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Abstract

We introduce and study q-analogue of certain classes of analytic functions

which are related with generalized close-to-convexity. Distortion, inclusion

results and growth rate of coefficient problem are investigated for these

classes. Some applications of our results are highlighted.

1 Introduction

Let A denote the class of functions which are analytic in the open unit disc

E = {z : |z| < 1} and are denoted by power series given by

f(z) = z +

∞∑
n=2

anz
n. (1.1)

The subclass of A of all univalent functions is denoted as S.

Let f, g ∈ A, g(z) = z +
∑∞

n=2 bnz
n and f be given by (1.1). Then the
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convolution(Hadamrd product) of f and g is defined as

(f ? g)(z) = z +

∞∑
n=2

anbnz
n = (g ? f)(z), z ∈ E.

The subordination of two analytic functions f1 and f2 in E is denoted as

f1 ≺ f2, if there exists a Schwarz function w(z), analytic in E with w(0) = 0

and |w(z)| < 1, (z ∈ E) such that f1(z) = f2(w(z)), z ∈ E. If f2 is univalent in

E, then

f1(z) ≺ f2(z),

if and only if,

f1(0) = f2(0) and f1(E) ⊂ f2(E).

Let C(δ), S?(δ) and K(δ) denote the classes of S, which consists of,

respectively, the convex, starlike and close-to-convex functions of order δ,

0 ≤ δ < 1. The classes C(0) = C, S?(0) = S? and K(0) = K are well known [2].

Let p be analytic in E with p(0) = 1. Then p(z) is said to belong to the class

P [A,B], which is called Janowski class for −1 ≤ B < A ≤ 1, see [6].

The class P [A,B] ⊂ P (γ), γ = 1−A
1−B , where P (γ) is the class of

Caratheodaory functions satisfying the condition Re{p(z)} > γ and P (0) = P.

Also, it is known that P [A,B] is a convex set.

By taking A = q,B = −q2, q ∈ (0, 1), we have special subclass

P [q,−q2] = Pq ⊂ P
( 1− q

1 + q2
)
, 0 < α =

1− q
1 + q2

< 1.

For q → 1
−
, Pq → P, we note that p ∈ Pq implies that

p(z) ≺ Lq(z) =
1 + qz

1− q2z

and it maps the unit disc E onto the closed disc centered at d = 1+q2

1−q4 with radius

r = q(1+q)
1−q4 .
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Since Pq ⊂ P [A,B], therefore Lq = 1+qz
1−q2z , q ∈ (0, 1) is convex univalent in

E see, [6].

In this paper, we shall use the concept of q-calculus to define and study

certain classes of analytic functions which are q-analogue of C, S?, K and related

generalizations. For the applications of q-calculus in geometric functions, see

[11–19] and the references therein.

Here we recall some basic definitions and results of q-calculus required in our

study as follows.

(i). Let f ∈ A. Then q-derivative of f is defined as

Dqf(z) =
f(qz)− f(z)

(q − 1)z
, z 6= 0,

and Dqf(0) = f ′(0) and q ∈ (0, 1), see [4, 5]. Also

Dq(z
n) = [n]qz

n−1, [n]q =
1− qn

1− q
.

We note that Dqf(z)→ f ′(z) and [n]q → 1
−1
.

(ii).

Dq

(
log f(z)

)
=

ln(1q )

1− q
Dqf(z)

f(z)
, f ∈ A, q ∈ (0, 1).

For details, see [22].

(iii). For 0 < q < 1, it can easily be checked that the function hq(z)

defined as

hq(z) =
1

1− q
log

1− qz
1− z

=

∞∑
n=1

1− qn

1− q
zn

n
, z ∈ E

=

∞∑
n=1

[n]q
zn

n
(1.2)
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is convex univalent. Then, by Alexander relation between the classes C and S?,

it follows that the function zh′q(z) is starlike and is given by

zh′q(z) =
z

(1− qz)(1− q)
=
∞∑
n=1

[n]q
zn

n
, z ∈ E. (1.3)

When q → 1
−1
, zh′q(z) reduces to well known Koebe function

k(z =
z

(1− z)2
=
∞∑
n=1

nzz, z ∈ E.

By putting Hq(z) = zh′q(z), it can be shown that some calculation that

zH ′z(z)

Hq(z)
∈ P (β), β =

1− q
2(1 + q)

.

That is Hq = zh′q is starlike of order β. It is observed in [20] that

zh′q(z) ? zh
′
q(z)

zh′q(z)
=
Hq(z) ? Hq(z)

Hq(z)
= Lq(z).

(iv). From the definition of q-derivative and relation (1.3), we use convolution

to have

zDqf(z) = f(z) ? zh′q(z).

If f ∈ C and zh′z ∈ S?(β), then it is known [21] that

zDf ∈ S?(β), β =
1− q

2(1 + q)
,

where β ∈ (0, 12) for q ∈ (0, 1).

Throughout our discussion in this paper, z ∈ E and q ∈ (0, 1) unless otherwise

stated.

We now define the following new classes of analytic functions

http://www.earthlinepublishers.com
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Definition 1.1. Let f ∈ A. Then f is said to belong to the class Vm,q, if and

only if, there exist f1, f2 ∈ C such that

Dqf(z) =

(
Dqf1(z)

)(m
4
+ 1

2
)

(
Dqf2(z)

)(m
4
− 1

2
)
, m ≥ 2. (1.4)

For m = 2, V2,q = Cq.

Remark 1.1. For fi ∈ C, S?i (z) = zDqfi ∈ S?(β), i = 1, 2.

It is known [2] that { s
?
i (z)
z } =

( si(z)
z

)1−β
, si ∈ S?, i = 1, 2.

Using these observations, we can write (1.4) as follows.

For f ∈ Vm,q, m ≥ 2, we have

Dqf(z) =

(
Dqs1(z)

)(1−β)(m
4
+ 1

2
)

(
Dqs2(z)

)(1−β)(m
4
− 1

2
)
, β =

1− q
2(1 + q)

. (1.5)

For q → 1
−1
, Vm,q → Vm is the class of functions with bounded boundary

rotation, see [1, 2].

Definition 1.2. Let f ∈ A. Then f is said to belong to the class T ?m,q, if and only

if, there exists g ∈ Vm,q such that

Dqf(z)

Dqg(z)
∈ Pq, m ≥ 2.

When q → 1
−1
, T ?m,q → Tm and Tm is the class of generalized close-to-convex

functions introduced in [9].

Also, for m = 2, we obtain the class K2,q = Kq of q-close-to-convex functions.
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Definition 1.3. Let f ∈ A with
f(z))(Dqf(z))

z 6= 0, in E. Then f ∈ Qγm,q(a), if

there exists g ∈ T ?m,q such that

zDqf(z) + af(z)) = (a+ 1)z
(
Dqg(z)

)γ
, Re{a} ≥ 0, 0 ≤ γ ≤ 1. (1.6)

We note that Q1
m,q(0) = T ?m,q and Qγm,q(0) = Qγm,q

We shall need the integral representation of hypergeometric function G given

as below:

Let a, b, c ∈ C (c 6= 0,−1,−2, . . .). Then

G(a, b; c : z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tt−1(1− t)c−b−1(1− tz)−adt,

(Re{(c)} > Re{(b)} > 0).

See [8].

2 Preliminary Results

Lemma 2.1. Let hq be given by (1.2). Then

zh′q(z) =
z

(1− qz)(1− z)
∈ S?(β), β =

1− q
2(1 + q)

.

By simple calculations, it can be verified that Lq(z) that

Lq(z) =
zh′q(z) ? zh

′
q(z)

zh′q(z)
=

1 + qz

1− q2z
, q ∈ (0, 1).

Also Lq satisfies the following.

(i). Re{Lq(z)} = Re{ 1+qz
1−q2z} >

1−q
1−q2z , see [6].

(ii). Re{L′q(z)} = q(1+q)
1−q2 > 0. z ∈ E. This shows that Lq(z) is univalent

in E.
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(iii).

Re

{
(zL′q(z))

′

L′q(z)

}
= Re

{(1− q(q + 1)z) + q3z2

(1 + qz)(1− q2z)
}
≥ 0, in E,

since T (r) = 1− q(q + 1)r + q3r2, with T (0) = 1 is decreasing in (0, 1).

Lemma 2.2. [3] Let p ∈ P. Then, for z = reiθ,∫ 2π

0
|p(reiθ)|λdθ < c(r)

1

(1− r)λ−1
, z ∈ E, λ > 1.

Lemma 2.3. [7] Let f ∈ A. Then, for z = reiθ, 0 ≤ θ1 < θ2 ≤ 2π, a necessary

and sufficient condition for f ∈ S (close-to-convex) is∫ θ2

θ1

Re

{
(zf ′(z))′

f ′(z)

}
dθ > −π.

3 Main Results

Theorem 3.1. Let f ∈ T ?m,q. Then, with F = f ? hq, there exist close-to-convex

functions K1 and K2 such that

Dqf(z) = F ′(z) =

(
K ′1(z)

)(1−β)(m
4
+ 1

2
)

(
K?

2(z)

)(1−β)(m
4
− 1

2
)
, β =

1− q
2(1 + q)

. (3.1)

Proof. Using Definition 1.1, Remark 1.1 and the inclusions result Pq ⊂ P, we

obtain the required (3.1).

Remark 3.1. (i). The function hq ∈ C, given by (1.2) and

Hq(z) = zh′q(z) ∈ S?(β), β =
1− q

2(1 + q)
.

These functions will play the same role throughout in our present study.
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(ii). For m = 2, F ′ =
(
K ′1
)1−β

.

Taking logarithmic differentiation and integrating from θ1 to θ2, 0 ≤ θ1 <

θ2 ≤ 2π, z = reiθ, we have∫ θ2

θ1

Re{(zF ′(z))′

F ′(z)
}dθ = (1− β)

∫ θ2

θ1

Re{(zK ′1(z))
′

K ′1(z)
}dθ ≥ −(1− β)π.

Since (1− β) < 1, it follows that F is close-to-convex in E, by using Lemma 2.2.

(iii). Let F (z) = (f ? hq)(z), m = 2. Then the growth rate of Hankel

determinant Hl defined by the coefficient in its series expansion is Hl = O(1)·n2−l,
l ≥ 1, n 6= 1, see [10]. The exponent is shown is best possible.

Theorem 3.2. Let f ∈ Vm,q, m > 2. Then f ∈ T ?2,q for |z| < r?, where

r? = Sin{ π(1 + q)

(m− 2)(1 + 3q)
}. (3.2)

Proof. From Definition 1.1 and Definition 1.2 together Remark 1.1, we can write

Dqf(z)

Dqg1(z)
=

(
Dqg1(z)

Dqg2(z)

)(m
4
− 1

2
)

, g1, g2 ∈ C

=

(
s1(z)

s2(z)

)(1−β)(m
4
− 1

2
)

, s1, s2 ∈ S?. (3.3)

For s1, s2 ∈ S?, it is known [2] that

| arg
s1(z)

z
| ≤ 2Sin−1r.

So, from (3.3), we have

| arg
Dqf(z)

Dqg(z)
| ≤ (

m

4
− 1

2
)(1− β){4Sin−1r}.

http://www.earthlinepublishers.com
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This gives us | arg
Dqf(z)
Dqg(z)

| ≤ π
2 , which implies (m− 2)(1β)Sin−1r < π

2 . Therefore

r < r? = Sin{ π(1 + q)

(m− 2)(1 + 3q)
}, m > 2.

Theorem 3.3. Let f ∈ A and g ∈ Vm,q. Define the function h as

Dqh(z) =
Dq(zDqf(z))

1 + zqDq(Dqg(z))
. (3.4)

If

Dq(zDqf(z))

Dq(zDqg(z))
∈ Pq,

then h ∈ T ?m,q in E.

Proof. We have

Dq(zDqg(z)) = Dqg(z) + zqDq(Dqg(z)) = Dqg(z){1 + zqDq(Dqg(z))}.

Therefore, for g ∈ Vm,q,

Dq(zDqf(z))

Dq(zDqg(z))
=

Dq(zDqf(z))

Dqg(z){1 + zqDq(Dqg(z))

=
Dq(zDqf(z))

{1 + zqDq(Dqg(z))

1

Dqg(z)

=
Dqh(z)

Dqg(z)
∈ Pq, using (3.4)

and this implies h ∈ T ?m,q in E.

Theorem 3.4. Let 0 < γ1 < γ2 ≤ 1. Then Qγ1m,q(a) ⊂ Qγ2m,q(a).

Earthline J. Math. Sci. Vol. 12 No. 2 (2023), 165-182
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Proof. Let f ∈ Qγ1m,q(a). We can write

zDqf(z) + af(z) = (a+ 1)z
(
Dqg(z)

)γ1 , g ∈ Vm,q
= (a+ 1)z(DqG(z))γ2 , (3.5)

where

DqG(z) =
(
Dqg(z)

) γ1
γ2 . (3.6)

We now show that G ∈ Vm,q.

From (3.6), we have

DqG(z) =

{(
Dqg1(z)

)(m
4
+ 1

2
)(

Dqg2(z)
)(m

4
− 1

2
)

} γ1
γ2

=

{(
Dqg1(z)

) γ1
γ2

(m
4
+ 1

2
)(

Dqg2(z)
) γ1
γ2

(m
4
− 1

2
)

}

=

{(
Dqg

?
1(z)

)(m
4
+ 1

2
)(

Dqg?2(z)
)(m

4
− 1

2
)

}
, (3.7)

where g?i = g
γ1
γ2
i , (γ1 < γ2) and g?i ∈ C. Thus, from (3.5) and (3.7), it follows

that f ∈ Qγ2m,q(a) in E. This completes the proof.

Remark 3.2. The class Cq(γ) is defined as:

Let f ∈ A. Then f ∈ Cq(γ), if and only if,
Dq(zDqf(z))
Dqf(z)

∈ P (γ), γ ∈ [0, 1).

Using Theorem 3.1 and a result due to Kaplan [7] for close-to-convex functions,

we easily obtain the following.

Theorem 3.5. Let f ∈ Qγm,q and F = f ? h. Then, for 0 ≤ θ1 < θ2 ≤ 2π, z =

reiθ, we have∫ θ2

θ1

Re

{
(zF ′(z))′

F ′(z)

}
dθ > −γm(1− β)

2
π, β =

1− q
2(1 + q)

∈ (0,
1

2
). (3.8)
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We note that F is close-to-convex (univalent), if m ≤ 2
γ(1−β) = 1+3q

γ(1+q) , by

Lemma 2.2.

Theorem 3.6. Let f ∈ Qγm,q and let F = (f ? hq). Then

(i).

(1− r){γ1(
m
4
−1)+1}

(1 + r){γ1(
m
4
+1)+1} ≤ |F

′(z)| = |Dqf(z)| ≤ (1 + r){γ1(
m
4
−1)+1}

(1− r){γ1(
m
4
+1)+1}

where γ1 = γ(1− β), β = 1−q
2(1+q) .

Also, for

r1 = r−12 =
1− r
1 + r

; a = γ1(
m

2
− 1) + 2; b = 2(1− γ1); c = a+ 1; (3.9)

we have (ii).

2(1−γ1)
Γ(a)Γ(c− a)

Γ(c)

{
G(a, b; c;−1)− ra1G(a, b; c;−r1)

}
≤ |F (z)|

≤ 2(1−γ1)
Γ(a)Γ(c− a)

Γ(c)

{
G(a, b; c;−1)−G(a, b; c;−r2)

}
,

where G is hypergeometric function and Γ represents Gamma function.

Proof. (i). From Definition 1.3, f ∈ Qγm,q implies that

F ′(z) = Dqf(z) =
(
Dqf(z)

)γ
, G ∈ T ?m,q.

From Definition 1.2 and Remark 1.1. we can write

zF ′(z) = zDqf(z) =

{
(s1(z))

(1−β)(m
4
+ 1

2
)

(s2(z))
(1−β)(m

4
− 1

2
)
· p(z)

}γ
,

si ∈ S?, i = 1, 2, p ∈ Pq ⊂ P.

Using distortion result for si ∈ S? and p ∈ P, the proof of part(i) at once.

Earthline J. Math. Sci. Vol. 12 No. 2 (2023), 165-182
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We proceed to prove part (ii).

Let dr denote the radius of the largest schlicht disc centered at the origin

contained in the image of |z| < r under F (z) = (f ? hq)(z). Then there is point

z0, |z0| = r such that F (z0) = dr. The ray from (0) to F (z0) lies entirely in the

image and inverse image of the ray is a curve in |z| < 1. Using part (i), we have

dr = |F (z0)| =

∫
C
|F ′(z)||dz|

≥
∫ |z|
0

(1− s))(γ1(
m
2
−1)+1)

(1 + s)(γ1(
m
2
+1)+1)

ds, γ1 = γ(1− β)

=

∫ |z|
0

(
1− s
1 + s

)(γ1(
m
2
−1)+1)(1 + s)−2γ1ds. (3.10)

Let 1−s
1+s = t. Then, by simple calculations, we have

|F (z0)| ≥
∫ r1

1
t(γ1(

m
2
−1)+1)(−2(1−2γ1))(1 + t)−2(1−γ1)dt = −21−2γ1)[I1 − I2].(3.11)

Now put t = r1u, with r1 = 1−r
1+r . Then dt = r1du, and

I1 =

∫ r1

0
(r1u)a−1(1 + r1u)−b(r1du)

= ra1

∫ r1

0
ua−1(1 + r1u)−bdu

= ra1
Γ(a)Γ(c− a)

Γ(c)
G(a, b; c;−r1), (3.12)

where a, b, c and r1 are given by (3.9).

Following the similar procedure and calculations, we obtain

I2 =

∫ 1

0
ta−1(1 + t)−bdt =

Γ(a)Γ(c− a)

Γ(c)
G(q, b, c;−1). (3.13)

Then, form (3.11), (3.12) and (3.14), we obtain the lower bound for |F (z)|.
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For the upper bound, we calculate

|F (z)| ≤
∫ |z|
0

(1 + s

1− s
)a−1( 1

1− s
)−2γ1ds

and obtain

|F (z)| ≤ 21−2γ
Γ(a)Γ(c− a)

Γ(c)

{
G(a, b; c;−1)− ra2G(a, b, c;−r2)

}
, (r1 = r−12 ).

This completes the proof of part (ii).

Corollary 3.1. Let r → 1 in the lower bound of |F (z)|. Then, from Theorem

3.6, it can easily be deduced that the image of E under F = f ? hq, f ∈ Qγm,q
contains the Schlicht disc |z| < r?, where r? = 2(1+γ1)

γ1(
m
2
−1)+2 , γ1 = γ(1− β).

We note that following special cases of Corollary 3.1.

(i). r? = 2(1−γ)

γ(m
2
−1)+2 .

When q → 1
−1

and for γ = 1, we have the radius r? = 2
m+2 .

(ii). For γ = 1, m = 2, we obtain r? = 1
2(1−β)

.

We now estimate the growth rate of coefficients of F = f ? hq, f ∈ Qγm,q.

Theorem 3.7. Let

f : f(z) = z +
∞∑
n=2

anz
n ∈ Qγm,q

and let F = f ? hq with

F (z) = z +

∞∑
n=2

Anz .

Then

|An| ≤ η(γ,m, q)nσ, σ = {γ(1− β)(
m

2
+ 1) + γ − 2},

where η is a constant depending on q and γ.

Earthline J. Math. Sci. Vol. 12 No. 2 (2023), 165-182
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Proof. By Cauchy theorem, for z = reiθ,

|nAn| =
1

2πrn
∣∣ ∫ 2π

0
{zF ′(z)e−inθ}dθ

∣∣
≤ 1

2πrn+γ

∫ 2π

0

∣∣zDqg(z)
∣∣γdθ, g ∈ T ?m,q

=
1

2πrn+γ
Iγ(r). (3.14)

Since g ∈ T ?m,q, there exists g1 ∈ Vm,q, such that

Dqg(z) = Dqg1(z)p(z), p ∈ Pq ⊂ P. (3.15)

We calculate Iγ(r) as follows by using (3.15).

Using Remark 1.1 and Definition 1.2, we have

Iγ(r) =

∫ 2π

0

|s1(z)|γ(1−β)(
m
4
+ 1

2
)

|s2(z)|γ(1−β)(
m
4
− 1

2
)
|p(z)|γdθ, s1, s2 ∈ S?. (3.16)

For s2 ∈ S?, the well known distortion result in (3.16), gives us

Iγ(r) ≤ rγ1
(1

4

)γ1(m−2
4

)
∫ 2π

0
|s1(z)|γ1(

m+2
4

)|p(z)|γdθ, (3.17)

where γ1 = γ(1− β).

Now, applying Holder’s inequality, subordination for s1 ∈ S? and Lemma 2.3

for p ∈ P, we obtain from (3.17

Iγ(r) ≤
(1

4

)γ1(m−2
4

)
(

1

2π

∫ 2π

0
|s1(z)|γ1(

m+2
4

) 2
2−γ dθ

) 2−γ
2
(

1

2π

∫ 2π

0
|p(z)|2dθ

) γ
2

≤ η(γ,m, q)

(
1

1− r

)γ1(m2 +1)+γ−1
, (r → 1) (3.18)

where γ1 = γ(1 − β), β = 1−q
2(1+q) , m ≥ 2 and η is a constant depending on

γ,m and q. Thus, with r = (1 − 1
n), n → ∞, it follows from (3.14) and (3.18)

that

|An| ≤ η(γ,m, q) · nσ, σ = γ1(
m

2
+ 1) + γ − 2.

This completes the proof.
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Remark 3.3.

(i). As a special case, we note that An = O(1) · n
m
2 for q → 1

−1
and γ = 1,

0(1) is a constant. This result has been proved in [9].

(ii). Also F (z) = (f(z) ? hq(z)), f ∈ Qγm,q and

hq(z) = z +
∞∑
n=2

[n]q ·
zn

n
.

Therefore An = [n]a
n an and this yields the growth rate of the coefficients for f ∈

Qγm,q as

an = 0(1) · nσ1 , nσ1 = σ[n]q.

When q → 1
−1
, σ1 = σ.

(iii). For γ = 1, m = 2, we have An = 0(1)n1−2β, 1− 2β = 2q
1+q .

Conclusion

The concept of q-calculus has been used to define and study the classes of Qγm,q(a)

containing the q-analogue of analytic functions with bounded boundary rotation.

We have shown that the q-derivative of certain convex functions has played

an important role to investigate some interesting properties such as distortion,

inclusion and rate of growth of coefficients of these new classes. Some inclusion

properties with references to parameters involved , Hankel determinant problem

and study of certain q-analogue of linear operators, which may include Bernadi

and Carlson-Shaeffer operators, can be explored as open problems.
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