

Differential Subordination Results for a Family of Sakaguchi Type Functions

Abbas Kareem Wanas^{1,*} and Faiz Chaseb Khudher²

Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq e-mail: abbas.kareem.w@qu.edu.iq 1 , almdrsfayz@gmail.com 2

Abstract

The object of the present work is to introduce and study a new family $G(\eta, m, n; h)$ of analytic functions defined by Sakaguchi type functions in the open unit disk. We obtain some subordination results for this family.

1. Introduction and Preliminaries

Let A denote the family of functions f of the form:

$$
f(z) = z + \sum_{j=2}^{\infty} a_j z^j, \quad (z \in U),
$$
 (1.1)

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}.$

A function $f \in \mathcal{A}$ is called starlike of order α in U if and only if

$$
Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \quad (0 \leq \alpha < 1 \, ; z \in U).
$$

Denote the family of all starlike functions of order α in U by $S^*(\alpha)$.

A function $f \in \mathcal{A}$ is called starlike with respect to symmetrical point, if (see [9])

$$
Re\left\{\frac{zf'(z)}{f(z)-f(-z)}\right\} > 0, \quad z \in U.
$$

The set of all such functions is denoted by S_s^* .

Received: March 5, 2023; Accepted: April 10, 2023; Published: April 20, 2023

2020 Mathematics Subject Classification: 30C45.

Keywords and phrases: analytic function, symmetric function, Sakaguchi type functions, differential subordination, Hadamard product, convex univalent.

Frasin [2] introduced and studied the family $S(\gamma, m, n)$ consisting of functions $f \in \mathcal{A}$ which satisfy the condition

$$
Re\left\{\frac{(m-n)zf'(z)}{f(mz)-f(nz)}\right\} > \gamma,
$$

for some $0 \leq \gamma < 1$, $m, n \in \mathbb{C}$ with $m \neq n, |m| \leq 1, |n| \leq 1$ and for $z \in U$.

We note that the family $S(\gamma, 1, n)$ was studied by Owa et al. (see [6]), while the family $S(\gamma, 1, -1) \equiv S_s(\gamma)$ was considered by Sakaguchi (see [9]) and is called the Sakaguchi function of order γ . Also S(0,1, -1) $\equiv S_s$ is the family of starlike functions with respect to symmetrical points in U and $S(\gamma, 1, 0) \equiv S_s(\gamma)$ is the family of starlike functions of order γ , $0 \leq \gamma < 1$.

The Hadamard product (or convolution) $(f_1 * f_2)(z)$ of two functions

$$
f_q(z) = z + \sum_{j=2}^{\infty} a_{n,q} z^j \in \mathcal{A} \quad (q = 1,2)
$$

is given by

$$
(f_1 * f_2)(z) = z + \sum_{j=2}^{\infty} a_{j,1} a_{j,2} z^j.
$$

A function $f \in \mathcal{A}$ is said to be prestarlike of order α in U if

$$
\frac{z}{(1-z)^{2(1-\alpha)}} * f(z) \in S^*(\alpha) \quad (\alpha < 1).
$$

Denote the family of all prestarlike functions of order α in U by $\mathfrak{R}(\alpha)$.

Clearly a function $f \in \mathcal{A}$ is in the family $\Re(0)$ if and only if f is convex univalent in U and $\Re\left(\frac{1}{2}\right)$ $\binom{1}{2} = S^* \left(\frac{1}{2} \right)$ $\frac{1}{2}$).

Let H be the family of functions h with $h(0) = 1$, which are analytic and convex univalent in U .

For two functions f and g analytic in U, we say that the function f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$ ($z \in U$), if there exists a Schwarz function $w(z)$ analytic in U with $w(0) = 0$ and $|w(z)| < 1$ ($z \in U$) such that $f(z) = g(w(z))$. In particular, if the function g is univalent in U, then $f \prec g$ if and only if $f(0) = g(0)$ and $f(U) \subset g(U)$.

To prove our main results, we will require the following Lemmas.

Lemma 1.1 [5]. Let g be analytic in U and let h be analytic and convex univalent in U *with* $h(0) = g(0)$. *If*

$$
g(z) + \frac{1}{\mu} z g'(z) < h(z),\tag{1.2}
$$

where $Re \mu \geq 0$ and $\mu \neq 0$, *then*

$$
g(z) \prec \tilde{h}(z) = \mu z^{-\mu} \int_0^z t^{\mu-1} h(t) dt \prec h(z)
$$

and $\tilde{h}(z)$ is the best dominant of (1.2).

Lemma 1.2 [8], Let $\alpha < 1, f \in S^*(\alpha)$ and $g \in \Re(\alpha)$. Then, for any analytic function F $in U$,

$$
\frac{g * (fF)}{g * f}(U) \subset \overline{co}(F(U)),
$$

where $\overline{\text{co}}(F(U))$ denotes the closed convex hull of $F(U)$.

Such type of study was carried out by various authors for another classes, like, Liu [3,4], Prajapat and Raina [7], Yang et al. [12], Atshan and Wanas [1], Wanas and Majeed [10] and Wanas and Pall-Szabo [11].

2. Main Results

Definition 2.1. A function $f \in \mathcal{A}$ is said to be in the class $G(\eta, m, n; h)$ if it satisfies the subordination condition:

$$
(1-\eta)\left(\frac{f(mz)-f(nz)}{(m-n)z}\right)+\eta\left(\frac{f'(mz)-f'(nz)}{(m-n)}\right)
$$

where $\eta \in \mathbb{C}$ and $h \in H$.

Theorem 2.1. *Let* $0 \le \eta < \xi$. *Then* $G(\xi, m, n; h) \subset G(\eta, m, n; h)$.

Proof. Let $0 \le \eta < \xi$ and $f \in G(\xi, m, n; h)$.

Suppose that

$$
g(z) = \frac{f(mz) - f(nz)}{(m - n)z}.
$$
 (2.1)

Then, the function g is analytic in U with $g(0) = 1$.

Since $f \in G(\xi, m, n; h)$, we have

$$
(1-\xi)\left(\frac{f(mz)-f(nz)}{(m-n)z}\right)+\xi\left(\frac{f'(mz)-f'(nz)}{m-n}\right)
$$

From (2.1) and (2.2) , we get

$$
(1 - \xi) \left(\frac{f(mz) - f(nz)}{(m - n)z} \right) + \xi \left(\frac{f'(mz) - f'(nz)}{m - n} \right) = g(z) + \xi z g'(z) < h(z). \tag{2.3}
$$

An application of Lemma 1.1, we obtain

$$
g(z) < h(z). \tag{2.4}
$$

Noting that $0 \leq \frac{\eta}{\xi} < 1$ and that h is convex univalent in U, it follows from (2.1), (2.3) and (2.4) that

$$
(1-\eta)\left(\frac{f(mz)-f(nz)}{(m-n)z}\right)+\eta\left(\frac{f'(mz)-f'(nz)}{m-n}\right)
$$

$$
=\frac{\eta}{\xi}\left((1-\xi)\left(\frac{f(mz)-f(nz)}{(m-n)z}\right)+\xi\left(\frac{f'(mz)-f'(nz)}{m-n}\right)\right)+\left(1-\frac{\eta}{\xi}\right)g(z) < h(z).
$$

Therefore $f \in G(\eta, m, n; h)$ and we obtain the result.

Theorem 2.2. Let $f \in G(\eta, m, n; h)$, $g \in \mathcal{A}$ and

$$
Re\left\{\frac{g(z)}{z}\right\} > \frac{1}{2} \tag{2.5}
$$

Then

$$
f * g \in G(\eta, m, n; h).
$$

Proof. Let $f \in G(\eta, m, n; h)$ and $g \in \mathcal{A}$. Then, we have

$$
(1 - \eta) \left(\frac{(f * g)(mz) - (f * g)(nz)}{(m - n)z} \right) + \eta \left(\frac{(f * g)'(mz) - (f * g)'(nz)}{m - n} \right)
$$

$$
= (1 - \eta) \left(\frac{g(z)}{z} \right) * \left(\frac{f(mz) - f(nz)}{(m - n)z} \right) + \eta \left(\frac{g(z)}{z} \right) * \left(\frac{f'(mz) - f'(nz)}{m - n} \right)
$$

$$
= \left(\frac{g(z)}{z} \right) * \psi(z), \tag{2.6}
$$

where

$$
\psi(z) = (1 - \eta) \left(\frac{f(mz) - f(nz)}{(m - n)z} \right) + \eta \left(\frac{f'(mz) - f'(nz)}{m - n} \right) < h(z). \tag{2.7}
$$

From (2.5), note that the function $\frac{g(z)}{z}$ $\frac{z}{z}$ has the Herglotz representation

$$
\frac{g(z)}{z} = \int_{|x|=1} \frac{d\mu(x)}{1 - xz} \quad (z \in U),
$$
\n(2.8)

where $\mu(x)$ is a probability measure defined on the unit circle $|x| = 1$ and

$$
\int_{|x|=1} d\mu(x) = 1.
$$

Since h is convex univalent in U , it follows from (2.6) to (2.8) that

$$
(1 - \eta) \left(\frac{(f * g)(mz) - (f * g)(nz)}{(m - n)z} \right) + \eta \left(\frac{(f * g)'(mz) - (f * g)'(nz)}{m - n} \right)
$$

$$
= \int_{|x| = 1} \psi(xz) \, d\mu(x) < h(z).
$$

Therefore, $f * g \in G(\eta, m, n; h)$.

Theorem 2.3. Let $f \in G(\eta, m, n; h)$ and let $g \in A$ be prestarlike of order $\alpha(\alpha < 1)$. *Then*

$$
f * g \in G(\eta, m, n; h).
$$

Proof. Let $f \in G(\eta, m, n; h)$ and $g \in \mathcal{A}$. Then, we have

$$
(1-\eta)\left(\frac{f(mz)-f(nz)}{(m-n)z}\right)+\eta\left(\frac{f'(mz)-f'(nz)}{m-n}\right)
$$

Hence

$$
(1 - \eta) \left(\frac{(f * g)(mz) - (f * g)(nz)}{(m - n)z} \right) + \eta \left(\frac{(f * g)'(mz) - (f * g)'(nz)}{m - n} \right)
$$

$$
= (1 - \eta) \left(\frac{g(z)}{z} \right) * \left(\frac{f(mz) - f(nz)}{(m - n)z} \right) + \eta \left(\frac{g(z)}{z} \right) * \left(\frac{f'(mz) - f'(nz)}{m - n} \right)
$$

$$
= \frac{g(z) * (z\psi(z))}{g(z) * z} \quad (z \in U), \tag{2.10}
$$

where $\psi(z)$ is defined as in (2.7).

Since h is convex univalent in U, $\psi(z) \prec h(z)$, $g(z) \in \Re(\alpha)$ and $z \in S^*(\alpha)$, $(\alpha < 1)$, it follows from (2.10) and Lemma 1.2, we obtain the result.

Theorem 2.4. *Let* $f \in G(\eta, m, n; h)$ *be defined as in* (1.1). *Then*

$$
k(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt, \ (Re(c) > -1)
$$

 i s also in the class $G(\eta, m, n; h)$.

Proof. Let $f \in G(\eta; h)$ be defined as in (1.1). Then, we have

$$
(1-\eta)\left(\frac{f(mz)-f(nz)}{(m-n)z}\right)+\eta\left(\frac{f'(mz)-f'(nz)}{m-n}\right) (2.11)
$$

Note that

$$
k(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt = z + \sum_{j=2}^{\infty} \frac{c+1}{c+n} a_j z^j.
$$
 (2.12)

We find from (2.12) that $k \in \mathcal{A}$ and

$$
f(z) = \frac{ck(z) + zk'(z)}{c + 1}.
$$
 (2.13)

Define the function p by

$$
p(z) = (1 - \eta) \left(\frac{k(mz) - k(nz)}{(m - n)z} \right) + \eta \left(\frac{k'(mz) - k'(nz)}{m - n} \right).
$$
 (2.14)

By using (2.13) and (2.14) , we get

$$
p(z) + \frac{1}{c+1}zp'(z) = \frac{c}{c+1}p(z) + \frac{1}{c+1}(zp'(z) + p(z))
$$

$$
= (1 - \eta) \left(\frac{(ck(mz) + zk'(mz)) - (ck(nz) + zk'(nz))}{(m-n)z(c+1)} \right)
$$

$$
+ \eta \left(\frac{(ck(mz) + zk'(mz))' - (ck(nz) + zk'(nz))'}{(m-n)(c+1)} \right)
$$

$$
= (1 - \eta) \left(\frac{f(mz) - f(nz)}{(m-n)z} \right) + \eta \left(\frac{f'(mz) - f'(nz)}{m-n} \right).
$$
 (2.15)

From (2.11) and (2.15) , we arrive at

$$
p(z) + \frac{1}{c+1}zp'(z) < h(z), \quad (Re(c) > -1).
$$

An application of Lemma 1.1, we obtain $p(z) \lt h(z)$. By (2.14), we get

$$
(1-\eta)\left(\frac{k(mz)-k(nz)}{(m-n)z}\right)+\eta\left(\frac{k'(mz)-k'(nz)}{m-n}\right)
$$

Therefore, $k \in G(\eta, m, n; h)$.

Theorem 2.5. Let $\eta > 0$, $\delta > 0$ and $f \in G(\eta, m, n; \delta h + 1 - \delta)$. If $\delta \leq \delta_0$, where

$$
\delta_0 = \frac{1}{2} \left(1 - \frac{1}{\eta} \int_0^1 \frac{u^{\frac{1}{\eta} - 1}}{1 + u} du \right)^{-1},
$$
\n(2.16)

then $f \in G(0, m, n; h)$. The bound δ_0 is the sharp when $h(z) = \frac{1}{1-z}$ $\overline{1-z}$

Proof. Suppose that

$$
g(z) = \frac{f(mz) - f(nz)}{(m - n)z}.
$$
 (2.17)

Let $f \in G(\eta, m, n; \delta h + 1 - \delta)$ with $\eta > 0$ and $\delta > 0$. Then we have

$$
g(z) + \eta z g'(z) = (1 - \eta) \left(\frac{f(mz) - f(nz)}{(m - n)z} \right) + \eta \left(\frac{f'(mz) - f'(nz)}{m - n} \right)
$$

$$
< \delta h(z) + 1 - \delta.
$$

An application of Lemma 1.1, we obtain

$$
g(z) < \frac{\delta}{\eta} z^{-\frac{1}{\eta}} \int_0^z t^{\frac{1}{\eta}-1} h(t) dt + 1 - \delta = (h * \phi)(z), \tag{2.18}
$$

where

$$
\phi(z) = \frac{\delta}{\eta} z^{-\frac{1}{\eta}} \int_0^z \frac{t^{\frac{1}{\eta}-1}}{1-t} dt + 1 - \delta.
$$
 (2.19)

If $0 < \delta \leq \delta_0$, where $\delta_0 > 1$ is given by (2.16), then it follows from (2.19) that

$$
Re(\phi(z)) = \frac{\delta}{\eta} \int_0^1 u^{\frac{1}{\eta}-1} Re\left(\frac{1}{1-uz}\right) du + 1 - \delta > \frac{\delta}{\eta} \int_0^1 \frac{u^{\frac{1}{\eta}-1}}{1+u} du + 1 - \delta \ge \frac{1}{2}.
$$

Now, by using the Herglotz representation for $\phi(z)$, from (2.17) and (2.18), we get

$$
\frac{f(mz) - f(nz)}{(m-n)z} < (h * \phi)(z) < h(z).
$$

Since *h* is convex univalent in $U, f \in G(0, m, n; h)$.

For $h(z) = \frac{1}{1-z}$ $\frac{1}{1-z}$ and $f \in \mathcal{A}$ defined by

$$
\frac{f(mz)-f(nz)}{(m-n)z} = \frac{\delta}{\eta} z^{-\frac{1}{\eta}} \int_0^z \frac{t^{\frac{1}{\eta}-1}}{1-t} dt + 1 - \delta,
$$

we have

$$
(1-\eta)\left(\frac{f(mz)-f(nz)}{(m-n)z}\right)+\eta\left(\frac{f'(mz)-f'(nz)}{m-n}\right)=\delta h(z)+1-\delta.
$$

Thus, $f \in G(\eta, m, n; \delta h + 1 - \delta)$.

Also, for $\delta > \delta_0$, we have

$$
Re\left(\frac{f(mz)-f(nz)}{(m-n)z}\right) \longrightarrow \frac{\delta}{\eta} \int_0^1 \frac{u^{\frac{1}{\eta}-1}}{1+u} du + 1 - \delta < \frac{1}{2}(z \to 1),
$$

which implies that $f \notin G(0, m, n; h)$. Therefore, the bound δ_0 cannot be increased when $h(z) = \frac{1}{1-z}$ $\frac{1}{1-z}$ and this completes the proof of the theorem.

References

- [1] W. G. Atshan and A. K. Wanas, Differential subordinations of multivalent analytic functions associated with Ruscheweyh derivative, *An. Univ. Oradea Fasc. Mat.* XX(1) (2013), 27-33.
- [2] B. A. Frasin, Coefficient inequalities for certain classes of Sakaguchi type functions, *Int. J. Nonlinear Sci.* 10 (2010), 206-211.
- [3] J. L. Liu, Certain convolution properties of multivalent analytic functions associated with a linear operator, *General Mathematics* 17(2) (2009), 42-52.
- [4] J. L. Liu, On a class of multivalent analytic functions associated with an integral operator, *Bulletin of the Institute of Mathematics* 5(1) (2010), 95-110.
- [5] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, *Michigan Math. J.* 28 (1981), 157-171. https://doi.org/10.1307/mmj/1029002507
- [6] S. Owa, T. Sekine and R. Yamakawa, On Sakaguchi type functions, *Appl. Math. Comput.* 187 (2007), 356-361. https://doi.org/10.1016/j.amc.2006.08.133
- [7] J. K. Prajapat and R. K. Raina, Some applications of differential subordination for a general class of multivalently analytic functions involving a convolution structure, *Math. J. Okayama Univ.* 52 (2010), 147-158. https://doi.org/10.2478/s12175-010-0026-6
- [8] S. Ruscheweyh, *Convolutions in Geometric Function Theory*, Les Presses de 1'Université de Montréal, Montréal, 1982.
- [9] K. Sakaguchi, On a certain univalent mapping, *J. Math. Soc. Japan* 11 (1959), 72-75.
- [10] A. K. Wanas and A. H. Majeed, Differential subordinations for higher-order derivatives of multivalent analytic functions associated with Dziok-Srivastava operator, *An. Univ. Oradea Fasc. Mat.* XXV(1) (2018), 33-42. https://doi.org/10.28924/2291-8639-16-2018-594
- [11] A. K. Wanas and A. O. Pall-Szabo, Differential subordination results for holomorphic functions associated with Wanas operator and Poisson distribution series, *General Mathematics* 28(2) (2020), 49-60. https://doi.org/10.2478/gm-2020-0014
- [12] Y. Yang, Y. Tao and J. L. Liu, Differential subordinations for certain meromorphically multivalent functions defined by Dziok-Srivastava operator, *Abstract and Applied Analysis* 2011 (2011), Art. ID 726518, 9 pp. https://doi.org/10.1155/2011/726518

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.