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Abstract 

The aim of this article is to investigate the notion of (P�
∗)-modules. We looked at some of 

these modules properties and characterizations. Moreover, relationships between a (P�
∗)-

module and other modules are also discussed. 

1. Introduction  

Unless otherwise mentioned, all rings will have unit elements and all modules will be 

right unitary, in this work. We will use � ⊆ �, � ≤ � and � ≤⨁ � to signify that � is a 

subset, a submodule and a direct summand of �. We will denote the class of all unital 

right modules over a ring ℜ with the symbol Mod-ℜ. Assume that ℜ is a ring and 

� ∈Mod-ℜ. A nonzero submodule � ≤ �  is called to be large in �, denoted as � ⊴ �, 

if � ∩ � ≠ 0 for any nonzero submodule � ≤ � [3]. Dually, if � + � ≠ � for any 

proper submodule � of �, then a submodule � ≠ � is said to be small (in �) and 

denoted as � ≪ �. The Jacobson radical of � is defined as the sum of all small 

submodules of �, denoted as ���(�). If � = � with � = � + � for every � ⊴ �, then 

� ≤ � is called g-small in �, denoted as � ≪� �, see [12]. If every proper submodule 

of � is g-small, then � called generalized hollow [5]. Obviously, the subclass g-small is 

generalized of small. Defined Zhou and Zhang [12] the generalized radical of � ∈ 

Mod-ℜ as follows: 

����(�) = ⋂��� ⊴ �|� � is maximal in �} = ∑#�$ � ≪� �&.  

If there exists submodules � and �'  of � ∈ Mod-ℜ such that � = �⨁�' , � ≤ ( and 

( ∩ �' ≪� �, for any submodule ( ≤ �, then � is called g-lifting [8]. In the case of 
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submodules )* and )+ of � with )* + )+ = �, )+ is referred to as a g-radical 

supplement of )* if, )* ∩ )+ ⊆ ����()+). If each submodule of � ∈ Mod-ℜ has a 

g-radical supplement, then � is called g-radical supplemented see [6]. If each submodule 

of � has a g-radical supplement which is a direct summand of �, Ghawi [2] calls it 

⨁-g-radical supplemented. He also introduced the definition of (P�
∗)-modules in the 

same article, but this was not the author’s main concern in the paper. If for any � ≤ �, 

there is a direct summand , of � such that , ≤ � and � ,⁄ ⊆ ����(� ,⁄ ), then � ∈ 

Mod-ℜ is said to have (P�
∗) property or, (P�

∗)-module. 

   In this paper, the detailed study of the notion of (P�
∗)-modules are our interest. 

Various properties and characterizations of (P�
∗)-modules are obtained in Section 2. We 

show that direct summands of a (P�
∗)-module are also (P�

∗)-modules. We have the 

outcome that the factor module of (P�
∗)-module is also (P�

∗)-module. Considering a 

direct sum of (P�
∗)-modules, we indicate that if )*is semisimple and )+ a (P�

∗)-module 

which are relatively projective, then � = )*⨁)+ is a (P�
∗)-module. Some connections 

between a class of (P�
∗)-modules and some other kinds of modules are discussed, such as 

g-lifting, ⨁-g-radical supplemented and g-radical supplemented modules, in Section 3. 

We refer the reader to [3] and [11] for unexplained concepts and notations in this work.  

2.  (��
∗)-modules 

We will start with the next main definition which is established in [2, p.12]. 

Definition 2.1. � ∈ Mod-ℜ is said to have (P�
∗) property or a (P�

∗)-module if for any 

� ≤ �, there is a , ≤⨁ � such that , ≤ � and � ,⁄ ⊆ ����(� ,⁄ )." 

Consider the following consequence. 

Proposition 2.2. Let � ∈ Mod-ℜ have (P�
∗) property and � ≤ �. Then there is a 

direct summand . ≤ � and a submodule / of � such that . ≤ �, � = . + / and 

/ ⊆ ����(�).   

Proof. If � is a (P�
∗)-module and � ≤ �, then there exists a decomposition � =

)*⨁)+, )* ≤ � and � )*⁄ ⊆ ����(� )*⁄ ). Then � = � ∩ � = � ∩ ()* + )+) = )* +

(� ∩ )+). Put / = � ∩ )+, so that � = )* + /. Since � )*⁄ ≅ )+, we deduce that 

1: � )*⁄ → )+ is an ℜ-isomorphism. Since � )*⁄ ⊆ ����(� )*⁄ ), we have that � ∩

)+ = 1(� )*⁄ ) ⊆ 1(����(� )*⁄ )) ⊆ ����()+), hence / ⊆ ����(�).   □ 
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We will present a characteristic for (P�
∗)-modules in the following. 

Theorem 2.3. Let � ∈ Mod-ℜ. Then the following are equivalent. 

(1) � have (P�
∗) property. 

(2) For each ) ≤ �, there is a decomposition � = )*⨁)+, )* ≤ ) and ) ∩ )+ ⊆
����()+). 

Proof. (1) ⟹ (2) Let ) ≤ �, so by (1), there is a direct summand )* of � such that 

)* ≤ ) and ) )*⁄ ⊆ ����(� )*⁄ ). Thus � = )*⨁)+ for some )+ ≤ �. We deduce that 

) = )*⨁() ∩ )+). As � )*⁄ ≅ �+, we have 7: � )*⁄ → )+ is an ℜ-isomorphism. Since 

) )*⁄ ⊆ ����(� )*⁄ ), we deduce that ) ∩ )+ = 7(()*⨁() ∩ )+)) )*⁄ ) = 7() )*⁄ ) ⊆

7(����(� )*⁄ )) ⊆ ����()+).      

(2) ⟹ (1) Assume ) ≤ �. Then there exists submodules )* and )+ of � ∈Mod-ℜ 

such that � = )*⨁)+, )* ≤ ) and ) ∩ )+ ⊆ ����()+). We have that ) = )*⨁() ∩ )+). 

As )+ ≅ � )*⁄ , so there exists an ℜ-isomorphism 1: )+ → � )*⁄ . Since ) ∩ )+ ⊆
����()+), we have ) )*⁄ = ()*⨁() ∩ )+)) )*⁄ = 1() ∩ )+) ⊆ 1(����()+)) ⊆

����(� )*⁄ ). So � have (P�
∗) property.  □  

Proposition 2.4. Let � ∈Mod-ℜ have (P�
∗) property. For any � ≤ �, there exists a 

g-radical supplement 8 in � such that � ∩ 8 ≤⨁ �.   

Proof. Let � ≤ �. Since � is a (P�
∗)-module, Theorem 2.3 implies � = (⨁8 =

� + 8, ( ≤ � and � ∩ 8 ⊆ ����(8), this means 8 ≤ � is a g-radical supplement of �. 

Also, we deduce that � = � ∩ � = � ∩ ((⨁8) = (⨁(� ∩ 8), as required.  □ 

The following lemma must be proved. 

Lemma 2.5. Let � ∈ Mod-ℜ and . ≤ � ≤⨁ �. If . ⊆ ����(�), then . ⊆

����(�). 

Proof. Let 9 ∈ .. Then 9 ∈ ����(�) and so 9ℜ ≪� � by [5, Lemma 5]. Since 

9ℜ ≤ � ≤⨁ �, [2, Lemma 2.12] imply 9ℜ ≪� �, then 9ℜ ⊆ ����(�), and 9 ∈

����(�). So, . ⊆ ����(�). □ 

Proposition 2.6. For � ∈ Mod-ℜ, we consider the following:  

(1) � have (P�
∗) property. 
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(2) There is a decomposition � = )*⨁)+, )* ≤ � and � ∩ )+  ⊆ ����(�), for each 

� ≤ �, 

(3) Each submodule � of � can be written as � = �*⨁�+, �* ≤⨁ � and �+ ⊆
����(�). 

Then (1) ⟺ (2) ⟹ (3).    

Proof. (1) ⟹ (2) It is directly follows by Theorem 2.3. 

(2) ⟹ (1) Assume that � ≤ �. From (2), there exists submodules )* and )+ of � 

such that � = )*⨁)+, )* ≤ � and � ∩ )+ ⊆ ����(�). Since � ∩ )+ ≤ )+ ≤⨁ �, 

Lemma 2.5 implies � ∩ )+  ⊆ ����()+), thus (1) holds, by Theorem 2.3.   

(2) ⟹ (3) Let � ≤ �. There is a decomposition � = )*⨁)+, )* ≤ � and � ∩ )+  ⊆

����(�). We can conclude that � = )*⨁., )* ≤⨁ � and . ⊆ ����(�) by putting 

. = � ∩ )+. □ 

The corollary that follows is obvious. 

Corollary 2.7. Each generalized hollow module have (P�
∗) property. 

A submodule 3ℤ+= is a direct summand in ℤ-module ℤ+= (not g-small). While, all 

other proper submodules of ℤ+=, on the other hand, are g-small as ℤ-module. This 

indicates that ℤ-module ℤ+= is a (P�
∗)-module, but not generalized hollow. 

The following is established in [4, Lemma 2.3]. 

Lemma 2.8. Let � ∈ Mod-ℜ and � ≤ � such that � �⁄  projective. If > ≤⨁ � with 

� = > + �, then > ∩ � ≤⨁ �.  

Proposition 2.9. Let � ∈Mod-ℜ have (P�
∗) property and � ≤ �. If � �⁄  is 

projective, then � have (P�
∗) property.  

Proof. Suppose > ≤ �, there exists submodules )* and )+ of � such that � =

)*⨁)+, )* ≤ > and > ∩ )+  ⊆ ����(�). Thus, � = � + )+, and so � ∩ )+ ≤⨁ �, by 

Lemma 2.8. Also, we have � = )*⨁(� ∩ )+) and > ∩ (� ∩ )+) = > ∩ )+ ⊆ ����(� ∩

)+), by Lemma 2.5. □ 

If ?(�) ⊆ � for all ? ∈ �@�(�), then a submodule � of an ℜ-module � is called 

fully invariant. Recall [7] that � ∈ Mod-ℜ is called duo if every submodule of � is fully 
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invariant. And � is called to be weak distributive if � = (� ∩ )*) + (� ∩ )+) for all 

submodules )*, )+ of � with )* + )+ = �. If all its submodules of � ∈ Mod-ℜ are 

weak distributive, the module � is called to be weakly distributive, as shown in [1]. 

Lemma 2.10. Let � be a fully invariant submodule of � = )*⨁)+ for some 

submodules )* and )+ of �. Then � �⁄ = (()* + �) �⁄ )⨁(()+ + �) �⁄ ). 

Proof. See [10, Lemma 3.3].  □ 

However, we arrive at the following conclusion. 

Proposition 2.11. Let � ∈ Mod-ℜ have (P�
∗) property. Then 

(1) � ,⁄  have (P�
∗) property, for each fully invariant submodule , of �. 

(2) � ,⁄  have (P�
∗) property, for each weak distributive submodule , of �.   

Proof. (1) Let , be a fully invariant submodule of � and A ,⁄ ≤ � ,⁄ , where 

, ≤ A. Since A ≤ �, there exists submodules )* and )+ of � such that � = )*⨁)+, 

)* ≤ A  and A ∩ )+ ⊆ ����()+). By Lemma 2.10, � ,⁄ = (()* + ,) ,)⁄ ⨁(()+ + ,) ,⁄ ). 

As )* ≤ A, so ()* + ,) ,⁄ ≤ A ,⁄ . Now, define the natural ℜ-epimorphism map 

B: )+ → ()+ + ,) ,⁄ . As A ∩ )+ ⊆ ����()+), then B(A ∩ )+) ⊆ B(����()+)) ⊆

����(()+ + ,) ,⁄ ), but (A ,⁄ ) ∩ (()+ + ,) ,⁄ ) = B(A ∩ )+), we deduce that 

(A ,⁄ ) ∩ (()+ + ,) ,⁄ ) ⊆ ����(()+ + ,) ,⁄ ). Hence � ,⁄  is a (P�
∗)-module.   

(2) Let , be a weak distributive submodule of � and A ,⁄ ≤ � ,⁄ , where , ≤ A. 

Then there is a decomposition � = )*⨁)+, )* ≤ A and A ∩ )+ ⊆ ����()+). We deduce 

that , = (, ∩ )*) + (, ∩ )+). Also, � ,⁄ = ()* + ,) ,⁄ + ()+ + ,) ,⁄ . We conclude 

that ()* + ,) ∩ ()+ + ,) = D)* + (, ∩ )+)E ∩ ()+ + ,) = ()* ∩ )+) + (, ∩ )+) + , = ,, 

that implies ()* + ,) ,⁄ ∩ ()+ + ,) ,⁄ = 0. Therefore, (()* + ,) ,)⁄ ⨁(()+ + ,) ,)⁄ =

� ,⁄ . Then we continue with the same steps to proof (1).  □ 

Corollary 2.12."For a duo (or, a weakly distributive) module have (P�
∗) property, 

every factor module have (P�
∗) property." 

Corollary 2.13. If � ∈ Mod-ℜ have (P�
∗) property, then so is � ����(�)⁄ .  

Proof. We have ����(�) is a fully invariant submodule of � by [12, Corollary 

2.11], hence the result is follows by Proposition 2.11(1).  □ 

The following proposition shows that the property (P�
∗) for modules is inherited by 

its direct summands. 
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Proposition 2.14. A direct summand of a (P�
∗)-module is so a (P�

∗)-module.  

Proof. Let > ≤⨁ � and � is a (P�
∗)-module. If . ≤ >, then there exists submodules 

)* and )+ of � with )* ≤ . and . ∩ )+ ⊆ ����()+), where � = )*⨁)+. We have 

> = )*⨁(> ∩ )+). It is easily to see that > ∩ )+ ≤⨁ )+. From . ∩ (> ∩ )+) ≤ . ∩

)+ ⊆ ����()+), Lemma 2.5 implies . ∩ (> ∩ )+) ⊆ ����(> ∩ )+). The proof is now 

complete. □ 

Proposition 2.15. Let � = ⨁F∈G)F be a duo module. Then )F is a (P�
∗)-module for 

H ∈ I, if and only if � is a (P�
∗)-module. 

Proof. Let )F be a (P�
∗)-module for H ∈ I, and let � be a submodule of � = ⨁F∈G)F. 

As � is fully invariant, then by [7, Lemma 2.1] � = ⨁F∈G(� ∩ )F). Since � ∩ )F ≤ )F  for 

H ∈ I, there exists decompositions )F = ,F⨁,' F such that ,F ≤ � ∩ )F and (� ∩ )F) ∩ ,' F 

= � ∩ ,' F ⊆ ����(,' F). We have that � = (⨁F∈G,F)⨁(⨁F∈G,' F), ⨁F∈G,F ≤ ⨁F∈G(� ∩

)F) = � and � ∩ D⨁F∈G,' FE = ⨁F∈G(� ∩ ,' F) ⊆ ⨁F∈G(����(,' F))  = ����(⨁F∈G,' F) by [9, 

Corollary 2.3]. Thus � is a (P�
∗)-module. Conversely, is follows directly from 

Proposition 2.14.  □ 

Theorem 2.16. Let )* be a semisimple module and )+ have (P�
∗) property which are 

relatively projective. Then � = )*⨁)+ is a (P�
∗)-module.    

Proof. Let (0 ≠). ≤ �, and let � = )* ∩ (. + )+). We have two cases:   

Case (i) If � ≠ 0. Since � ≤ )*, there is a submodule �*of )* such that )* = �⨁�*, 

and hence � = �⨁�*⨁)+ = . + ()+⨁�*). Thus � is )+⨁�*-projective. By [11, 41.14], 

there is ) ≤ . such that � = )⨁()+⨁�*). We may assume . ∩ ()+⨁�*) ≠ 0. It is easy 

to see that . ∩ (J + �*) = J ∩ (. + �*) for any J ≤ )+. Specially, . ∩ ()+ + �*) =

)+ ∩ (. + �*). Thus, . = )⨁D. ∩ ()+⨁�*)E = )⨁D)+ ∩ (. + �*)E. As )+ is a (P�
∗)-

module, there is a decomposition )+ = A*⨁A+ such that A* ≤ )+ ∩ (. + �*) and 

A+ ∩ (. + �*) ⊆ ����(A+). We conclude that � = ()⨁A*)⨁(A+⨁�*). We have 

)⨁A* ≤ . and . ∩ (A+⨁�*) = A+ ∩ (. + �*) ⊆ ����(�). From A+⨁�* ≤⨁ �, we 

deduce that . ∩ (A+⨁�*) ⊆ ����(A+⨁�*) by Lemma 2.5.      

Case (ii) If � = 0, we get . ≤ )+. Since )+ is a (P�
∗)-module, there is a submodule 

A* ≤ ., )+ = A*⨁A+ and . ∩ A+ ⊆ ����(A+) for a submodule A+ ≤ )+. Thus, 
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� = A*⨁()*⨁A+)  and . ∩ ()*⨁A+) = . ∩ A+ ⊆ ����(�). Again by Lemma 2.5, we 

deduce that . ∩ ()*⨁A+) ⊆ ����()*⨁A+), and the proof is now complete.  □ 

Lemma 2.17. Let � ∈ Mod-ℜ have (P�
∗) property and � ≤ �. Then � is semisimple, 

whenever � ∩ ����(�) = 0.  

Proof. Let � ≤ �. Since � is a (P�
∗)-module, there exists submodules )* and )+ of 

� such that � = )*⨁)+, )* ≤ � and � ∩ )+ ⊆ ����()+), and then � ∩ )+ ⊆

����(�). We deduce that � = � ∩ � = � ∩ ()*⨁)+) = )*⨁(� ∩ )+). Because 

� ∩ )+ ⊆ � ∩ ����(�) = 0, we have � = )* and � a direct summand of �. Therefore 

� ≤⨁ � and � a semisimple.  □ 

Theorem 2.18. Let � ∈ Mod-ℜ have (P�
∗) property. Then � has a decomposition 

� = )*⨁)+, where )* is semisimple and ����()+) ⊴ )+. 

Proof. Since ����(�) ≤ �, there is a submodule � of � with �⨁����(�) is large 

in �. As � ∩ ����(�) = 0, Lemma 2.17 implies � is semisimple. Since � have (P�
∗) 

property, there exists submodules )* and )+ of � such that � = )*⨁)+, )* ≤ � and 

� ∩ )+ ⊆ ����()+). As � ∩ )+ ⊆ � ∩ ����(�) = 0, so that � = �⨁)+. Clearly, 

����(�) = 0. Thus ����(�) = ����()+), this means �⨁����()+) ⊴ �⨁)+, and 

hence ����()+) ⊴ )+.  □ 

3.  (��
∗)-module and Other Related Concepts 

Our purpose throughout this section is to demonstrate some relations between the 

concept of (P�
∗)-module and other types of modules. 

Proposition 3.1. Let � ∈ Mod-ℜ be a module. Consider the following: 

(1) � is semisimple. 

(2) � has (P�
∗) property. 

(3) Each direct summand of � is ⨁-g-radical supplemented. 

(4) � is ⨁-g-radical supplemented. 

(5) � is g-radical supplemented.    

Then (1) ⟹ (2) ⟹ (3) ⟹ (4) ⟹ (5). Moreover, (5) ⟹ (1) if ����(�) = 0.  

Proof. (1) ⟹ (2) and (3) ⟹ (4) ⟹ (5) Clear. 
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(2) ⟹ (3) According to Proposition 2.14.  

(5) ⟹ (1) Let � ≤ � with ����(�) = 0. By (5), there exists � ≤ � such that 

� = � + � and � ∩ � ⊆ ����(�). We conclude that � ∩ � = 0, from ����(�) ⊆

����(�). Thus, � = �⨁�, and (1) holds.  □ 

Proposition 3.2. If � ∈ Mod-ℜ such that ����(�) = �, then � have (P�
∗) 

property.   

Proof. It is easy to check.  □ 

Example 3.3. For any prime number M, and a positive integer @ > 1. The ℤ-module 

ℤOP  is generalized hollow, thus it is a (P�
∗)-module, but ����DℤOPE = MℤOP ≠ ℤOP. In 

general, this indicates that the reverse of Proposition 3.2 does not true.  

Proposition 3.4. Let � ∈Mod-ℜ be indecomposable (non-cyclic). If � have (P�
∗) 

property, then ����(�) = �.   

Proof. Let Q ∈ �. Since � have (P�
∗) property, there exists submodules )* and )+ 

of � such that � = )*⨁)+, )* ≤ Qℜ and Qℜ ∩ )+ ⊆ ����()+). Hence, either )* = � 

or )* = 0. If )* = �, then � = Qℜ which is a contradiction. Thus, )* = 0 and )+ = �. 

We deduce that Q ∈ Qℜ ⊆ ����(�). The proof is now complete.  □ 

As an application example of Proposition 3.4, we know that ����(ℚ) = ℚ, in fact ℚ 

has (P�
∗) property as ℤ-module, and it is indecomposable and non-cyclic.  

The following is immediately from Propositions 3.2 and 3.4.   

Corollary 3.5. Let � ∈ Mod-ℜ be indecomposable (non-cyclic). Then � have (P�
∗) 

property if and only if ����(�) = �. 

Proposition 3.6. Every g-lifting module is a (P�
∗)-module. The reverse is true if, a 

module has a g-small generalized radical.   

Proof. The necessity is clear. Conversely, if � ≤ �, so there is a decomposition 

� = )*⨁)+, )* ≤ � and � ∩ )+  ⊆ ����()+), and then � ∩ )+  ⊆ ����(�). As 

����(�) ≪� �, we deduce that � ∩ )+ ≪� �. From � ∩ )+ ≤ )+ ≤⨁ �, [2, Lemma 

2.12] implies � ∩ )+ ≪� )+. Therefore � is g-lifting.  □ 

If � �⁄  is finitely generated, then a submodule � of � ∈ Mod-ℜ is called cofinite. 
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Proposition 3.7. If � ∈ Mod-ℜ is finitely generated, then the following are 

equivalent.  

(1) � is g-lifting. 

(2) � have (P�
∗) property. 

(3) There is a decomposition � = )*⨁)+ such that )* ≤ � and � ∩ )+  ⊆ ����(�), 

for each cofinite submodule �of �." 

Proof. (1) ⟹ (2) ⟹ (3) Obvious. 

(3) ⟹ (1) Let � ≤ �. Since � is finitely generated, so is � �⁄ , that is � is cofinite. 

By (3), then there exists submodules )* and )+ of � such that � = )*⨁)+, )* ≤ � and 

� ∩ )+  ⊆ ����(�). From [2, Lemma 5.4] ����(�) ≪� �. So we have � ∩ )+ ≪� �. 

Since )+ ≤⨁ �, hence � ∩ )+ ≪� )+ by [2, Lemma 2.12].  □ 

Corollary 3.8."For a Noetherian � ∈ Mod-ℜ, the following are equivalent. 

(1) � is g-lifting. 

(2) � have (P�
∗) property. 

(3) There is a decomposition � = )*⨁)+ such that )* ≤ � and � ∩ )+  ⊆ ����(�), 

for each cofinite submodule � of �." 

Proposition 3.9."Let � ∈ Mod-ℜ be nonzero indecomposable with ����(�) ≠ �. 

Then � is g-lifting if and only if it has (P�
∗) property.   

Proof. The necessity is clear. Conversely, let � ⊴ � with ����(�) + � = �. So 

there exists a decomposition � = )*⨁)+, )* ≤ � and � ∩ )+  ⊆ ����(�). As � is 

indecomposable, either )+ = � or )+ = 0. If )+ = � and � ⊆ ����(�), then 

����(�) = �, a contradiction. Thus, )* = � and )+ = 0. We deduce that � = � and 

����(�) ≪� �. Therefore, by Proposition 3.6, � is g-lifting.  □ 

Theorem 3.10."Consider the following assertions for � ∈ Mod-ℜ:  

(1) � have (P�
∗) property. 

(2) Each direct summand of � is ⨁-g-radical supplemented. 

(3) � is ⨁-g-radical supplemented. 

(4) � is g-radical supplemented.   
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Then (1) ⟹ (2) ⟹ (3) ⟹ (4). If � ∈ Mod-ℜ is projective, and every g-radical 

supplement submodule of � is a direct summand, then (4) ⟹ (1).   

Proof.(1) ⟹ (2) By Proposition 3.1.  

(2) ⟹ (3) ⟹ (4) Obvious." 

(4) ⟹ (1) If � ≤ �. According (4), � has a submodule �, � = � + � and 

� ∩ � ⊆ ����(�). By hypothesis, � is a direct summand of �, and so � = (⨁� for 

some ( ≤ �. Since � = (⨁� = � + � is projective, [11, 41.14] imply � = �' ⨁� such 

that �' ≤ �, and so (1) holds. □ 

Corollary 3.11. Let � ∈ Mod-ℜ be projective whose each g-radical supplement 

submodule is a direct summand of �. If ����(�) ≪� �, then the following five 

assertions are equivalent.  

(1) � is g-lifting. 

(2) � have (P�
∗) property. 

(3) Each direct summand of � is ⨁-g-radical supplemented. 

(4) � is ⨁-g-radical supplemented. 

(5) � is g-radical supplemented.   

Proof. From Proposition 3.6 and Theorem 3.10. □ 

Corollary 3.12. If � ∈ Mod-ℜ is finitely generated projective whose each g-radical 

supplement submodule is a direct summand of �. Then the following are equivalent.   

(1) � is g-lifting. 

(2) � have (P�
∗) property. 

(3) Each direct summand of � is ⨁-g-radical supplemented. 

(4) � is ⨁-g-radical supplemented. 

(5) � is g-radical supplemented. 

Proof. From [2, Lemma 5.4] and Corollary 3.11. □ 
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