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Abstract

We define two new subclasses, Sy(a) and 7S, (), of analytic univalent
functions. We obtain a sufficient condition for analytic univalent functions
to be in S;(a) and we prove that this condition is also necessary for the
functions in the class 7S;(a). We also obtain extreme points, distortion
bounds, covering result, convex combination and convolution properties for
the functions in the class 757 ().

1 Introduction

Let S be the class of functions f which are analytic and univalent in the open unit
disc U = {7 € C: |z| < 1} given by

fa) =2+ ams™ (1)
=2

Let 7 denote the class of functions f in S of the form

o0

fa)=2-> lamlz™ (2)

m=2
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We recollect here the g-difference operator that was used in geometric function
theory and in several areas of science. We give basic definitions and properties
about the g¢-difference operator that are used in this study (for details see [1]
and [3]). For 0 < ¢ < 1, we defined the g-integer [n] by

n

1—gq
o], = s (n=1,2,3,..).

Notice that if ¢ — 17 then [In], — .

In [4], Ismail et al. used ¢- calculus, in the theory of analytic univalent
functions by defining a class of complex-valued functions that are analytic on the
open unit disk ¢ with the normalizations f(0) = 0, f(0) = 1, and |f(¢z)| < |f(z)]
on U for every q, q € (0,1). The g-difference operator of analytic functions f given
by (1)) are by definition, given as follows (see [3])

M a0
§(0) ; 7,=0

Thus, for the function f of the form , we have

Dq.f(%) =

Dof(2) =1+ [, az™ " (3)
m=2
and
Dy (Dof(2)) = Y [m], [m — 1], apz™ > (4)
m=2
= > [, <[hﬂqq_ 1> a7z

Denote by S; () the subclass of S consisting of functions f of the form
that satisfy the condition

42Dq (qu@)) Qqu(ZJ)
fre (O‘ i@ i) >>0’ ®)
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where a > 0. Finally, we let TS; (o) = S; () N'T .

By suitably specializing the parameters, the classes S;(a) reduces to the

various subclasses of analytic univalent functions. Such as,
(i) S;(a) = H(a) for ¢ — 17 (see [5]),
(ii) Sy(a) = 5" for a = 0 and ¢ — 17 (see [2]),
(iii) S;(a) = S; for a = 0 (see [4]).

In addition to these, [6], [7], [§] references can be consulted for studies in this
field. In this paper, we first obtain a sufficient condition for analytic univalent
functions f given by to be in Sj(a) and then we prove that this condition
is also necessary for the functions in the class 787 (). We also obtain extreme
points, distortion bounds, covering result, convex combination and convolution

properties for the functions in the class 7Sy (a).

2 Main Results

Theorem 1. Let a function § given by and satisfies

> (04 ]2 + (¢ — ) [ha]q) lam| < 2q, (6)

In=1

where 0 < a and then § € Sy (a).

Proof. In order to prove that f € Sj(a), we shall show that for 0 < a,

Re (aZ“QDQ(D‘”;(é)))JF%DqﬂZ“)) > 0. We know that Re(w) > 0 if and only if |1 4+ w| >

|1 — w]|. So, it suffices to show that

|0z’ Dy (Def(2)) + 2Def(2) + §(2)| — |0z’ Dy (Def(2)) + 2Def(2) — §(z)| > 0.
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Now,

|az°Dy (Dof(2)) + 2Def(2) + §(2)| — |az°Dy (Def(2)) + 2Def(2) — £(2)|

22+ f: (a [tn], [ — 1], + [m], + 1) 7™
=2

o0

> (afml, = 1], + M, — 1) ™

n=2
(a[}nq]q + (g — a)[hlq]q + 1) ||| ™

Vv
DO

&
|

g

AV
N
~

VN
<
|
Nk
/N

o}

B

QN

+

=
|

L

E

(=]

N—
=

g

N
3

~

> 0, in view of @
This completes the proof. O

Theorem 2. Let § be given by . Then § € TS, () if and only if § satisfies the
condition @ holds.

Proof. Since TS} (a) C S;(a) therefore, ‘if” part of the Theorem [2| can be proved
from Theorem [1} thus we prove ‘only if” part of Theorem [2} Let f € 7S} (), then

a7°Dy (Def(2)) + 2Dgf(2)
fre < (s) ) -0

equivalently,

~ i b (a2 + (g o) ], — ) lamlz™!

< 1.
2= 5550 b (a2 + (g — ) ], + q) a2
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We note that since the above condition holds for all values of z, 7] = r < 1.

Choosing the values of z on positive real axis, where 0 < z = r < 1, we obtain

D=2 % (04 [hl]g + (¢ — ) [In], — q) | |1

<1 (7)
2->1 5 % (a [hl]g + (¢ —a) ], + q) |apy|rn—1

If the condition @ doesn’t hold then,the condition doesn’t hold for r
sufficiently close to 1. Thus there exists 7, = ¢ in (0,1) for which the quotient
(7) is greater than 1. This contradicts the required condition for f € TS;(a) and

so the proof is complete. The result is sharp for functions given by

fm(2) =2 — 1 m >

i, (@ (i), — 1) +4)

Corollary 3. If f € TS, () then
q
], (o (], ~1) +a)

Theorem 4. Let f € TSy(a). Then, for |z| =1 <1, we have

. m>2

lam| <

1
T—mT2§|f(%)|§r+

1 2
(I+a)1+q)

Proof. We only prove the right hand inequality. The proof for the left hand
inequality is similar and will be omitted. Let f € TS;(a). Taking the absolute

value of f we have

IN

1$(2)| rb Y lawlrt
m=2

S a4 (- ) ), ) ol
T+ a)(I+q) a= g " a)
2

IN

1
< r+—(1+a)(1+q)r.
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We note that result in Theorem [4] is sharp for the following function,
1 2

at 7 = £r. O
The following covering result follows from the left hand inequality in Theorem
4
Corollary 5. Let f of the form be so that TSy(a). Then
q+a(l+q) }
w:|w| < ——————— ¢ C f(UYU).
sl < g} <990
Here, we consider extreme points for functions f € 7S} (a).

Theorem 6. Let f,(z) = 7 and f,(z) = 7,— 7™ for m > 2. Then

q
(] (o1, —1)+9)

§ € TS, () if and only if it can be expressed in the form §(z) = 3 Omfm(4), where
=1

oo
om >0 and ) 6w = 1. In particular, the extreme points of TSy(a) are {fi,}-
=1

Proof. We first assume

fz) = ) mfu(z)
n=1

B “Eémmh(a([m]q—l)w)% |

Next, since

> Om 1
n=2

], (a (], = 1) +q) ‘

o
= Zd}n:l—élgl,
=2
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therefore by Theorem [2, f € TSy ().

Conversely, suppose f € TS (). Since
q

|| < i, (a ([In]q - 1) +q), > 2,
we may set
Ot = " <a ([m]q _ 1> +q) lam|, > 2 and 6 = 1 — i St
4 =2
Then,
S udn(n) = Gh) S dufn()
=1 In—2
_ - _ 4 I
St i, (o (i), — 1) +q)

) ACEDED)
= 7 - i |am|z™ = §(2).
=2

Hence the proof is complete. ]

For analytic functions

7™ (1=1,2),

.f[;(q,) =7 — Z |a’hl,[:
n=2

the convolution of f, is given by

(fi *£2)(2) = 1(2) * f2(2) = 2= Y _ lam1|lam 2|2™.
m=2

Using this definition, we show that the class 757 («) is closed under convolution.

Earthline J. Math. Sci. Vol. 12 No. 2 (2023), 207-216



214 Sibel Yal¢in and Hasan Bayram

Theorem 7. Let f; € TS;(c1) and fy € TSy(az2), where 0 < a1 < ag. Then
fl *f2 € TSZ(OZQ) C TS;;(OQ)

Proof. We wish to show that f; * f, satisfies the coefficient condition @ For
f1 € TSy(a1), we note that [ap,1| < 1. Now, for the coefficients of convolution

function f; * o, we can write

], (a2 (], = 1) + )

|ah1,2| S 27

since 0 < oy < ag and f, € TS)(az). Therefore f; fy € TSy (a2) C TSy(anr). O

Now, we show that TSp(a) is closed under convex combinations of its

members.

Theorem 8. The class TS;(a) is closed under convex combinations.
Proof. For 1= 1,2,3,..., let f, € TS;(a), where f; is given by
oo
fz)=2->_ lamlz™
=2

Then by @, we obtain

S Iy (o0 -1)+) o, ®

=1 q

o0
For )" ¢, =1, 0 < ¢ <1, the convex combinations of f, may be written as
=1
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[e.o]

S k@) =a2-> | D Glam] | 2™ (9)
=1

m=2 \ =1

Then by (8)),

], (o ([m(]]q 1) +4) i o
=1

|@n, |
=1 =1 q
[ee]
< 2) G=2
=1
Thus, we get
oo
Zétft(a) € TS, (a).
=1
O
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