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Abstract

In this paper, we introduce a new class Rαm(h) of functions F = f ∗ψ, defined

in the open unit disc E with F (0) = F ′(0)−1 = 0 and satisfying the condition

F ′(z) + αzF ′′(z) =

(
m

4
+

1

2

)
p

1
(z)−

(
m

4
− 1

2

)
p

2
(z),

for α ≥ 0, m ≥ 2 and p
i
≺ h, i = 1, 2.

Several convolution properties of this class are obtained by using the method

of differential subordination. Many relevant connections of the findings here

with those in earlier works are pointed out as special cases.

1 Introduction and Preliminaries

Let A denote the class of analytic functions of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)
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which are analytic in the open unit disc E = {z ∈ C : |z| <}. Let S∗(α) and

C(α), 0 ≤ α < 1, denote the subclasses of A which are respectively starlike of

order α and convex of α in E. We denote S∗(0) ≡ S∗ and C(0) ≡ C. If f and

g are analytic in E, we say that f is subordinate to g, written symbolically as

f(z) ≺ g(z) or f ≺ g (z ∈ E), if and only if there exists a Schwarz function w,

analytic in E with w(0) = 0 and |w| < 1 in E such that f(z) = g(w(z)) for z ∈ E.

The Hadamard product (or convolution) of two power series f(z) = z +
∞∑
n=2

anz
n and g(z) = z +

∞∑
n=2

bnz
n is defined as the power series

(f ∗ g)(z) = f(z) ∗ g(z) =

∞∑
n=0

anbnz
n.

Recently, subordination and convolution techniques have been extensively used

in Geometric function theory. Many subclasses of the class A can be described

in term of subordination and convolution. In 1973, Ruscheweyh and Sheil-Small

[21] proved the Polya-Schoenberg conjecture that the class C is preserved under

convolution. Several other problems were studied since then, (see [2, 3, 5, 19, 20])

and many applications found in various fields.

Let p be analytic in E with p(0) = 1. Then p is called Caratheodory function

with Re p(z) > 0 in E, and is said to belong to the class P .

Definition 1.1. Let p be analytic in E with p(0) = 1. Then p ∈ P [A,B;β] if

and only if

p(z) ≺
(

1 +Az

1 +Bz

)β
:= p

β
(A,B; z), −1 ≤ B < A ≤ 1, β ∈ (0, 1], z ∈ E. (1.2)

For β = 1, P [A,B; 1] = P [A,B], see [7]. We note the following.

(i) It can be shown with simple computation, that the function p
β
(A,B; z) is

convex and univalent in E.
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(ii) Also, it is simple to see that

P [A,B;β] ⊂ P (ρ1) ⊂ P,

where ρ1 =
(
1−A
1−B

)β
and P (ρ1) is the class of Caratheodory functions of

order ρ1 .

(iii) p ∈ P (p
k
), k ≥ 0, if p(z) ≺ p

k
(z), where p

k
(z) are the extremal functions

mapping E onto the conic domain Ω
k

defined as:

Ωk =
{
w = u+ iv : u > k

√
(u− 1)2 + v2 ; k ≥ 0

}
[9, 10].

The domain Ω0 is right half plane, Ωk (0 < k < 1) indicates a region bounded

by hyperbola and a parabola for k = 1. For k > 1, it denotes an elliptic

region. The function p
k
(z) is given as

pk(z) =


1+z
1−z , k = 0,

1 + 2
π2

(
log 1+

√
z

1−
√
z

)2
, k = 1,

1 + 2
1−k2 sinh2

[
( 2
π arccos k) arctan

√
z
]
, 0 < k < 1 .

For k > 1, the extremal function can be found in [9, 10]. It is clear that

P (p
k
) ⊂ P (ρ2) ⊂ P, ρ2 =

k

1 + k
.

Also, p ∈ P (p
k
) implies that

| arg p(z)| < σ
π

2
, σ =

2

π
arctan

(
1

k

)
, z ∈ E.

Definition 1.2. Let p be analytic in E with p(0) = 1 and let

p(z) =

(
m+ 2

4

)
p1(z)−

(
m− 2

4

)
p2(z), m ≥ 2, z ∈ E, (1.3)

where pi ≺ h(z), i = 1, 2 and h(z) is convex univalent in E. Then p(z) is said to

belong to the class Pm(h) in E.
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For Pm

(
1+z
1−z

)
= Pm , we refer to [17]. Also, when we choose h(z) = (1 +

sz)2, 0 < s ≤ 1√
2

and h(z) = z +
√

1 + z2, we obtain the classes introduced by

Afis and Noor [1] and Kanwal and Afis [6], respectvely. We note that if h(z) =(
1+Az
1+Bz

)β
, then Pm(h) is denoted as Pm [A,B;β] and, with h(z) = p

k
(z), k ≥ 0,

we have Pm(p
k
).

Definition 1.3. Let ψ, F ∈ A with (ψ ∗ F )(z) 6= 0 and f ′(0) = 1 in E. Then

F = ψ ∗ f is said to belong to the class Rα
m

(h) if and only if F ′ + αzF ′′ ∈ Pm(h)

in E, where m ≥ 2, α ≥ 0.

Special Cases.

(i) Let ψ(z) = z
1−z , h(z) = 1+z

1−z and m = 2. Then Rα
2

implies

Re (f ′(z) + αzf ′′(z)) > 0, z ∈ E.

(ii) By taking h(z) = p
k
(z), ψ(z) = z

1−z , we have k − URα
m

. Also,

Rα
m

[(
1+Az
1+Bz

)β]
= Rα

m
[A,B;β].

Motivated principally by the works in [9, 10, 17, 19], we study the geometric

properties of the class Rα
m

(h), which include both the convolution and

subordination characterizations. Overall, we give some relevant connections

between our findings and the existing ones in the literature.

To prove our main results, we shall need the following Lemmas.

Lemma 1.4. [14] Let h(z) be convex univalent in E, h(0) = 1 and Re (δψ(z) +

t) > 0. If p(z) is analytic in U with p(0) = 1, then

p(z) +
zp′(z)

δp(z) + t
≺ h(z) ⇒ p(z) ≺ h(z) z ∈ E, δ, t ∈ C. (1.4)

Lemma 1.5. [14] Suppose that the function λ : C2 × E −→ C satisfies the

condition Re[λ(ix, y; z)] ≤ η for real x, y ≤ − (1+x2)
2 and all z ∈ E. If

p(z) = 1 + c1z + . . . is analytic in E and

Re
[
λ(p(z), zp′(z); z)

]
> η, for z ∈ E,

then Re p(z) > 0 in E.
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Lemma 1.6. [25] Let f, g, h ∈ A, α, β, γ ≤ 1. If f ′ ∈ P (α), g′ ∈ P (β), h′ ∈ P (γ),

then

Re
[(
f ′ ∗ g′ ∗ h′

)
(z)
]
> 1− 4(1− α)(1− β)(1− γ), z ∈ E.

Lemma 1.7. [22] Let p(z) be analytic in E with p(0) = 1 and Re (p(z)) > 1
2 in

E. Then for any function F analytic in E, the function p ∗ F takes values in the

convex hull of the image of E under F .

In the next section, we present the main findings of this work.

2 Main Results

Theorem 2.1. Let F1 = (φ ∗ f1) ∈ Rα1
m

(h) and F2 = (φ ∗ f2) ∈ Rα2
m

(h) in E.

Then

F = (F1 ∗ F2) ∈ R1
m

(β),

where

β = 1− 2(1− β1)(1− β2) (2.1)

with

βi = 1− 2(1− δi)(1− αi), i = 1, 2

and

δ1 =

∫ 1

0

dt

1 + tαi
.

Proof. Since F1 ∈ Rα1
m

(h), then

F ′
1

+ αzF ′′
1
∈ Pm(h).

That is

(F ′
1
∗ φα1 ) ∈ Pm(h),

where φα1 (z) = 1 +
∞∑
n=1

(nαi + 1)zn. Similarly,

(F ′
2
∗ φα2 ) ∈ Pm(h) in E.
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Now, Pm(h) ⊂ Pm(ρi), with ρ1 =
(
1−A
1−B

)β
and ρ2 = k

k+1 . Thus, F1 ∈ Rα1
m

(ρ1)

and F2 ∈ Rα2
m

(ρ2) and

F ′
1

+ α1zF
′′
1

= F ′
1
∗ φα1 F ′

2
+ α2zF

′′
2

= F ′
2
∗ φα2 ,

where

φαi
(z) = 1 +

∞∑
n=1

(nαi + 1)zn , i = 1, 2.

We define ψαi
= [φαi

](−1) = 1 +
∞∑
n=1

zn

nα1+1 =
∫ 1
0

dt
1+ztαi

, i = 1, 2 such that

(ψαi
∗ φαi )(z) =

z

1− z
, z ∈ E.

Then

F ′
i

=

(
m

4
+

1

2

)
[p1 ∗ ψαi ]−

(
m

4
− 1

2

)
[p2 ∗ ψαi ], m ≥ 2, i = 1, 2,

where p1 , p2 ∈ P (ρi). It is known [22] that for αi > 0, ψαi
is convex and

Reψαi
(z) ≥

∫ 1

0

dt

1 + tαi
= δi , δi ∈

[1

2
, 1
)
.

Therefore,

F ′
1

=

(
m

4
+

1

2

)
[p1 ∗ ψα1 ]−

(
m

4
− 1

2

)
[p2 ∗ ψα1 ],

where (pi ∗ ψα1 ) ∈ P (δ1), δ1 ∈
[
1
2 , 1
)

and

F ′
2

=

(
m

4
+

1

2

)
[p1 ∗ ψα2 ]−

(
m

4
− 1

2

)
[p2 ∗ ψα2 ],

with (pi ∗ ψα2 ) ∈ P (δ2), δ ∈
[
1
2 , 1
)

. Hence,

F ′
1
∈ Pm(β1) and F ′

2
∈ Pm(β2), (2.2)

where

β1 = 1− 2(1− δ1)(1− α1), β2 = 1− 2(1− δ2)(1− α2).
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Combining these relation, we have

F ′(z) = (F1(z) ∗ F2(z))′ = F1(z) ∗ zF ′′
2

(z)

and

(zF ′(z))′ = F ′(z) + zF ′′(z) = (F ′
1
(z) ∗ F ′

2
(z)). (2.3)

From (2.2) and (2.3), we have that F ∈ R1
m

(β), where β is given by (2.1).

Remark 2.2. From (2.1) and Lemma 1.4 with δ = 0, we have

F ′ ∈ Pm(γ1), γ1 = 1 + 4(1− β1)(1− β2)(ln 2− 1) (2.4)

and repeating the same procedure, it follows that

F (z)

z
∈ Pm(γ2), γ2 = 1− 8(1− β1)(1− β2)(ln 2− 1)2. (2.5)

Theorem 2.3. Let F1 and F2 belong to R1
2
(ρi), i = 1, 2 and let F (z) = (F1 ∗

F2)(z). Then F ∈ S∗, provided

(1− β1)(1− β2) <
3

8(ln 2− 1)2 + 4
, (2.6)

where βi , i = 1, 2 are as given in Theorem 2.1.

Proof. F1 = φ ∗ f1 , F2 = φ ∗ f2 and Fi ∈ R1
2
(h) ⊂ R1

2
(ρi). Using Theorem 2.1

with m = 2, we have

F ′ + zF ′′ ∈ P (β).

Let zF ′

F = h and F
z = η. Then h and η are analytic in E with h(0) = η(0) = 1.

Now,

F ′ + zF ′′ = η(z)
(
h2 + zh′

)
= λ

(
h, zh′, z

)
,

Earthline J. Math. Sci. Vol. 12 No. 1 (2023), 109-120
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where λ(u, v, z) = η(z)(u2 + v) and Re [λ(h, zh′, z)] > β, z ∈ E. For real x, y and

y ≤ −1+x2

2 , so we get

Re
[
λ(h, zh′, z)

]
=(y − x2)Re η(z)

≤− 1 + 3x2

2
Re η(z)

≤− Re η(z)

2

<β, (z ∈ E)

provided (1−β1)(1−β2) < 3
8(ln 2−1)2+4

, where we have used (2.3), (2.4) and (2.5).

Hence, from Lemma 1.5, it follows that Re h(z) > 0 in E and F ∈ S∗. This

completes the proof.

Theorem 2.4. Let φ(z) = z
1−z and Fi = φ ∗ fi = fi. Let fi ∈ R

αi
2 (p

k
), i = 1, 2,

and define

F = I(f1 ∗ f2) =
2

z

∫ z

0
(f1 ∗ f2)(t)dt.

Then F ∈ S∗(δ0) provided

(1− δ1)(1− δ2) <
3

8(ln 2− 1)2 + 4
and δ0 =

(
1

2(2 ln 2− 1)
− 1

)
= 0.294,

where

δi =

∫ 1

0

dt

1− tαi
, i = 1, 2.

Proof. Using Theorem 2.3, it follows that (f1 ∗ f2)S∗ in E. It is known [14,

Theorem 3.3g, p. 116] that the function F defined as Libera integral [12] of

(f1 ∗ f2) is starlike of order δ0 =
(

1
2(2 ln 2−1) − 1

)
≈ 0.294.

As a special case, we take k = 1. Then δi = 1
2 and Re (F ′(z) + zF ′′(z)) > 1

2 ,

z ∈ E.

Theorem 2.5. The class Rα
m

(ρi) is invariant under convex convolution in E.
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Proof. Let ψ ∈ C, F = f ∗ φ ∈ Rα
m

(ρi). Consider

(F ∗ ψ)′ + αz(F ∗ ψ)′′ =
ψ

z
∗
(
F ′ + αzF ′′

)
=
ψ

z
∗ p, p ∈ Pm(ρi)

=

(
m

4
+

1

2

)(
ψ

z
∗ p1

)
−
(
m

4
− 1

2

)(
ψ

z
∗ p2

)
,

p1 , p2 ∈ P (ρi).

Since ψ ∈ C, so Re
(
ψ
z

)
> 1

2 and by applying Lemma 1.7, (ψ ∗ pi) ∈ P (ρi) and

(ψ ∗ p) ∈ Pm(ρi). This proves that F ∈ Rα
m

(ρi) in E.

As an application of Theorem 2.5, we deduce that the class Rα
m

(ρi) is invariant

under Libera integral operator.

Remark 2.6. By choosing suitable and permissible values of parameter, we obtain

several known and new results. Moreover, the class Rα
m

(h) can be studied further

by involving several linear operators such as Carlson-Shaffer [4], Dziok-Srivastava

operator [13], which includes Ruscheweyh [18, 19] and Noor [15] operators as

special cases. Also see [8, 11,16,18,24].
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with limaçon class, Commun. Korean Math. Soc. 37(4) (2022), 995-1007.

https://doi.org/10.4134/CKMS.C210273

[7] W. Janowski, Some extremal problems for certain families of analytic functions I,

Annales Polonici Mathematici 28(3) (1973), 297-326.

[8] I.B. Jung, Y.C. Kim and H.M. Srivastava, The Hardy space of analytic functions

associated with certain one-parameter families of integral operators, Journal of

Mathematical Analysis and Applications 176(1) (1993), 138-147.

https://doi.org/10.1006/jmaa.1993.1204

[9] S. Kanas and A. Wisniowska, Conic domains and starlike functions, Revue Roumaine
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