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Abstract

In this paper, we consider Lorentzian para-Kenmotsu manifold admitting
almost 7—Ricci solitons by virtue of some curvature tensors.  Ricci
pseudosymmetry concepts of Lorentzian para-Kenmotsu manifolds
admitting n—Ricci soliton have introduced according to the choice of some
curvature tensors such as Riemann, concircular, projective, M —projective,
W1 and Ws. After then, according to the choice of the curvature tensors,
necessary conditions are given for Lorentzian para-Kenmotsu manifold
admitting n—Ricci soliton to be Ricci semisymmetric. Then some
characterizations are given and classifications have made under the some
conditions.

1 Introduction

Para-Kenmotsu and special para-Kenmotsu manifolds, also known as almost

paracontact metric manifolds, were defined in 1989 by Sinha and Sai Prasad [1].
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Sinha and Sai Prasad obtained important characterizations of para-Kenmotsu
manifolds. In the following years, para-Kenmotsu manifolds attracted a lot
of attention and many authors revealed the important properties of these
manifolds. In 2018, Lorentzian para-Kenmotssu manifolds, known as Lorentzian
almost paracontact metric manifolds, were introduced [2]. Then, the concept
of g—semisymmetry for Lorentzian para-Kenmotsu manifolds is studied [3]. M.
Atgeken studied invariant submanifolds of Lorentzian para-Kenmotsu manifolds
in 2022 and in this study he gave the necessary and sufficient conditions for
the an invariant submanifold of Lorentzian para-Kenmotsu manifold to be total

geodesic [4].

The notion of Ricci flow was introduced by Hamilton in 1982. With the help of
this concept, Hamilton found the canonical metric on a smooth manifold. Then
Ricci flow has become a powerful tool for the study of Riemannian manifolds,
especially for those manifolds with positive curvature. Perelman used Ricci flow
and it surgery to prove Poincare conjecture in [5], [6]. The Ricci flow is an flow is

an evolution equation for metrics on a Riemannian manifold defined as follows:

()= -25(s(0).

A Ricci soliton emerges as the limit of the solitons of the Ricci flow. A solution
to the Ricci flow is called Ricci soliton if it moves only by a one parameter group

of diffeomorphism and scaling.

During the last two decades, the geometry of Ricci solitons has been the
focus of attention of many mathematicians. In particular, it has become more
important after Perelman applied Ricci solitons to solve the long standing Poincare
conjecture posed in 1904. In [7], Sharma studied the Ricci solitons in contact
geometry. Thereafter Ricci solitons in contact metric manifolds have been studied
by various authors such as Bagewadi et al. in [8H11], Bejan and Crasmareanu
in [12], Blaga in [13|, Chandra et al. in |14], Chen and Deshmukh in [15],
Deshmukh et al. in [16], He and Zhu in [17], Atgeken et al. in [18], Nagaraja
and Premalatta in [19], Tripathi in [20] and many others.
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Motivated by all these studies, we consider Lorentzian para-Kenmotsu
manifold admitting almost n—Ricci solitons in some curvature tensors. Ricci
pseudosymmetry concepts of Lorentzian para-Kenmotsu manifolds admitting
n—Ricci soliton have introduced according to the choice of some curvature tensors
such as Riemann, concircular, projective, M—projective, W1 and Ws. After then,
according to the choice of the curvature tensors, necessary conditions are given
for Lorentzian para-Kenmotsu manifold admitting n—Ricci soliton to be Ricci
semisymmetric. Then some characterizations are obtained and classifications have

made under the some conditions.

2 Preliminary

Let M"™ be an n—dimensional Lorentzian metric manifold. This means that it is
endowed with a structure (¢,&,1,g), where ¢ is a (1,1) —type tensor field, £ is a

vector field, n is a 1—form on M™ and g is a Lorentzian metric tensor satisfying;

P*w1 = w1 + 1 (w1) &,
(1)
g (pw1, pw2) = g (w1, w2) + 1 (w1) N (w2),
n(€) =—-1,1(w)=g(w,§), (2)

for all vector fields wy,ws on M™. Then M™ (¢,€,m,9) is said to be Lorentzian

almost paracontact manifold.

A Lorentzian almost paracontact manifold M™ (¢,&,m,g) is called Lorentzian

para-Kenmotsu manifold if

(Vi @) w2 = —g (w1, w2) § — 1 (w2) w1, (3)

for all wi,wsy € F(TM ), where V and T’ (TM ) denote the Levi-Civita connection

and differentiable vector fields set on M™, respectively.
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Lemma 1. Let M™ (¢,€,1m,9) be the n—dimensional Lorentzian para-Kenmotsu

manifold. The following relations are provided for M™ (0,€,1m,9).

Vi€ = —¢%w1 = —w1 — 1 (w1) &, (4)
(Venn) wz = =g (w1, w2) — 1 (w1)n (w2) , (5)

R (w1, w2) & = 1 (w2) w1 — 1 (w1) wa, (6)

1 (R (wi,ws2)w3) =g (n(w1) w2 — 7 (w2) wi,w3) (7)
S(w1,€) = (n—1)n(w1), (8)

where R and S are the Riemann curvature tensor and Ricci curvature tensor of

M"($,€,n,9), respectively.

Example 1. Let us consider the 5—dimensional manifold

M® = {(z1, 32, x3,24,2)| 2 > 0},
where (x1,22,%3,%4,2) denote the standard coordinates of R3. Then let

e1, e, e3, €4, 5 be vector fields on MP given by

0 0 0 0 0
€l =2, =2

—,63 = —,64 = —,65 = —
83:1 8%2 ’ 8333 ’ 8334 ’ 82

which are linearly independent at each point of M5 and we define a Lorentzian

metric tensor g on M° as

g(6l,6]):0,1§27£]§5
g(es,e5) = —1.

Let n be the 1—form defined by n(w1) = g (w1, e5) for allwy € T (TM) Now, we
define the tensor field (1,1) —type ¢ such that

pe] = —eg, pes = —ey, pes = 0.
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Then for w1 = zie;, w2 = yje; € I’ (TM) ,1 <i,5 <5, we can easily see that

802("}1 = w1 + n (w1)€7§ = 65777(‘*’1) =49 (W17£)
and
g (w1, pwa) = g (w1,w2) + 1 (w1) 7 (w2) .

By direct calculations, only non-vanishing components are
[ei,e5] = —€;, 1 < i < 4.

From Kozsul’s formula, we can compute

VE,L-65 = —¢€4, 1 S ? S 4
Thus for wy = wie;,ws = yje; € I (TM) , we have

Vi & = —wi —n(w) €,

and

(%w) we = —g (pwi,w2) § — 1 (wa) pwi,

that is, M® (p,&,m,9) is a Lorentzian para-Kenmotsu manifold [4)].

Precisely, a Ricci soliton on a Riemannian manifold (M, g) is defined as a triple
(9,&, ) on M satisfying
Leg+25+20g =0, 9)

where L¢ is the Lie derivative operator along the vector field { and A is a real
constant. We note that if ¢ is a Killing vector field, then Ricci soliton reduces
to an Einstein metric (g, \). Futhermore, generalization is the notion of n—Ricci

soliton defined by J.T. Cho and M. Kimura as a quadruple (g,&, A, p) satisfying

Leg+2S +20g+2um@n =0, (10)
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where A and p are real constants and 7 is the dual of £ and S denotes the Ricci
tensor of M. Furthermore if A and p are smooth functions on M, then it called

almost n—Ricci soliton on M.
Suppose the quartet (g, &, A, 1) is almost n—Ricci soliton on manifold M. Then,
- If A <0, then M is shriking.
- If A =0, then M is steady.
- If A > 0, then M is expanding.

Let M be a Riemannian manifold, 7" is (0, k) —type tensor field and A is
(0,2) —type tensor field. In this case, Tachibana tensor field @ (A,T) is defined

as
QA T) (X, ... Xpjwi,w2) = =T ((w1 Aa w2) X1, .0, Xi) —
(11)
e =T (X1, ey X1, (w1 Aaw2) X)),
where,
(w1 Nawz)wz = A (w2, w3) w1 — A (wr,ws) wa, (12)

k>1,X1, Xo, ..., Xg,wi,we € P(TM)

3 Almost n—Ricci Solitons on Ricci Pseudosymmetric
and Ricci Semisymmetric of  Lorentzian

para-Kenmotsu Manifolds

Now let (g,&, A\, u) be almost n—Ricci soliton on Lorentzian para-Kenmotsu

manifold. Then we have
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(Leg) (w1, w2) = Leg (w1, w2) — g (Lewr, wa) — g (w1, Lews)
= fg (wlvw2) -9 ([éawl] 7w2) -9 (wh [§7w2])
=g (ngl,u&) +g (wl, ngg) —-g (ngl, wg)

+g (vw1‘£aw2) -9 (v£w2vw1) +9 (wlv vaé) 5
for all wy,ws € T'(T'M) . If we use (4) in the last equation, then we have

(Leg) (w1, w2) = =29 (w1, w2) — 21 (w1) 7 (w2) - (13)
Thus, in a Lorentzian para-Kenmotsu manifold, from (10) and (13), we have
S(wi,wa) = (1= A) g (wi,w2) + (1 = p) 7 (wr) 7 (w2) - (14)
Thus, we can easily give the following result.

Corollary 1. The n—dimensional Lorentz para-Kenmotsu manifold admitting

almost n— Ricci soliton <M",g,§, A, u) is an n— Einstein manifold.

For wy = ¢ in (14), this implies that
S(§wi) = (u—=A)n(w). (15)
Taking into account of (8) and (15), we conclude that
p—A=n—1. (16)

Definition 1. Let M™ be an n—dimensional Lorentzian para-Kenmotsu manifold.
If R-S and Q(g,S) are linearly dependent, then the M™ is said to be Ricci

pseudosymmetric.

In this case, there exists a function h; on M™ such that
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In particular, if h; = 0, the manifold M™ is said to be Ricci semisymmetric.
Let us now investigate the Ricci pseudosymmetric case of the n—dimensional
Lorentzian para-Kenmotsu manifold.

Theorem 1. Let M™ be Lorentzian para-Kenmotsu manifold and (g,&, A, 1) be
almost n— Ricci soliton on M™, If M™ is a Ricci pseudosymmetric, then M™ is

either an n— Einstein manifold provided A=2 —n and u =1 or hy = 1.

Proof. Let us assume that Lorentzian para-Kenmotsu manifold M"™ be Ricci
pseudosymmetric and (g,&, A\, ) be almost n—Ricci soliton on Lorentzian

para-Kenmotsu manifold M™. That means

(R (w1,w2) - S) (wg, ws) = h1Q (g, 5) (wa, ws; w1, w2),

for all w1, wo,wq,ws €T <T M ") . From the last equation, we can easily write

S (R (LU1,CL)2)CU4,W5> +S (w4, R(wl,a)g) W5)
(17)
= hy {S ((w1 Ng w2) OJ4,L<J5) + 5 (W4, (wl Ng LL)Q) w5)} .
If we putting ws = £ in (17), we get

S(R (w1, w2)ws, &) + S (wa, R (w1,w2) &)
= h1 {S (g (w2,ws) w1 — g (w1, wa) w2, §) (18)

+5 (wa,n (w2) wi =7 (w1) wa)} -
If we make use of (6) and (8) in (18), we have

S (wa,n (w2) w1 — 1 (w1) wa)
+(n—1)n(R(w1,w2)ws)
(19)

=h{(n—1)g(n(w1)ws —1n(w2) wi,ws)

+8 (wa,n (W2) w1 —n (wi)wa)} -
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If we use (7) in the (19), we get

(n—1)g(n(w1)ws —n(w2) wi,ws)

+5 (n (w2) w1 — N (w1) wa, wa)

(20)
=hi{(n—1)gn(w1)ws — 1 (w2) w1, ws)
+ (w4, (wa) w1 — 71 (w1) w2)} -
In same way, we use (14) in the (20), we can write
[(n=1) + (A =1)][1 = ha] X
(21)
g (n(w1) wa — 1 (w2) wi,ws) = 0.
It is clear from (21),
hi=1lorA=2—n.
This completes the proof. O

We can give the results obtained from this theorem as follows.

Corollary 2. Let M™ be Lorentz para-Kenmotsu manifold and (g,&,\, ) be
almost n— Ricci soliton on M™, If M™ is a Ricci semisymmetric, then M™ s

an n— Einstein manifold provided A =2 —n and p = 1.

Corollary 3. Let M™ be Lorentz para-Kenmotsu manifold and (g,&,\, ) be
almost n— Ricci soliton on M™, If M" is a Ricci semisymmetric, then M™ s

always shriking.

For an n—dimensional semi-Riemann manifold M, the concircular curvature

tensor is defined as

C (w1, wa) wz = R (w1, wz) w3 — ﬁ [9 (w2, w3) w1 — g (wr,w3)wa] . (22)
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For an n—dimensional Lorentzian para-Kenmotsu manifold, if we choose wg = £

in (22), we can write

r

C@mwﬁﬁz[l— )hnWﬁwy—nwowﬂ, (23)

nn-—1
and similarly if we take the inner product of both sides of (22) by &, we get

r

1 (C (w1, wa) w3) = [1 BTG

Jatr@nen—none). @
Definition 2. Let M"™ be an n—dimensional Lorentz para-Kenmotsu manifold.
If C - S and Q(g,S) are linearly dependent, then the manifold is said to be

concircular Ricci pseudosymmetric.

In this case, there exists a function hy on M™ such that
C-S=hQ(g,>S).

In particular, if Ay = 0, the manifold M™ is said to be concircular Ricci

semisymmetric.

Thus we have the following theorem.

Theorem 2. Let M™ be Lorentzian para-Kenmotsu manifold and (g,&, A\, i) be
almost n— Ricct soliton on M™. If M™ is a concircular Ricci pseudosymmetric,

then we have

mM+A=2)[n(n—1) —r]

hy = .
-1 -1 —r(A—1)

Proof. Let us assume that Lorentzian para-Kenmotsu manifold M™ be concircular
Ricci pseudosymmetric and (g, &, A, 1) be almost n—Ricci soliton on Lorentzian

para-Kenmotsu manifold M™. That means

(C(w1,w2) - 5) (w4, ws) = h2@Q (g, 5) (w4, ws; w1, w2),
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for all wy,ws,wyq,ws € T’ (TM ”) . From the last equation, we can easily write

S (C (LUI,(UQ) (,L)4,w5) + S (w4, C (wl,wg) (,L)5)

(25)
= hy {S ((wl Ng (.L)Q) w4, Wg,) + S5 (W4, (w1 Ng w2) WS)} .
If we choose ws = £ in (25), we get
S(C(wi,w2)wa, &) + S (w4, C (w1, w2) &)
= hy {S (g (w2, ws) w1 — g (w1,ws) w2, §) (26)
+8 (wa,n (w2) w1 — 7 (w1)wa)} .
By using of (8) and (23) in (26), we have
S (wa, A (w2) w1 — 1 (w1) wa)
+(n = 1)1 (C (w1, w2) wa)
(27)
= ha{(n —1) g (n (w1) w2 — 1 (w2) w1, w4)
+8 (wa,m (w2) w1 — 1 (w1)wa)},
where A =1 — m Substituting (24) into (27), we have
A(n—1)g(n(w1)ws —n(w2) wi,wa)
+AS (n (w2) w1 — 1 (w1) w2, wa)
(28)

=ha{(n —1) g (n(w1)wz — N (wa) wi,ws)

+S8 (n (w2) w1 — 1 (w1) wa, wa)}

If we use (14) in the (28), we can write

{An+A=2)=ha[(n=1)+ A =1} g (n(w1)wz —n(w2) wi,ws) = 0. (29)

Earthline J. Math. Sci. Vol. 12 No. 2 (2023), 183-206



194 Tugba Mert and Mehmet Atceken

It is clear from (29),

m+A=2)[n(n—1) —r]

hy = .
-1 4 nn—1) -] (A —1)

This completes the proof. ]

We can give the results obtained from this theorem as follows.

Corollary 4. Let M™ be Lorentz para-Kenmotsu manifold and (g,&,\, ) be
almost n— Ricci soliton on M™. If M™ is a concircular Ricci semisymmetric, then
M™ is either manifold with scalar curvature r = n (n — 1) or n—FEinstein manifold

provided A =2 —n and u = 1.

For an n—dimensional semi-Riemann manifold M, the projective curvature
tensor is defined as

1
P (W1,WQ) w3 = R(wl,(,UQ) w3 — 71 [S (o.)g,w?,) w1 — S (wl,wg) CUQ] . (30)

For an n—dimensional Lorentzian para-Kenmotsu manifold, if we choose ws =
¢ in (30), we can write
P (w17w2) §=0, (31)

and similarly if we take the inner product of both sides of (30) by &, we get
n (P (w1, ws2) ws) = 0. (32)

Definition 3. Let M" be an n— dimensional Lorentzian para-Kenmotsu manifold.
If P-S and Q(g,S) are linearly dependent, then the manifold is said to be

projective Ricct pseudosymmetric.

In this case, there exists a function hs on M™ such that
P-S=h3Q(g,>S).

In particular, if hy = 0, the manifold M" is said to be projective Ricci

semisymmetric.
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Let us now investigate the projective Ricci pseudosymmetric case of the

Lorentzian para-Kenmotsu manifold.

Theorem 3. Let M™ be Lorentzian para-Kenmotsu manifold and (g,&, A, 1) be
almost n— Ricci soliton on M™, If M" is a projective Ricci pseudosymmetric, then
M™ is either projective Ricci semisymmetric or n— Einstein manifold such that

A=2—-—nand p=1.

Proof. Let us assume that Lorentzian para-Kenmotsu manifold M™ be projective
Ricci pseudosymmetric and (g, &, A, 1) be almost n—Ricci soliton on Lorentzian

para-Kenmotsu manifold M™. Then we have
(P (w1, w2) - S) (w4, ws) = h3@Q (g, 5) (wa, ws; wi, w2) ,

for all wy,ws,wq,ws €T <TM ") . From the last equation, we can easily write

S (P (w1, w2) wyg,ws) + S (wg, P (w1, ws) ws)
(33)
= h3 {S ((wl Ng (/.)2) w4y, W5) + S ((,U4, (w1 Ng w2) w5)} .

If we choose ws = & in (33) , we get

S(P (wl,WQ)W4,§) + S(W4,P(W1,WQ)5)
= h3 {5 (g (w2, wa) w1 — g (w1, ws) w2, §) (34)

+5 (wa,m (w2) w1 — 7 (w1) w2)} -

If we make use of (8) and (31) in (34), we have

(n—1)n (P (w1, w2) wa)
=hz{(n—1)g(n(w1) w2 —n(wa2) w1,ws) (35)

+8 (w4, (w2) w1 — N (wi)wa)} -
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If we use (32) in the (35), we get

hs{(n —1) g (n(w1) w2 — n (w2) w1, ws)

(36)
+8 (n (w2) w1 — 7 (w1) w, wa)} = 0.
If we use (14) in the (36), we can write
hs (A+n—2)g(n(w) w2 —n(wz) wi,ws) = 0. (37)
It is clear from (37),
hs3=0o0or A=2—n.
This completes the proof. O

Corollary 5. Let M™ be Lorentzian para-Kenmotsu manifold and (g,&, A\, ) be
almost n— Ricci soliton on M™. If M" is a projective Ricci pseudosymmetric, then

M™ s always shriking provided hg # 0.

For an n—dimensional semi-Riemann manifold M, the M—projective

curvature tensor is defined as

M (w1, w2) wg = R (w1, w2) wz — S (wa,w3) wy — S (wi, ws) wo

1
o | (38)

+9 (w2, ws3) Qi — g (w1, ws) Quo]

For an n—dimensional Lorentzian para-Kenmotsu manifold, if we choose ws =
€ in (38), we obtain

M (w1, w2) § = 1 (w2) Qi — 1 (w1) Qus],
(39)

and similarly if we take the inner product of both of sides of (38) by &, we get

[ (w2) w1 —n (w1) wa] —

DO | =

2(n—1)

n (M (w1, w2) w3) :%9 (n (W) w2 =1 (w2) Wi, w3) — 2(nl—1)

—n (w2) wi, ws. (40)

S (n (wr) wa
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Definition 4. Let M™ be an n—dimensional Lorentzian para-Kenmotsu manifold.
If M-S and Q (g, S) are linearly dependent, then it is said to be M—projective

Ricci pseudosymmetric.

In this case, there exists a function hs on M™ such that
M-S =hQ(g,9).
In particular, if hy = 0, the manifold M™ is said to be M—projective Ricci

semisymmetric.

Let us now investigate the M—projective Ricci pseudosymmetric case of the

Lorentzian para-Kenmotsu manifold.

Theorem 4. Let M™ be Lorentzian para-Kenmotsu manifold and (g,&, A\, ) be
almost n— Ricci soliton on M, If M"™ is a M—projective Ricci pseudosymmetric
provided n # 1 and X\ # 2 — n, then we have

b A+ n-—2
YT 21

Proof. Let us assume that Lorentzian para-Kenmotsu manifold M™ be projective
M—projective Ricci pseudosymmetric and (g,&, A, ) be almost n—Ricci soliton

on Lorentzian para-Kenmotsu manifold M™. That means

(M (wl,(.UQ) . S) (LU4,CU5) = h4Q (g, S) (w4,w5;w1,w2) y

for all w1, wo,wq,ws €T (T M ") . From the last equation, we can easily write

S (M (wl,WQ) w4,w5) + 5 (w4,/\/l (wl,wQ) (.u5)
(41)
=Ny {S ((wl Ng WQ) w4, w5) + S (W4, (wl Ng UJQ) w5)} .
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If we choose w; = £ in (41), we get

S (M (w1,w2) wy, &) + S (wa, M (w1, w2) §)
= hy {S (g (w2,ws) w1 — g (w1, ws) w2, §)

+5 (wa,n (wa) wi — 7 (w1) wa) } -
If we make use of (8) and (39) in (42), we have

(n = 1)1 (M (w102 1)
5 (wn, 4 I o) wr = wr) wa] = gy [ (w2) Qi — 1 (1) Qua])
— ha{(n = 1) g () w2 7 (w2) w1,)

+5 (w1, 1 (W) wi =7 (w1) wa)}-

By using (40) in the (43), we get

(";”g (0 (w1) we — 1 (w2) wi,wa) =S (N (W) we — 1 (w2) wi,ws)

—mS (1 (w2) Qw1 — N (w1) Quz,wa)
= ha{(n —1) g (n(w1) wz — 1 (w2) w1, ws)

+5 (1 (w2) w1 — 7 (wi) wa,wa) } -
If we put (14) in (44), we can write

$(n—1)g(n(w1) w2 — n(w2) wi,wa)

+(A=1)g(n(w) w2 — 1 (w2) wi,wa)

+2((/>z_—11))5 (1 (w2) w1 — 1 (w1) w2, wa)

=hg[A+n—2]g(n(w)wz —n(w2) wi,ws)

(42)

(43)

(44)
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Again, if we use (14) in the (45), we obtain

{ﬁ(k—lfﬂx—lw%(n—g_h4[A+n—z}}x

(46)
9 (n(w1)wz —n (w2) wi,ws) = 0.
It is clear from (46),
by A+n—2
YT 2m—1)”
This completes the proof. O

We can give the following corollary.

Corollary 6. Let M™ be Lorentzian para-Kenmotsu manifold and (g,&, A\, ) be
almost n— Ricci soliton on M™. If M" is a M—projective Ricci semisymmetric,

then A =2 —n that is M™ is always shriking.

For an n—dimensional semi-Riemann manifold M, the Wj—curvature tensor

is defined as

1
W1 (wl,OJQ) w3 = R (wl,wg) w3 + m [S (WQ,Wg) w1 — S (wl,wg) (A)Q] . (47)

For an n—dimensional Lorenrzian para-Kenmotsu manifold M™, if we choose
)

wg =& in (47), we can write
Wi (wi,w2) € = 2[n (w2) w1 — 7 (w1) wa] , (48)
and similarly if we take the inner product of both of sides of (47) by &, we get
n (Wi (w1, w2) wz) = 2g (n (w1) w2 — 7 (w2) wi,ws3) - (49)

Definition 5. Let M™ be an n—dimensional Lorentzian para-Kenmotsu. If W1-S
and Q (g,S5) are linearly dependent, then the manifold is said to be W1— Ricci

pseudosymmetric.
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In this case, there exists a function hs on M™ such that
Wl S = h5Q(g7S)

In particular, if hs = 0, the manifold M" is said to be W;—Ricci

semisymmetric.

Let us now investigate the W1 —Ricci pseudosymmetric case of the Lorentzian

para-Kenmotsu manifold.

Theorem 5. Let M™ be Lorentzian para-Kenmotsu manifold and (g,&, A, 1) be
almost n— Ricci soliton on M™. If M™ is Wy — Ricci pseudosymmetric, then M™ is
either an n— Einstein manifold provided A =2 —n and p =1 or hs = 2.

Proof. Let us assume that Lorentzian para-Kenmotsu manifold M™ be W;—Ricci
pseudosymmetric and (g,&,\, ) be almost n—Ricci soliton on Lorentzian

para-Kenmotsu manifold M™. That means

(W1 (w1, w2) - 8) (wa,ws) = hsQ (g, 5) (w4, ws; w1, wW2) 5

for all wy,ws,wyq,ws € T’ <TM ”) . From the last equation, we can easily write

S (W (wr,w2) wa,ws) + S (wa, Wi (w1, wa) ws)

= H5{S (w1 Ng w2) wa, ws5) + S (w4, (w1 Ag wa) ws)} - (50)
If we choose w; = ¢ in (50), we get
S (W (w1, w2) wa, &) + 5 (wa, Wi (w1, w2) €)
= h5 {5 (g9 (w2, wa) w1 — g (w1, ws) w2, §) (51)

+S (w4, m (w1) w2 — 1 (w2) wi)} -
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If we make use of (8) and (48) in (51), we have
25 (wa, n (w2) w1 — 1 (w1) w2)

+(n—1)n (W1 (w1, ws) wa)

(52)
= hs {(n —1) g (n (w1) w2 — 1 (w2) w1, w4)
+8 (wa, m (w2) w1 — 1 (w1) wa2)} -
If we use (49) in the (52), we get
2(n—1)g(n(w1)ws —n(w2)wi,ws)
+25 (n (w2) w1 — 0 (w1) w2, wa)
(53)
= hs {(n —1) g (n (w1) w2 — 1 (w2) w1, w4)
+5 (n (w2) w1 — 1 (w1) wa, wa)}
If we use (14) in the (53), we can write
[N+ A—=2][2 = hs] g (n(w1) w2 —n(w2) wi,ws) = 0. (54)
It is clear from (54),
hs =2o0or A=2—n.
This completes the proof. O

We can give the following corollaries.

Corollary 7. Let M™ be Lorentzian para-Kenmotsu manifold and (g,&, A\, p) be
almost n— Ricci soliton on M™. If M™ is a W1 — Ricci semisymmetric, then M™ s

an n— Einstein manifold provided A =2 —n and p = 1.
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Corollary 8. Let M™ be Lorentzian para-Kenmotsu manifold and (g,&, X\, ) be
almost n— Ricci soliton on M™. If M™ is a Wy—Ricci semisymmetric, then M™ is

always shriking.

For an n—dimensional semi-Riemann manifold M, the Ws—curvature tensor

is defined as
1
Wa (w1, w2) wz = R (w1, we) wg — - [g (w2, ws3) Qui — g (w1,w3) Qua] . (55)

For an n—dimensional Lorentzian para-Kenmotsu manifold M, if we choose w3 =

¢ in (55), we can write

Wa (w1, w2) € = [ (w2) w1 — 1 (w1) wa]

(56)
— ey [ (w1) Quz — 1 (w2) Qui],
and similarly if we take the inner product of both sides of (56) by &, we get
n (Wa (w1, w2) w3) = g (n (w1) w2 — 0 (w2) wi,w3)
(57)

+(n£1)5 (17 (w1) wa — 1 (w2) wi, w3) .

Definition 6. Let M™ be an n—dimensional Lorentzian para-Kenmotsu manifold.
If Wy - S and Q(g,S) are linearly dependent, then the manifold is said to be

Ws— Ricct pseudosymmetric.

In this case, there exists a function hg on M™ such that
Wa - S = heQ (g,S)-

In particular, if hg = 0, the manifold M™ is said to be W,y—Ricci

semisymmetric.

Let us now investigate the Ws—Ricci pseudosymmetric case of the Lorentzian

para-Kenmotsu manifold.
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Theorem 6. Let M™ be Lorentzian para-Kenmotsu manifold and (g,&, A\, 1) be
almost n— Ricci soliton on M™. If M™ is a Wy— Ricci pseudosymmetric, then

-2
he="TA2

n—1
provided n # 1.

Proof. Let us assume that Lorentzian para-Kenmotsu manifold be Ws—Ricci
pseudosymmetric and (g,&, A\, ) be almost n—Ricci soliton on Lorentzian

para-Kenmotsu manifold. That means
(W2 (w1, w2) - S) (wa,ws) = he@Q (9, 5) (w1, ws; w1, w2)

for all wy,ws,wq,ws €T <TM ") . From the last equation, we can easily write

S (Wg (wl,wg) w4,w5) + S (W4, Wy (OJl,(JJQ)WE,)
(58)
= hg {S ((wl Ng (/.)2) w4y, W5) + S ((,U4, (w1 Ng w2) w5)} .

If we choose ws = & in (58) , we get

S (Wa (w1, wa) wy, &) + S (wa, Wa (w1, w2) §)
= he {5 (g (w2, ws) w1 — g (w1, ws) wa, &) (59)

+5 (wa,n (W) wi — 7 (w1) wa) } -
If we make use of (8) and (56) in (59), we have

(n—1)n (Wa (w1, ws) wa)

+5 (wa, [1 (w2) w1 — 71 (w1) wo

Gk [0 (1) Quz = 1 (w2) Qo] (60)
=he{(n—1)g(n(w1)wz — 1 (w2) w1, ws)

+8S (w4, m (w1) w2 — 1 (w2) w1)} -
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If we use (57) in the (60), we get

(n—1)g(n(w1)wz — 7 (w2) wi,was)
—ﬁS (wa,m (W1) Qua — 1 (w2) Qur)

(61)
= Hg {S (w4,n (w2) w1 — 1 (w1) wa)

+2n (f1 = f3) g (n (w1) w2 — 7 (w2) Wi, wa) } -
If we use (14) in the (61), we have
(n—=1) g (n(wi)wz =1 (w2) wr,wa)
=318 (1 (w1) wa — 1 (wa) w, wa) (62)

= he [n — A g (n(w1) we — 1 (w2) wi,ws)

Again, if we use (14) in (62), we obtain

{(n —1) = UV g )\)} x

(63)
g (77 (wl) wo — 1N (LUQ) wl,w4) =0.

It is clear from (63),
n+A—2
n—1
This completes the proof. O

he =

We can give the results obtained from this theorem as follows.

Corollary 9. Let M™ be Lorentzian para-Kenmotsu manifold and (g,&, X\, ) be
almost n— Ricci soliton on M™. If M™ is a Wo— Ricci semisymmetric, then M™ is
an n— Einstein manifold provided A=2—-n and u=1orA=n, u=2n—1 and
1t 1s always shriking.
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