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Abstract

The aim of this article is to investigate the notion of (Pg*)—modules. We looked at some of
these modules properties and characterizations. Moreover, relationships between a (P,")-

module and other modules are also discussed.

1. Introduction

Unless otherwise mentioned, all rings will have unit elements and all modules will be
right unitary, in this work. We willuse T € M, T < M and T <® M to signify that T is a
subset, a submodule and a direct summand of M. We will denote the class of all unital
right modules over a ring R with the symbol Mod-R. Assume that R is a ring and
M eMod-R. A nonzero submodule T < M is called to be large in M, denoted as T < M,
if TNE # 0 for any nonzero submodule E < M [3]. Dually, if T+ E # M for any
proper submodule E of M, then a submodule T # M is said to be small (in M) and
denoted as T < M. The Jacobson radical of M is defined as the sum of all small
submodules of M, denoted as Rad(M). If E = M with M =T + E for every E 2 M, then
T < M is called g-small in M, denoted as T <y M, see [12]. If every proper submodule
of M is g-small, then M called generalized hollow [5]. Obviously, the subclass g-small is
generalized of small. Defined Zhou and Zhang [12] the generalized radical of M €
Mod-fR as follows:

Rad,(M) = N{T 2 M| T is maximal in M} = 3{T| T «, M}.

If there exists submodules T and T of M € Mod-R such that M = T®T, T < A and
ANT Ky M, for any submodule A < M, then M is called g-lifting [8]. In the case of
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submodules L; and L, of M with L; +L, =M, L, is referred to as a g-radical
supplement of Ly if, Ly N L, S Rady(Ly). If each submodule of M € Mod-R has a
g-radical supplement, then M is called g-radical supplemented see [6]. If each submodule
of M has a g-radical supplement which is a direct summand of M, Ghawi [2] calls it
@®-g-radical supplemented. He also introduced the definition of (Pg*)—modules in the
same article, but this was not the author’s main concern in the paper. If for any T < M,
there is a direct summand H of M such that H < T and T/H € Rady,(M/H), then M €
Mod-R is said to have (P,") property or, (P")-module.

In this paper, the detailed study of the notion of (Pg*)—modules are our interest.
Various properties and characterizations of (Pg*)—modules are obtained in Section 2. We
show that direct summands of a (Pg*)—module are also (Pg*)—modules. We have the
outcome that the factor module of (Pg*)—module is also (Pg*)—module. Considering a
direct sum of (P,")-modules, we indicate that if L;is semisimple and L, a (Py")-module
which are relatively projective, then M = L;@L, is a (Py")-module. Some connections
between a class of (Pg*)—modules and some other kinds of modules are discussed, such as

g-lifting, @-g-radical supplemented and g-radical supplemented modules, in Section 3.
We refer the reader to [3] and [11] for unexplained concepts and notations in this work.

2. (Pg*)-modules
We will start with the next main definition which is established in [2, p.12].

Definition 2.1. M € Mod-%R is said to have (Pg*) property or a (Pg*)—module if for any
T < M, thereisa H <® M suchthat H < T and T/H S Radgy(M/H).

Consider the following consequence.

Proposition 2.2. Let M € Mod-R have (Pg*) property and T < M. Then there is a
direct summand X < M and a submodule Y of M such that X <T, T=X+Y and
Y € Rad,(M).

Proof. If M is a (Pg*)—module and T < M, then there exists a decomposition M =
Li®Ly, L1 <T and T/L; € Radg(M/Ly). Then T=TNM =TnN(Ly +L;) =L; +
(TNLy). Put Y=TnNL,, so that T=1L; +Y. Since M/L; = L,, we deduce that
@:M/Ly > L, is an R-isomorphism. Since T/L; € Rady(M /L), we have that T N
L, =¢(T/Ly) € ¢(Rady(M/L1)) € Rady(L;), hence Y € Rad,(M). [
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We will present a characteristic for (Pg*)—modules in the following.
Theorem 2.3. Let M € Mod-R. Then the following are equivalent.
(1) M have (Pg") property.

(2) For each L < M, there is a decomposition M = L{@®L,, Ly <L and LN L, &
Radgy(Ly).

Proof. (1) = (2) Let L < M, so by (1), there is a direct summand L, of M such that
Ly <L and L/Ly; € Rady(M/Ly). Thus M = Ly @L, for some L, < M. We deduce that
L=L®({LNL,). As M/L, = M,, we have a: M/L; = L, is an R-isomorphism. Since
L/Ly € Rady(M/L;), we deduce that L N L, =a((Li®(LNLy))/L) =a(l/L)C
a(Radg(M/Ly)) € Radgy(Ly).

(2) = (1) Assume L < M. Then there exists submodules L, and L, of M EMod-R
such that M = L;@®L,, Ly < L and L N L, € Rad,(L;). We have that L = L@ (L N Ly).
As L, =M/L;, so there exists an R-isomorphism ¢:L, > M/L;. Since LN L, €
Rady(Ly), we have L/L; = (Li@®(LNLy))/Ly=¢(LNLy)C@(Rady(Ly))C
Rady(M/L,). So M have (Py") property. O

Proposition 2.4. Let M EMod-R have (Pg*) property. For any T < M, there exists a
g-radical supplement B in M such that T N B <® T.

Proof. Let T < M. Since M is a (Pg*)—module, Theorem 2.3 implies M = ABB =
T+B,A<Tand T NB < Rady(B), this means B < M is a g-radical supplement of T.
Also, we deduce that T =T NM =T N (ABB) = AD(T N B), as required. [

The following lemma must be proved.

Lemma 2.5. Let M € Mod-R and X <T <® M. If X S Rady(M), then X S
Rady(T).

Proof. Let x € X. Then x € Rady(M) and so xR <; M by [5, Lemma 5]. Since
XR<T<®M, [2, Lemma 2.12] imply xR Ky T, then xR < Rady(T), and x €
Rady(T). So, X < Rady(T). U

Proposition 2.6. For M € Mod-R, we consider the following:

(1) M have (Pg") property.
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(2) There is a decomposition M = Ly@®L,, L; < T and T N L, < Rady(M), for each
T<M,

(3) Each submodule T of M can be written as T = Ty®T,, Ty <® M and T, €
Rady(M).
Then (1) & (2) = (3).

Proof. (1) = (2) It is directly follows by Theorem 2.3.

(2) = (1) Assume that T < M. From (2), there exists submodules L; and L, of M
such that M = L;@®L,, Ly <T and TNL,; S Rady(M). Since TNL, <L, <® M,
Lemma 2.5 implies T N L, € Rady(L;), thus (1) holds, by Theorem 2.3.

(2) = (3) Let T < M. There is a decomposition M = L;®L,,L; <TandTNL, S
Rady,(M). We can conclude that T = L,®X, L, <®Mand X C Rad,(M) by putting
X=TnL,. U

The corollary that follows is obvious.

Corollary 2.7. Each generalized hollow module have (Pg*) property.

A submodule 3Z,, is a direct summand in Z-module Z,, (not g-small). While, all
other proper submodules of Z,,, on the other hand, are g-small as Z-module. This

indicates that Z-module Z,, is a (Pg*)—module, but not generalized hollow.
The following is established in [4, Lemma 2.3].

Lemma 2.8. Let M € Mod-R and T < M such that M /T projective. If D <® M with
M=D+T,thenDNT <® M.

Proposition 2.9. Let M €éMod-R have (Pg") property and T <M. If M/T is
projective, then T have (Py") property.

Proof. Suppose D < T, there exists submodules L; and L, of M such that M =
Ly®L,, Ly <D and DNL,; < Rady(M). Thus, M =T + Ly, and so T N L, <® M, by
Lemma 2.8. Also, we have T = Li@®(T N Ly) and DN (T N L) =D N L, SRady(TN
L), by Lemma 2.5. 0

If g(T) €T for all g € End(M), then a submodule T of an R-module M is called
fully invariant. Recall [7] that M € Mod-fR is called duo if every submodule of M is fully
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invariant. And T is called to be weak distributive if T = (T N Ly) + (T N L) for all
submodules Lq, L, of M with L; + L, = M. If all its submodules of M € Mod-R are

weak distributive, the module M is called to be weakly distributive, as shown in [1].

Lemma 2.10. Let T be a fully invariant submodule of M = L{@®L, for some
submodules Ly and Ly, of M. Then M/T = ((L; + T)/T)®((L, + T)/T).
Proof. See [10, Lemma 3.3]. |

However, we arrive at the following conclusion.

Proposition 2.11. Let M € Mod-R have (Py") property. Then
(1) M/H have (Pg*) property, for each fully invariant submodule H of M.
(2) M/H have (Pg*) property, for each weak distributive submodule H of M.

Proof. (1) Let H be a fully invariant submodule of M and U/H < M/H, where
H < U. Since U < M, there exists submodules L; and L, of M such that M = L;®L,,
Ly < U and U N Ly, € Rady(Ly). By Lemma 2.10, M/H = ((L, + H)/H) &((L, + H)/H).
As Ly <U, so (L +H)/H <U/H. Now, define the natural R-epimorphism map
m:Ly, > (L +H)/H. As UNL, SRady(Ly), then m(UNL;) < m(Rady(Ly)) S
Rady((L, + H)/H), but (U/H)N((L; +H)/H)=n(UNL;), we deduce that
(U/H)Nn ((L, + H)/H) S Rady((L, + H)/H). Hence M/H is a (P;")-module.

(2) Let H be a weak distributive submodule of M and U/H < M/H, where H < U.
Then there is a decomposition M = L1@L,,L; < U and U N L, € Rady(L,). We deduce
that H=(HNLy)+ (HNLy). Also, M/H = (L, + H)/H + (L, + H)/H. We conclude
that  (Li+H)NLy+H)=(Li+HNL))N Ly +H) =L NL)+HNL,)+H=H,
that implies (L, + H)/H n (L, + H)/H = 0. Therefore, ((L; + H)/H) ®((L, + H)/H) =
M /H. Then we continue with the same steps to proof (1). |

Corollary 2.12. For a duo (or, a weakly distributive) module have (Pg*) property,
every factor module have (Pg*) property.

Corollary 2.13. If M € Mod-R have (Pg") property, then so is M /Radg(M).

Proof. We have Rad,(M) is a fully invariant submodule of M by [12, Corollary
2.11], hence the result is follows by Proposition 2.11(1). |

The following proposition shows that the property (P;") for modules is inherited by

its direct summands.
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Proposition 2.14. A direct summand of a (Pg*)-module is so a (Pg")-module.

Proof. Let D <® M and M is a (Pg*)—module. If X < D, then there exists submodules
Ly and L, of M with Ly <X and X N L, S Rad,(L;), where M = L;@L,. We have
D =L,®(D NLy. It is easily to see that DN L, <® L,. From XN (DNLy,) <XnN
L, € Radgy(L,), Lemma 2.5 implies X N (D N L,) € Rady(D N Ly). The proof is now

complete. [

Proposition 2.15. Let M = @;¢;L; be a duo module. Then L; is a (Pg*)—module for
i € 1, if and only if M is a (Py")-module.

Proof. Let L; be a (Pg*)—module fori € I, and let T be a submodule of M = @;¢;L;.
As T is fully invariant, then by [7, Lemma 2.1] T = @®;¢,(T N L;). Since T N L; < L; for
i € I, there exists decompositions L; = H;@®H; such that H; < T N L; and (T N L;) N H;
=T N H; S Rady(H;). We have that M = (@;e;H)®(®;eHy), BiesH; < Bier(T N
L)=T and TN (®iH;) = ®ie;(T N Hy) S iy (Rady(H;)) = Rady(DierH;) by [9,
Corollary 2.3]. Thus M is a (Pg*)—module. Conversely, is follows directly from
Proposition 2.14. [

Theorem 2.16. Let L, be a semisimple module and L, have (Pg*) property which are
relatively projective. Then M = L{@®L, is a (Pg*)—module.

Proof. Let (0 #)X < M,andletT =L, N (X + L,). We have two cases:

Case (i) If T # 0. Since T < L,, there is a submodule T;of L, such that L; = T®T;,
and hence M = T®T; DL, = X + (L,®T;). Thus T is L,@T;-projective. By [11, 41.14],
there is L < X such that M = L@®(L,®T,). We may assume X N (L,@DT;) # 0. It is easy
to see that XN (K +T;) =KnN X +T,) for any K < L,. Specially, XN (L, + T;) =
Ly N (X +Ty). Thus, X = L®(X N (L,®Ty)) = LA(L, N (X + T1)). As Ly is a (Py")-
module, there is a decomposition L, = U;@®U, such that U; <L, N (X +T;) and
U, N (X +T,) € Rady(U;). We conclude that M = (LOU,)D(U,®DT;). We have
L®U; < X and X N (U,@BT;) = U, N (X +T,) € Rady(M). From U,®T, <® M, we
deduce that X N (U,@T;) € Rad,(U,®T;) by Lemma 2.5.

Case (ii) If T = 0, we get X < L,. Since L, is a (P;")-module, there is a submodule
Uy <X, L, =U;0U, and X NU,; < Rady(U,) for a submodule U, < L,. Thus,
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M = U;®(L,®U;) and X N (L1OU;) = X N U, € Rady(M). Again by Lemma 2.5, we
deduce that X N (L1@®U;) S Rady(L,®U;), and the proof is now complete. ]

Lemma 2.17. Let M € Mod-R have (Pg*) property and T < M. Then T is semisimple,
whenever T N Rady,(M) = 0.

Proof. Let E < T. Since M is a (Pg*)-module, there exists submodules L; and L, of
M such that M =L;@®L,, Ly <E and ENL; < Rady(L;), and then ENL, S
Rady(M). We deduce that E=ENM=En(L;®L;) =LB(ENL,). Because
ENnL, €T NRady(M) =0, we have E = L; and E a direct summand of M. Therefore
E <® T and T a semisimple. Ul

Theorem 2.18. Let M € Mod-R have (Pg*) property. Then M has a decomposition
M = L@®L,, where Ly is semisimple and Rady(L,) 2 L.

Proof. Since Rad,(M) < M, there is a submodule T of M with T®Rad (M) is large
in M. As T N Rady(M) = 0, Lemma 2.17 implies T is semisimple. Since M have (P;")
property, there exists submodules L; and L, of M such that M = L;®L,, L; < T and
TNL, €Rady(Ly). As TNL, STNRady(M)=0, so that M =T@L,. Clearly,
Rady(T) = 0. Thus Rady(M) = Rady (L), this means T@®Rad,(L,) 2 TOL,, and
hence Rad,(L;) 2 L. ]

3. (Pg*)-module and Other Related Concepts

Our purpose throughout this section is to demonstrate some relations between the

concept of (Pg*)-module and other types of modules.

Proposition 3.1. Let M € Mod-R be a module. Consider the following:
(1) M is semisimple.

(2) M has (Pg") property.

(3) Each direct summand of M is @-g-radical supplemented.

(4) M is ©-g-radical supplemented.
(5) M is g-radical supplemented.

Then (1) = (2) = (3) = (4) = (5). Moreover, (5) = (1) if Rady,(M) = 0.

Proof. (1) = (2) and (3) = (4) = (5) Clear.
Earthline J. Math. Sci. Vol. 12 No. 2 (2023), 243-253
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(2) = (3) According to Proposition 2.14.

(5) = (1) Let T < M with Rady(M) = 0. By (5), there exists E < M such that
M=T+E and TNE < Rady(E). We conclude that TNE =0, from Rady(E) <
Radg(M). Thus, M = T@®E, and (1) holds. Ul

Proposition 3.2. If M € Mod-R such that Rady(M) = M, then M have (P")
property.
Proof. It is easy to check. [

Example 3.3. For any prime number p, and a positive integer n > 1. The Z-module
Zyn is generalized hollow, thus it is a (Pg*)—module, but Rady, (an) = pZyn # Lpn. In

general, this indicates that the reverse of Proposition 3.2 does not true.

Proposition 3.4. Let M EMod-R be indecomposable (non-cyclic). If M have (Pg*)
property, then Radg(M) = M.

Proof. Let m € M. Since M have (Pg*) property, there exists submodules L, and L,
of M such that M = L;®L,, L; < mR and mR N L, < Rady(L;). Hence, either L; = M
orL; = 0.If Ly = M, then M = mR which is a contradiction. Thus, L; = 0 and L, = M.
We deduce that m € mR < Rad,;(M). The proof is now complete. Ul

As an application example of Proposition 3.4, we know that Rady(Q) = Q, in fact Q

has (Pg*) property as Z-module, and it is indecomposable and non-cyclic.

The following is immediately from Propositions 3.2 and 3.4.

Corollary 3.5. Let M € Mod-R be indecomposable (non-cyclic). Then M have (Pg*)
property if and only if Rad,(M) = M.

Proposition 3.6. Every g-lifting module is a (Py")-module. The reverse is true if, a
module has a g-small generalized radical.

Proof. The necessity is clear. Conversely, if T < M, so there is a decomposition
M =L,®L;, Ly <T and TNL, S Rady(L;), and then TNL, S Rady,(M). As
Rady(M) <4 M, we deduce that T N L, K; M. From T NL, < L, <® M, [2, Lemma
2.12] implies T N L, <4 L. Therefore M is g-lifting. L]

If M /T is finitely generated, then a submodule T of M € Mod-fR is called cofinite.
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Proposition 3.7. If M € Mod-R is finitely generated, then the following are
equivalent.

(1) M is g-lifting.
(2) M have (Pg") property.

(3) There is a decomposition M = Ly@®L, such that Ly <T and T N L, < Radyz(M),
for each cofinite submodule Tof M.

Proof. (1) = (2) = (3) Obvious.

(3) = (1) Let T < M. Since M is finitely generated, so is M /T, that is T is cofinite.
By (3), then there exists submodules L; and L, of M such that M = L;@®L,, L; < T and
TNL, €Rady(M). From [2, Lemma 5.4] Rady(M) <4 M. So we have T N L, K4 M.

Since L, <® M, hence T N L, Ky Ly by [2, Lemma 2.12]. Ul
Corollary 3.8. For a Noetherian M € Mod-3R, the following are equivalent.
(1) M is g-lifting.
(2) M have (Pg") property.

(3) There is a decomposition M = Li@®L, such that Ly < T and T N L, € Rady(M),
for each cofinite submodule T of M.

Proposition 3.9. Let M € Mod-R be nonzero indecomposable with Rady,(M) # M.
Then M is g-lifting if and only if it has (Pg*) property.

Proof. The necessity is clear. Conversely, let E 2 M with Rady,(M) + E = M. So
there exists a decomposition M = L;@®L,, Ly <E and ENL, S Rady,(M). As M is
indecomposable, either L, =M or L, =0. If L, =M and E S Rady(M), then
Rady(M) = M, a contradiction. Thus, L; = M and L, = 0. We deduce that E = M and
Rady(M) <4 M. Therefore, by Proposition 3.6, M is g-lifting. Ul

Theorem 3.10. Consider the following assertions for M € Mod-R:
(1) M have (Pg") property.

(2) Each direct summand of M is @-g-radical supplemented.

(3) M is ®-g-radical supplemented.

(4) M is g-radical supplemented.
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Then (1) = (2)= B3)= (4). If M € Mod-R is projective, and every g-radical
supplement submodule of M is a direct summand, then (4) = (1).

Proof.(1) = (2) By Proposition 3.1.
(2) = (3) = (4) Obvious.

(4)= (1) If T<M. According (4), M has a submodule E, M =T + E and
T N E S Rady(E). By hypothesis, E is a direct summand of M, and so M = A®E for
some A < M. Since M = A@®E =T + E is projective, [11, 41.14] imply M = E®E such
that E < T, and so (1) holds. |

Corollary 3.11. Let M € Mod-R be projective whose each g-radical supplement
submodule is a direct summand of M. If Rady(M) <4 M, then the following five

assertions are equivalent.
(1) M is g-lifting.
(2) M have (Pg") property.
(3) Each direct summand of M is @-g-radical supplemented.
(4) M is ®-g-radical supplemented.
(5) M is g-radical supplemented.
Proof. From Proposition 3.6 and Theorem 3.10. Ul

Corollary 3.12. If M € Mod-RR is finitely generated projective whose each g-radical
supplement submodule is a direct summand of M. Then the following are equivalent.

(1) M is g-lifting.

(2) M have (Pg") property.

(3) Each direct summand of M is @-g-radical supplemented.
(4) M is ©-g-radical supplemented.

(5) M is g-radical supplemented.

Proof. From [2, Lemma 5.4] and Corollary 3.11. O
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