of R software ([12]) with the 

“L-BFGS-B” method. This can as well be done by using PROC NLMIXED in SAS. 
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5. Application 

To examine the goodness-of-fit of the PSD, we apply the proposed model to some data 

sets and compared its performance with models considered in some existing literature. 

5.1.   Data Set 1 

The dataset was obtained from [13] representing epileptic seizure counts (see [14]). The 

Mean and variance from the data are 1.544 and 2.883, respectively. 

Table 2: Observed and expected frequencies of epileptic seizure counts 

X Observed 

Frequency 

Models 

POD NBD NGPSD PSD 

0 126 74.9 120.2 122.3 123.9 

1 80 115.7 93.0 89.6 85.4 

2 59 89.3 59.2 58.8 59.0 

3 42 46.0 35.0 35.8 37.4 

4 24 17.8 19.8 20.6 21.8 

5 8 5.5 11.0 11.4 11.8 

6 5 1.4 6.0 6.1 6.1 

7 4 O0.30.1� 0.4 
3.2 3.2 3.0 

≥ 8 3 3.6 3.2 2.6 

Total 351 351 351 351 351 

MLE  �̂ = 1.5442 %̂ = 1.550 *̂ = 0.5009 

9d = 1.3155 :f = 1.3716 

9d = 3.7438 :f = 1.3716 

LogLik  -636.0455 -594.9419 -594.0483 -593.2133  �  80.76 5.6735 4.2010 2.9818 

df  6 6 6 6 ¡�  70.15 5.7061 4.2708 3.0961 

P-value  < 0.001 0.4607 0.6495 0.8111 

AIC  1274.091 1193.884 1192.097 1190.427 

BIC  1272.091 1194.043 1192,256 1190.586 

Mean 1.544 1.544 1.5442 1.5448 1.5442 

Variance 2.883 1.544 3.0827 3.0433 2.9445 

Lawal’s rule  0.1620 0.068 0.068 0.068 
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The underlying distribution for this data is Poisson. However, when the Poisson 

model is applied to the data in Table 2, it fits very poorly, with �̂  =  1.54 and σ£< =1.54. The observed mean, � = 1.544 but the observed variance is, σ² = 2.883. Obviously, 

the variance is greater than the expected value in the observed data. As expected, Poisson 

distribution (POD) failed to fit the data. Therefore, we would need models that will 

account for the over-dispersion in the data, so we used other models considered by Bhati 

et al. [13], Aderoju [5] and the PSD. The results show that the proposed PSD fits the data 

better than other models, using 4<, Deviance (¤<) and p-values. Alternative measures of 

fit provided by the AIC, Log-likelihood (LogLik) and BIC also strongly support the PSD 

as the best model compared to the NBD and NGPSD. 

Moreover, [15] proposed a rule that the expected value can be as small as 
n¥� z⁄  (where % is the number of expected values less than 3 and d is the degree of freedom under such 

a model) without violating the 4< assumption. We refer to this as “Lawal’s rule”. Hence, 

the minimum expected values under PSD can be as small as 
Zq� z⁄ = 0.068, that is, only 

one expected value is less than 3 and the S. I = �9 − 2 − 1� = 6.  So, we do not need to 

collapse any cell. The same thing applies to other models except for the POD. For the 

Poisson model, the minimum expected frequency is 0.1620. Therefore, we collapsed cells 4 = 7 and 8, now the 4< = 80.76 on 6 S. I. 
5.2.   Data Set 2 

The second dataset is the number of European corn-borer available in [16]. The observed 

mean and variance are 0.648 and 0.8479, respectively. 

Table 3: Observed and expected number of European corn-borer. 

x Observed 

Frequency 

Models 

POD NBD NGPSD PSD 

0 188 169.5 185.9 186.8 187.1 

1 83 109.8 89.2 87.8 86.6 

2 36 35.6 33.0 33.1 34.1 

3 14 7.7 11.0 11.2 11.5 

4 2 O1.20.2� 1.4 
3.5 3.6 3.5 

≥5 1 1.4 1.5 1.0 

Total 324 324 324 324 324 
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MLE  ¦§ = 0.6481 %̂ = 1.8485 *̂ = 0.7404 

9d = 10.5494 :f = 3.3169 

9d = 173.153 :f = 4.6958 

LogLik  -362.2451 -355.955 -355.8283 -355.4974  �  15.5481 2.1755 1.8928 1.4315 

df  3 3 3 3 ¡�  14.6161 2.3709 2.2079 1.9295 

P-value  0.0004 0.5368 0.5949 0.6947 

AIC  726.4902 715.910 715.6566 714.9949 

BIC  724.4902 715.1288 714.8755 714.2138 

Mean 0.6481 0.6481 0.6482 0.6483 0.6481 

Variance 0.8479 0.6481 0.8754 0.8852 0.8748 

Lawal’s rule  0.25 0.1925 0.1925 0.1925 

From Table 3, the Poisson model is applied to the data, but it failed to fit, with �̂ = σ£< = 0.6481. The observed mean, � = 0.6481 but σ² = 0.8479. Clearly, the variance 

is not the same as the expected value in the observed data. Asexpected, POD failed to fit 

the data, hence, we need a more flexible (Poisson mixture) model developed for this 

situation. The results (using 4<, Deviance (¤<) and p-values) shown that the proposed 

PSD fits the data better than NBD and NGPSD, though they equally fit the data. 

Alternative model selection measures are provided by the AIC, Log-likelihood (LogLik) 

and BIC; these also show that the PSD provides a better alternative to the existing models 

used.  

By Lawal’s rule, the minimum expected value under PSD, NGPSD and NBD is 

0.1925 and none of the expected values is less than that. So, we do not need to collapse 

any cell. For the Poisson model, the minimum expected frequency is 0.25. Hence, we 

collapsed cells 4 = 4 and 5, now the 4< = 15.5481  on 3 S. I. 
5.3.  Data Set 3 

In Table 4 the observed frequencies refer to the number of crimes for every month from 

1982 to January 1993 making 145 observations in Greece. “The data show overdispersion 

with mean =2.2413 and variance = 3.3833, making the assumption of a mixed Poisson 

distribution plausible” ([17]). 
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Table 4: Number of monthly crimes for the period 1982-1993 in Greece. 

x Observed 

Frequency 

Models 

POD NBD NGPSD PSD 

0 21 15.4 23.5 30.3 25.6 

1 41 34.6 35.2 34.0 34.3 

2 32 38.7 32.2 28.0 30.8 

3 16 28.9 23.2 20.0 22.4 

4 19 16.2 12.4 13.2 14.3 

5 8 7.3 8.2 8.2 8.4 

6 4 2.7 4.3 4.9 4.6 

7 1 0.9 2.1 2.9 2.4 

8 2 O0.20.1� 0.3 1.0 1.6 1.2 

≥ 9 1 0.5 1.9 1.0 

Total 145 145 145 145 145 

MLE  ¦§ = 2.2414 %̂ = 4.4949 *̂ = 0.6673 

9d = 28.60 :f = 1.160 

9d = 46.50 :f = 1.7346 

LogLik  -281.0803 -274.5055 -276.7761 -274.875 

 �  35.6264 7.0328 9.7239 7.0026 

df  7 7 7 7 

¡�  20.5506 6.7007 10.6597 7.1835 

P-value  0.000009 0.298 0.2048 0.4286 

AIC  564.1606 553.011 557.5521 553.7499 

BIC  562.1606 553.4055 557.9466 554.1444 

Mean 2.241 2.2414 2.2414 2.2490 2.2516 

Variance 3.4066 2.2414 3.3591 4.3867 3.6408 

Lawal’s rule  0.1768 0.1619 0.1619 0.1619 

Similarly, for the crimes data in Table 4, the Poisson model is applied but fits poorly, 

with μd  =  σ£< = 2.2414. The observed mean is μ = 2.2410 but the observed variance, σ² 

= 3.4066. Clearly, there is a presence of overdispersion in the data. The POD fits the data 
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very poorly as anyone would expect. There is a need for a more flexible model that can 

handle overdispersed count data. Hence, we used the proposed PSD along with NBD and 

NGPSD. The results show that the proposed PSD fits the data better than NBD and 

NGPSD, though they equally fit the data fairly (using the 4< and the p-values).  

Similarly, the minimum expected value under PSD, NGPSD and NBD is 0.1619 and 

none of the expected values is less than that. So, we do not need to collapse any cell in 

this example as well. For the POD, the minimum expected frequency is 0.1768. Hence, 

we collapsed cells 4 = 8 and 9, now the 4< = 35.6264  on 7 S. I. 
6. Conclusion 

In this paper, a new Poisson mixed model called Poisson-Samade distribution (PSD) has 

been developed by compounding Poisson distribution with Samade distribution. The 

expression for the k
th
 moment has been derived and hence the first four moments and 

variance are derived. The method of maximum likelihood estimation has been discussed 

for estimating the parameters of the proposed distribution. The distribution has been 

fitted using maximum likelihood estimate to three datasets to test its goodness of fit over 

Poisson distribution (POD), Negative Binomial distribution (NBD) and New generalized 

Poisson-Sujatha distribution (NGPSD) and found that PSD gives a much closer fit than 

POD, NBD and NGPSD in the considered datasets. 
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