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Abstract

In present paper, we use fractional integral and Wanas differential operator to obtain some
subordination and superordination results associated with Hadamard product for univalent
analytic functions defined in the open unit disk. These results are applied to obtain differential

sandwich results. Our results extend corresponding previously known results.

1. Introduction and Preliminaries

Denote by H the class of analytic functions in the open unit disk U = {z € C : |z| <
1}. For a positive integer n and a € C, assume that H[a,n] be the subclass of H
consisting of functions that have the form:

f(2)=a+ apz™+ ap 2™+ . (1.1)

Also, let A be the subclass of H consisting of functions of the form:
f@)=z+ Z a,z". (1.2)
n=2
For the functions f € A given by (1.2) and g € A defined by
9@ =7+ ) b
n=2

we define the Hadamard product (or convolution) of f and g by
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Fr@ =2+ ) anbpz" = (g * )@,
n=2

Let f,g € A. The function f is said to be subordinate to g, or g is said to be
superordinate to f, if there exists a Schwarz function w analytic in U with w(0) = 0 and
w(z)| <1 (z€U) such that f(z) = g(w(z)). In such a case we write f < g or
f(2) < g(z)(z € U). Furthermore, if g is univalent in U, then we have the following

equivalent (see [9]), f < g & f(0) =g(0)and f(U) c g(U).

Let p,h € H and Y(7,s,t;2):C3 XU — C. If p and Y(p(2),2p'(2),z%p" (2); 2)
are univalent functions in U and if p satisfies the second-order differential
superordination:

h(z) < ¥ (p(2),2p'(2),2%p" (2); 2), (1.3)

then p is called a solution of the differential superordination (1.3). (If f is subordinate to
g, then g is superordinate to f). An analytic function g is called a subordinant of (1.3), if
q < p for all the functions p satisfying (1.3). A univalent subordinant § that satisfies
q < ¢ for all the subordinants q of (1.3) is called the best subordinant.

Definition 1.1 [17]. For f € A, the Wanas differential operator is defined by

i (j) O™ (%)F anz", (14)
m=1

where € R, = 0witha+f >0,k € N,n € N, = NU{0}.

Wa]‘fg fz)=z+ Z
n=2

Definition 1.2 [6]. The fractional integral of order A( A > 0) is defined for a function f
by
i)

B 1
DD =505 )| Gopa =T

where f is an analytic function in a simply-connected region of the z-plane containing
the origin, and the multiplicity of (z - t)*~* is removed by requiring log(z - t) to be
real, when (z - t) > 0.

From Definition 1.1 and Definition 1.2, we conclude that
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2.k, _ 1 +
PWaf D= Fr s
k n
'n+1) k maq (@ DB i
LT+ 1+2) ;1<m>(_1) 1(am+ﬁm )] InZ=

From [18] we need this result

Z( _AWknf(Z)) D_kaan( )

v (5 (&)

m=1

k

3 (e ]o

m=

+ DIW, A f(2).  (15)

Special cases of this operator can be found in [1,2,4,7,8,11,13,14,16]. For more details
see [19].

Very recently, Xu et al. [20], Tang and Deniz [15], Rahrovi [10], Attiya and Yassen
[3] and Seoudy [12] have studied differential subordinations and superordinations for
different conditions of analytic functions.

The main object of the present paper is to find sufficient condition for certain
normalized analytic functions f in U such that (f * ¥)(z) # 0 and f to satisfy

DFAW, T (f * )(2)
CI1(Z) < ( ‘ka"(f l]J)(Z) > qZ(Z)I

and

D AW (f * @)(2) + to D7 AW, G (f * L)@\
@ (2) < < q2(2),

(t; + 1)z

where q, and q, are given univalent functions in U and ®(z) = z + Z t,z", Y(z) =
n=2

z+ z @nz™ are analytic functions in U with t, = 0,¢, = 0 and t,, = ¢,. Also, we
n=2

obtain the number of results as their special cases.

To establish our main results, we need the following definition and lemmas:
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Definition 1.3 [9]. Denote by Q the set of all functions f that are analytic and injective
on U \ E(f), where

BN ={¢ € au:lim £ @) = oo}

and are such that f'({) # 0 for { € AU\E(f).

Lemma 1.1 [9]. Let q be univalent in the unit disk U and let 8 and ¢ be analytic in a
domain D containing q(U) with ¢(w) = 0 when w € q(U). Set Q(z) = Zq’(z)(;b(q(z))
and h(z) = G(q (Z)) + Q(2). Suppose that

(1) Q(z) is starlike univalent in U,

zh'(2)
Q(2)

(2)Re{ }>0forze u.

If
0(p(2)) +zp' (@D p(p(2)) < 6(q(2)) + zq' (@) p(q(2)), (1.6)
then p < q and q is the best dominant of (1.6).

Lemma 1.2 [5]. Let q be convex univalent in the unit disk U and let 6 and ¢ be analytic
in a domain D containing q(U). Suppose that

6'(q(2))
¢(a(2)

(2) Q(2) = zq' (2)p(q(2)) is starlike univalent in U.

(I)Re{ }>0forzEU,
Ifp € H[q(0),1] n Q, withp(U) c D, B(p(z)) + Zp’(z)(;b(p(z)) is univalent in U and

0(q(2)) +2q' (@ $(q(2)) < 6(p(2)) + zp' (2P (p(2)), (1.7)
then q < p and q is the best subordinant of (1.7).

2. Main Results

Theorem 2.1. Let ®,¥ € A, p,y, U, &,0,7T,8 €C such that § # 0 and o,T are not

simultaneously zero, q be convex univalent in U with q(0) = 1 and assume that

2124/ @)\ , 20"(2)
7(2) >+ 7 +1}>0.

1
“ {m (_8 +vq*(2) + 2uq°(2) — 02q' (2) —

(2.1)
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If f € A satisfies the differential subordination

Ml(f} (pllplpl)/IHI &0,T, 6' a;,Bp kln;/lp Z)

<p+79(2) +u?(2) + Jer@ @2

£ N ( o N T
q(@) \q(z) q*(2)
where

M (f,®,¥,p,v,u,¢,0,7,6,a,5,k,n 1 z)

DFAW(f + @)(2) DFAW, T (f + @)(2)
_p+< ”W*Wf“ﬂ@)> Y+u< —WW”U wxg)

DIWEIf s )@ DWW
£ +6| o0+
(D‘AW"“l(f*d))(Z)) (D-lw’”’*%f q>)<z)>

x 1+i(")(_1)m+1(z)m DWg (@)@ DIFWGTF - @)
m B DIWST(fxd)@)  DFWI(f *¥)(@)

m=1
(2.3)
then
AW (f 5 @)(2)\
" <q(2)
DAW, 5 (f » ¥)(2)
and q is the best dominant of (2.2).
Proof. Let the function p be defined by
DIW g (f * ®)(2)
= U). 2.4
p() ( _Awkn(f*q,)(z)> (zev) 24)

Then the function p is analytic in U and p(0) = 1.

A simple computation using (2.4) gives

W@ _ 2 (AW e 9)()) 2 (W 9@)
p(z) D; AWkn+1(f « D) (2) _AWkn(f*lP)(z)
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In view of (1.5), we obtain

k —Arkn+2
zp'(2) kY ymar (A" D "W, 5 (f * @)(2)
p(z) oL\t Zl (m) D (/3> (DZ_AWOZ?H(]C * @)(z)

DFAW, T (f + W) (2)
W - LP)(z))

Also, we find that

o + T
r(2) p*(2)

=M (f,®,¥,p,v,10,¢,0,7,6,a,F,kn,Az), (2.5)

&
p +vp(z) +up2(2)+p(z)+< )ZP (2)

where M, (f, ®, W, p,v, 4, €,0,7,68,a, B, k,n,; z) is given by (2.3).

By using (2.5) in (2.2), we have

g

£ +( Lt
p(z) \p(z) p2(2)

p+yp() +up*(2) + )2p'@)

g T

£ +< +
q(z) \q(2) q*©2)

< p+79() + ua* () + )za'@).

By setting

T

€ o
0 = 24— d =—+—
WwW)=p+yw+uw +W and ¢w) W+W2,

it can be easily observed that 8(w) and ¢(w) are analytic in C\ {0} and that p(w) #
0,w € C\ {0}. Also, we get

Q) =20/ @8(4(®) = (75 + mzg5) 24/ @)

and

h(z) =0(q(2)) + Q(2) = p +vq(2) + nq?(2) +

& +( [0 n T ) ,()
1@ 4@ " @)

In light of the hypothesis of Theorem 2.1, we see that Q(z) is starlike univalent in U
and
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zh'(z)
Re{ Q(Z)}
el Lt (_ 2 30y _2rzq’(z)> 29" (2) }
_Re{aq(z)+r< e+yq®(2) +2uq>(2) — ozq'(z) @ + %) +1;>0.

Hence the result now follows by an application of Lemma 1.1.
By fixing ®(z) = W(z) = é in Theorem 2.1, we obtain the following corollary:

Corollary 2.1. Let p,y, 1, €,0,7,8 € C such that § # 0 and 0,7 are not simultaneously
zero, q be convex univalent in U with q(0) = 1 and assume that (2.1) holds true. If
f € A satisfies the differential subordination

Mz(flpl)/Inglo-lTlSIalﬂlklr}IA’;Z)

<p+7a() +He* (D) + )@, @o

& +( g n T
q(z) \q(2) q*(2)

where

MZ(f:p:yrﬂ:&O',T,&a,ﬂ,k,?],ﬂ;Z)

DFW I f(2) DFAW I (2)
_p+< —AWkﬂf( ) ) ]/+ll< —AWkﬂf(Z) )

D Wyd £ (2) D Wy £ (2)
€ (D_Aka-lf(Z)) +8| o+ T<D_1Wkn+1f(z)>

k Aarkn+2 -2 kn+1
k _aym+1 (¢ m\ (DWW, f(z) D;*W, f(2)
x| 1+ Z (m)( D <,8) (D_AWkn+1f( ) DZAWk"f(z) , (2.7)

m=1

then

DIW G f(2)
( DW,f(2) ) “a@
and q is the best dominant of (2.6).

Theorem 2.2. Let ®,¥Y € A, p,y, U, &,0,7,6 € C such that § # 0 and 0,7 are not
simultaneously zero, q be convex univalent in U with q(0) = 1 and assume that
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Re {% yq?(2) + 2uq3(2) — e)} > 0. (2.8)

Let f € A,

(D AW T (f x @) (2)

_)LWkn(f*q,)( ) ) € H[q(0)1]nQ

and M. (f, D, ¥,p, v, U, &,0,T,6,a, B, k,n, A; z) as defined by (2.3) be univalent in U. If
€ o T

ToMoMTE

<M, (f,®,¥,p,v,u,¢0,1,6,aB,kn, A z), (2.9)

p+ya() +ug* () + )za'@

then

DAWF T (f * @)(2)
q(z) < ( —/'IWk"(f*‘P)(z) )

and q is the best subordinant of (2.9).
Proof. Let the function p be defined by (2.4).

In view of (1.5), the superordination (2.9) becomes

& g T
p+vq(2) +uq?(2) + el (q(z) + qZ(Z)) zq'(z)

< p+Yp(2) + up*(2) + )ar'@.

€ N ( o N T
r(@) \p(z) p*(2)
By setting 8(w) = p + yw + uw? + % and ¢p(w) = % + % , it is easily observed that
6(w) and ¢(w) are analytic in C \ {0} and that ¢p(w) # 0,w € C \ {0}. Also, we get

? ("(Z))} {& 2 . }
e {d’(Q(Z)) Re aq(z)+r(yq (2) +2puq°(2) —€) (>0

Now Theorem 2.2 follows by applying Lemma 1.2.

By fixing ®(z) = ¥(z) = é in Theorem 2.2, we obtain the following corollary:
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Corollary 2.2. Let p,y,u,€,0,7,8 € C such that § # 0 and 0,7 are not simultaneously
zero, q be convex univalent in U with q(0) = 1 and assume that (2.2) holds true. Let
feA,

D; AW’“’“f(z)
( bW (2) ) € H[q(0),1] N

and M, (f,p,v, U, €,0,7,6,a, B, k,n, A; z) as defined by (2.7) be univalent in U. If

& o
p+vq(2) + uq*(2) +q(z)+< )zq (2)

T
+
q(z)  q*(2)
<M;(f,p,v,1,¢,0,7,8,a B,k 1,4 z), (2.10)

then

D; Wi " f @)
7= ( D, W @) )

and q is the best subordinant of (2.10).

Concluding the results of differential subordination and superordination, we state at
the following sandwich result.

Theorem 2.3. Let q; and q, be convex univalent in U with q;(0) = q,(0) = 1,
0,Y, U & 0,7,6 € C such that § # 0 and o, T are not simultaneously zero. Suppose q,
satisfies (2.1) and q, satisfies (2.8). For f,®,¥ € A, let

DA D@
11N
W@ ) e

and My (f, D, W,p,v, L &,0,7,8,a, B, k,n, A; z) as defined by (2.3) be univalent in U. If

g

T
+
q1(2) Qf ()
<M;(f,®,¥,p,v,u,¢,0,7,6,aB,kn,1 z)

p+vq.(2) + puqi(z) + qliZ) + ( )Zqi (2)

2 & g
<p+vq:(2) +uq;(z) + 5@ + <q2(z) 20 )>ZCI2(Z)
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then

S
) (D WG “’)(Z)> @
q1(z) < k < q,(z
W, g (f + W)(2)
and q4, q, are respectively the best subordinant and the best dominant.

By making use of Corollaries 2.1 and 2.2, we obtain the following corollary:

Corollary 2.3. Let q; and q, be convex univalent in U with q,(0) = q,(0) =1,
0,V U € 0,7T,6 €C such that § # 0 and o,T are not simultaneously zero. Suppose q,
satisfies (2.1) and q4 satisfies (2.8). For f € A, let

*W"”f(z)
and M, (f,p, v, U, €,0,7,6,a, B, k,n, A; z) as defined by (2.7) be univalent in U. If

) € H[1,1]1nQ

o 4 T
¢(2) 4 (@)

p+vq:(2) +ugi(z) + Lhiz) + ( )Zq{ (2)

< Mz(flpl)/ll’tlglo-l‘[lSIalﬂlklnlﬁ’;Z)

o
@@ q(2)

<P+ V0@ +RaE@D + s < )zqz @,

then

DAW T f(2)
q1(2) < (W) q2(2)

and qq, q, are respectively the best subordinant and the best dominant.

Theorem 2.4. Let ®,W € A, p,v,U,€,0,7,6,t1,t, € Csuch that § # 0,t; +t, # 0, and
0, T are not simultaneously zero, q be convex univalent in U with q(0) = 1 and assume
that (2.1) holds true. If f € A satisfies the differential subordination

M3(fr CD;LP;p: )/uul gl O-vTr 61 alﬂl klnlﬂ’l t]_; tz;z)

<p+19(2) + ug?(2) + — +< A )zq'(z), (2.11)
q(z) \q(z) q*(2)
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where

M3(fl (D:lplp')/v:uv &0,T, 6: alﬂl kvr}r/L tlr tZ;Z)

(tnglW""“(f * ®)(2) + £, D W, 3 (f * %(z))
(ty +tp)z

( L DAWT T (f * @)(2) + D7 AW (f %(z))
X\y+u
(ty +t3)z

te (ty +tp)z °
D7 MW T (f * )(2) + oD W J (f + W) (2)

+6|lo+T 6+ 6)z '
6 DZMW, T (f * ©)(2) + £, D AW (f + W) (2)

(14 Zhea () D™ (2)7) DA (f + 9)(2)
+ (=1 =B (O™ (B)) DAWET T (f + 2) ()
ti D7 Wy T (f * @) (2) + 62D MW, G (f * W) (2)

./
!
\

+ (A= 1= Shn (D™ (5)) DAWET ( + ()
D7 Wg T (f * )(2) + 2D W 5 (f + W) (2)

(14 Zhea (0™ (2)7) AW () () \
‘, (2.12)

then

(t + )z <4

(qDﬂW""“(f * ®)(2) + oD W, 7 (f + %(z))
and q is the best dominant of (2.11).

Proof. Let the function p be defined by
Earthline J. Math. Sci. Vol. 12 No. 1 (2023), 121-139
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t DF AW (f  ©)(2) + t,D7AW, 5 (f * ¥)(2)
p(z) = (

(ty + t2)z ) (z €U). (213)

Then the function p is analytic in U and p(0) = 1.

A simple computation using (2.13) gives

w_ [tz (07w )(@) + bz (DA WS F + )]
(@) tDFWT(f + @)(2) + £, D7 MW, (f + W) (2) B

In view of (1.5), we obtain

/ (14 Zha (D™ (5)7) DAWST 2  9) )

t

(- 1= S (D™ (9)) W - )@
tDF AW (f * @) (2) + 2D W, 5 (f * W) (2)

zp'(z) _
@ 0

|

'\
(14 Zhea() 0™ (2)7) WS (o + )

+ (2= 1= (D)™ (B)) DA (F + 9@

\l

4 | (2.14)
|
J

ty

D Wy T (f * ©)(2) + D7, (f * $)(2)

Also, we find that

o T
OMED
=M;(f,P,¥,p, v, 160,16, B,knAt,ty;2z), (2.15)

8 !
p+vyp(2) +up2(2)+p(z)+< )ZP (2)

where M5 (f, ®,W,p,v, 1, €,0,7,68,a,8,k,n, A, t,ty; z) is given by (2.12).
By using (2.15) in (2.11), we have

o 4 T
p(z) p*(2)

€ !
p 1P+t + o+ )zr' @)
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& g T
<p+vq(2) +uq*(2) + +< + )z'(z).
prYa@ TRyt o @)
By setting
& o T
Ow)=p+yw+uw?+— and dp(w) =—+—,
w w w

it can be easily observed that 8(w) and ¢(w) are analytic in C\ {0} and that p(w) #
0,w € C\ {0}. Also, we get

o T
Q) = 20 @D9(4) = (175 + ) 24/ @)

and

& g T
h() = 6(a() + Q) = p +Y4(D) + 1> @) + o+ (s + s ) 20/ @)

In light of the hypothesis of Theorem 2.4, we see that Q(z) is starlike univalent in U and

zh'(2)
Re{ Q(Z)}
el Lt (_ 2 30y _2rzq’(z)> 29" (2) }
_Re{aq(z)+r< e+yq®(2) +2uq>(2) — ozq'(z) @ + e) +1;>0.

Hence the result now follows by an application of Lemma 1.1.
By fixing ®(z) = W(z) = é in Theorem 2.4, we obtain the following corollary:

Corollary 2.4. Let p,y, 1, &,0,7,6,t1,t5 € C such that § # 0,t; +t, # 0 and o, T are
not simultaneously zero, q be convex univalent in U with q(0) = 1 and assume that (2.1)
holds true. If f € A satisfies the differential subordination

M4(flpl Y, W€, 0,T, 6; a, ﬂ; k, n,A, tl' tz;Z)

<p+yq2)+uq?(z) + £ + ( g + ! )zq’(z) (2.16)
q(z) \q(z) q*(2) '
where

M4(flpl)/llul §0,T, 6: avﬁv klnl/L tlr tZ;Z)

Earthline J. Math. Sci. Vol. 12 No. 1 (2023), 121-139
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_ tDW T f (2) + 6D AW f(z)
P (t + t)7

(tnglW""“ﬂz) +1t ‘AWk"f(Z)>
Xly+
(ty +t3)z

te (ty + tp)z °
D-Aw""+1 f(2) +t,D -lw"" f(2)

(ty +t)z °
DFWT T (2) + 6D MW, T f (2)

+6 O'+T<

(t (14 Zhea () D™ (2)7) DAWT 2 2
(- - Eha () Enm (9)) bW )

8 D-Aw""+1 f(2) + t,D -AW"" f(2)

(14 Zhea (0™ (2)7) D w7 £ ()

(A= 1= S () D™ (5)) DA WT )
* D-ﬂvv’”?“f(z)ﬂ2 -lwk"f(z) o (@17

then

tlDZAWer-lf(Z) +t,D _kanf(Z)
( (t; +t2)z > <4@

and q is the best dominant of (2.16).

Theorem 2.5. Let ®, ¥ € A, p,y, 4, €,0,7,0,t1,t; € C such that § # 0,t, + t, # 0 and
0, T are not simultaneously zero, q be convex univalent in U with q(0) = 1 and assume
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that (2.8) holds true. Let f € A,

EDTAWSI(F « )(2) + LDAWEI (F + W) (D))
€ H[q(0),1]nQ
(ty + t3)z
and M5(f, D, ¥W,p, v, 1, €,0,7,6,a,B,k,n, A t1,ts; z) as defined by (2.12) be univalent in
u. If

2 & g T ,
p Y@ + 1@ + o+ (s s ) 20 @

< M3 (fl q)r LP; p' V' HI E' 0-1 Tl 6! al ﬂl k' r}’ /1’ tl’ tZ' Z)' (218)

then

t D7 AWy (f + @)(2) + t2 D7 AW, 5 (f  ¥)(2)
1) = ( (t, + t3)z )

and q is the best subordinant of (2.18).

Proof. Let the function p be defined by (2.13).

In view of (1.5), the superordination (2.18) becomes

2 & g T ,
p Y@ + 1P @) + o+ (s s ) @

<PHIP@ + PP @) + =+ (b ) ' (),
p(z) \p(2) p*2)

By setting 8(w) = p + yw + uw? + % and p(w) = % + # , it is easily observed that
6(w) and ¢ (w) are analytic in C \ {0} and that ¢(w) # 0,w € C \ {0}. Also, we get
0 (q(Z))} { q'(2)
Re Re{————(yq*(2) +2uq3(z2) —€){ >0
{d)(q(z)) 0q(z) +t 1 q
Now Theorem 2.5 follows by applying Lemma 1.2.

By fixing ®(z) = ¥(z) = é in Theorem 2.2, we obtain the following corollary:

Corollary 2.5. Let p,y,it,€,0,7,6,t1,t, € C such that § # 0,t; +t, # 0 and 0,7 are
not simultaneously zero, q be convex univalent in U with q(0) = 1 and assume that (2.8)
holds true. Let f € A,

Earthline J. Math. Sci. Vol. 12 No. 1 (2023), 121-139
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€ H[q(0),1]nQ

tDW A f (2) + D AW, f(z)
(ty + t3)z

and M, (f,p, v, U, €,0,7,6,a, 8, k,n, A, t1,ty; z) as defined by (2.17) be univalent in U. If

p+ya(2) +ug*(2) + )za'@

& +< o n T
q(z) \q(z) q*(2)

< M4(fl p' V, .ul Sl O-I Tl 6! al ﬂl k' r}l /1' tl' tZ' Z)' (219)
then

tD7W, 3 f(2) + D AW’”’f(z)
1(2) < (t, + )z

and q is the best subordinant of (2.19).

Concluding the results of differential subordination and superordination, we state at
the following sandwich result.

Theorem 2.6. Let q; and q, be convex univalent in U with q;(0) = q,(0) = 1,
0,Y, U €0,7,6,t,t, € C such that § # 0,t; +t, # 0, and g, T are not simultaneously
zero. Suppose q, satisfies (2.1) and qq satisfies (2.8). For f,®,¥ € A, let

EDFWSI(F D)) + DAWEI(f + 9) (@)

e H[1,1]1NnQ
(ty +t)z

and M5(f, D, W,p, v, 1, €,0,7,6,a,B,k,n, A t1,ts; z) as defined by (2.12) be univalent in

u. If

o " T
01(2)  qi(2)
< M3(fr q)r q”;p: V,H, E, 0-, Tr 51 avﬁv kl T]rll t]_; t2; Z)

pHY01@) + ugE () + st < )zq{ @

g

" T
12(2)  q5(2)

<P+ V8@ +HgHE) + s+ ( )zq;(@,

then

tD7W, 3 T (F * @)(2) + 6D Wy (f * W)(2)
> QZ(Z)

7(2) < ( (t; +t,)z

and qq, q, are respectively the best subordinant and the best dominant.
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By making use of Corollaries 2.4 and 2.5, we obtain the following corollary:

Corollary 2.6. Let q and q, be convex univalent in U with q;(0) = q,(0) =1,
0,V U E0,7T,0,t,t; €C such that § # 0,t; +t, # 0, and g, T are not simultaneously
zero. Suppose q, satisfies (2.8) and qq satisfies (2.1). For f € A, let

t. D7 AW f(2) + D AW f(2)
( (ty +t3)z

) € H[1,1] N Q

and M, (f,p, v, U, €,0,7,6,a,8,k,n, A, t1,ty; z) as defined by (2.17) be univalent in U. If

g

Lt
a(2) 4 (@)

< M4(f' p: )’; ,ul 8: O-' T' 6; a' ﬁl kl r’lal tll tZ;Z)

p+vq:(2) + pugi(z) + qu} + ( )zqi (2)

o + T
22(2) * q3(2)

<p+vq2(2) + pqi(2) + qziz) + < )zqé (2),

then

t D Wy f(2) + D AW”H@
< q3(2)

q1(z) < ( t + )z

and q4, q, are respectively the best subordinant and the best dominant.
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