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Abstract

In this paper, we introduce some new classes of exponentially variational

inclusions. Several important special cases are obtained as applications.

Using the resolvent operator, it is shown that the exponentially variational

inclusions are equivalent to the fixed point problem. This alternative

formulation is used to suggest and investigate a wide call of iterative schemes

for solving the variational inclusions. Dynamical systems is used to study

asymptotic stability of the solution. We study the convergence analysis for

proposed iterative methods. Sensitivity analysis is also considered. Our

results represent a significant improvement over the existing ones. As

special cases, we obtain some new and old results for solving exponentially

variational inclusions and related optimization problems.

1 Introduction

Variational inclusion theory contains a wealth of new ideas and techniques,

which can be viewed as a novel extension and generalization of the variational
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inequalities. It is amazing that a wide class of unrelated problems can be studied

in the unified framework of variational inclusions. The resolvent equations were

introduced and studied by Noor [28,29]. Noor [28,29] proved that the variational

inclusions are equivalent to the resolvent equations using the resolvent operator

technique. This equivalent alternative formulation has been used to study the

existence of a solution as well as to develop various iterative methods for solving

the variational inclusions. In this direction, several numerical methods have been

developed for solving the variational inclusions and their variant forms. Noor

[29, 31, 32] suggested and analyzed some three-step forward-backward splitting

algorithms for solving variational inequalities and quasi variational inclusions by

using the updating techniques of the solution. These forward-backward splitting

algorithms are similar to those of Glowinski et al. [16–18], which they suggested

by using the Lagrangian technique. It is known that three-step schemes are

versatile and efficient. These three-step schemes are a natural generalization of

the splitting methods for solving partial differential equations. For applications

of the splitting techniques to partial differential equations, see Ames [3] and the

references therein. For novel applications of the three-step methods, see Ashish

et al. [5]. These methods include the Mann and Ishikawa iterative schemes and

modified forward-backward splitting methods of Tseng [68], Noor [29, 31, 32] and

Noor et al. [54, 56] as special cases.

Related to variational inclusions, we have problem of dynamical systems.

Dynamical systems arise naturally in numerous applied and theoretical fields

including celestial mechanics financial forecasting, environmental applications,

neuroscience, brain modeling. It is known that the variational inequalities are

equivalent to the fixed point problems. Dupuis et al. [12] suggested the projected

dynamical system using the fixed point technique. This approach is used to

study the asymptotic stability of the solution of the variational inequalities.

See also Nagurney et al. [22] and Noor et al. [42] for more details. Noor et

al. [41, 52, 54, 56] used this technique to suggest some efficient iterative schemes

for solving variational inequalities. Noor et al. [52] has proved that variational

inclusions are equivalent to the dynamically systems. This equivalence has been
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used to study the existence and stability of the solution of variational inclusions.

Alvarez [2] used the inertial type projection methods for solving variational

inequalities, the origin of which can be traced back to Polyak [61]. Noor [34]

suggested and investigated inertial type projection methods for solving general

variational inequalities. These inertial type methods have been modified in

various directions for solving variational inequalities and related optimization

problems. Recently Shehu et al. [64], Noor et al. [45, 53, 56, 57] and Jabeen et

al. [19] analyzed some inertial projection methods for some classes of general quasi

variational inequalities. Convergence analysis of these inertial type methods has

been considered under some mild conditions.

In recent years, various extensions and generalizations of convex functions

and convex sets have been considered and studied using innovative ideas and

techniques. It is known that more accurate and inequalities can be obtained

using the logarithmically convex functions than the convex functions. Closely

related to the log-convex functions, we have the concept of exponentially

convex(concave) functions, the origin of exponentially convex functions can be

traced back to Bernstein [9]. Avriel [6] introduced and studied the concept

of r-convex functions. For further properties of the r-convex functions, which

have important applications in information theory, big data analysis, machine

learning and statistics, see Zhao et al. [69] and the references therein. Noor

and Noor [36–40, 46, 51, 57] introduced and investigated some new concepts of

exponentially convex functions. It is have been shown that the exponentially

convex(concave) have nice nice properties which convex functions enjoy. Several

new concepts have been introduced and investigated. For more details, see

[1,4,6,7,36–41,46,51,54,59,69] and the references therein. Noor and Noor. [36–41]

proved that the optimal conditions of the differentiable exponentially convex

functions can be characterized by a class of variational inequalities, which is called

the exponentially variational inequalities.

We like to mention that sensitivity analysis is important for several reasons.

First, estimating problem data often introduces measurement errors, sensitivity

analysis helps in identifying sensitive parameters that should be obtained with
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relatively high accuracy. Second, sensitivity analysis may help to predict the

future changes of the equilibrium as a result of changes in the governing system.

Third, sensitivity analysis provides useful information for designing or planning

various equilibrium systems. Furthermore, from mathematical and engineering

point of view, sensitivity analysis can provide new insight regarding problems

being studied can stimulate new ideas and techniques for solving exponentially

variational inclusions and related problem.

In this paper, we consider some new classes of exponentially variational

inclusions. It have been shown that the complementarity problems, general

variational inequalities, exponentially variational inequalities, system of absolute

value general equations and optimization problems can be obtained as special

cases of exponentially variational inclusions. We prove that the exponentially

variational inclusions are equivalent to fixed point problems. This alternative

formulation is used to suggest and investigate some new three step implicit and

explicit iterative methods for solving exponentially variational inclusions. These

new iterative methods can be viewed as significant generalization of the three-step

methods of Noor [30,34] and Tseng [68]. We have also used the dynamical systems

technique coupled with finite difference schemes to propose some new iterative

methods for solving the exponentially variational inclusions. The convergence

criteria of the proposed implicit methods is discussed under some mild conditions.

Several important special cases are discussed as applications of our results. We

have only considered the theoretical aspects of the proposed methods.We also

study the sensitivity analysis of the exponentially variational inclusion. It is still

an open problem to implement these methods and compare with other techniques.

It is expected the techniques and ideas of this paper may be starting point for

further research.
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2 Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by

< ·, · > and ‖.‖ respectively. Let K be a nonempty closed convex set in H. Let

ϕ : H → R ∪ {+∞} be a proper, convex and lower semicontinuous function.

For given nonlinear operators T, g : H → H, and a maximal monotone

operator A : H → H, consider the problem of finding u ∈ H such that

0 ∈ eTu +A(g(u)), (2.1)

which is called the exponentially general variational inclusion.

(i) If eTu = Φ(u), then problem (2.1) reduces to finding

0 ∈ Φ(u) +A(g(u)), (2.2)

which is called the general variational inclusion for the sum of two monotone

operators.

(ii) Note that if g ≡ I, the identity operator, then problem (2.1) is equivalent

to finding u ∈ H such that

0 ∈ eTu +A(u), (2.3)

is called the exponentially variational inclusion.

(iii) Note that for eTu = Φ(u), then problem (2.3) reduces to finding u ∈ H
such that

0 ∈ Φ(u) +A(u), (2.4)

Problem (2.4) is known as finding the zero of the sum of two monotone operators.

This problem is being studied extensively and has important applications in

operations research and engineering sciences. For recent state of the art, see

[13,14,18,20,21,31,32,63,68] and the references therein.
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(iv) If A(.) = ∂φ(.), where ∂ϕ(.) is the subdifferential of a proper, convex

and lower semicontinuous function ϕ : H −→ R ∪ {+∞}, then problem (2.1)

reduces to finding u ∈ H such that

0 ∈ eTu + ∂φ(g(u)) (2.5)

or equivalently, finding u ∈ H such that

〈eTu, g(v)− g(u)〉+ φ(g(v))− φ(g(u)) ≥ 0, ∀g(v) ∈ H. (2.6)

The inequality of type (2.6) is called the mixed exponentially general variational

inequality or the exponentially general variational inequality of the second kind.

It can be shown that a wide class of linear and nonlinear problems arising in

pure and applied sciences can be studied via the mixed exponentially general

variational inequalities (2.6).

(v) If g ≡ I, the identity operator, then the problem (2.6) is equivalent to

finding u ∈ H such that

〈eTu, v − u〉+ φ(v)− φ(u) ≥ 0, ∀v ∈ H, (2.7)

which are called the mixed exponentially variational inequalities.

(vi) If ϕ is the indicator function of a closed convex set K in H, that is,

ϕ(u) ≡ IK(u) =

{
0, if u ∈ K
+∞, otherwise,

then the exponentially mixed general variational inequality (2.6) is equivalent to

〈eTu, g(v)− g(u)〉 ≥ 0, ∀g(v) ∈ K. (2.8)

The inequality of the type (2.8) is known as the exponentially general variational

inequality, which was introduced and studied by Noor and Noor [46].

(vii) If eTu = Φ(u), then problem (2.8) collapses to finding u ∈ H, g(u) ∈ K
such that

〈Φ(u), g(v)− g(u)〉 ≥ 0, ∀g(v) ∈ K. (2.9)
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is known as the general variational inequality, introduced and studied by Noor [24]

in 1988.

(viii) For K = H, and Φ(u) = Mu − N(u), where M,N are operators,

problem (2.9) is equivalent to finding u ∈ H such that

〈Mu−N(u), g(v)− g(u)〉 ≥ 0, ∀v ∈ H, (2.10)

which is called the system of general equations, see [26, 48–50, 55]. It turned out

that the odd-order and nonsymmetric free, unilateral, obstacle and equilibrium

problems can be studied by the general variational inclusion (2.9), see [26,30,34,

53,54] and the references therein.

(ix) If K∗ = {u ∈ H : 〈u, v〉 ≥ 0, for all v ∈ K} is a polar cone of a convex

cone K in H, then problem (2.8) is equivalent to finding u ∈ H such that

g(u) ∈ K, eTu ∈ K∗, 〈eTu, g(u)〉 = 0, (2.11)

which is called the exponentially general complementarity problem. For g = I,

problem (2.11) is called the exponentially complementarity problems. For the

theory, applications and numerical methods of complementarity problems, see

[10,24,26,27,34,46] and the references therein.

(x) For g ≡ I, the identity operator, the exponentially general variational

inequality (2.8) collapses to: find u ∈ K such that

〈eTu, v − u〉 ≥ 0, ∀v ∈ K, (2.12)

which is called the exponentially variational inequality, introduced and studied by

Noor et al. [51].

(xi) If eTu = Φ(u), then problem (2.13 is equivalent to finicking u ∈ K such

that

〈Φ(u), v − u〉 ≥ 0, ∀v ∈ K, (2.13)

is called the classical variational inequality studied by Stampacchia [67] in 1964.

For the recent state-of-the art, see [8, 10, 12–23, 25–34, 41–44, 46, 47, 51–54, 56, 58,

60,62–67,70].
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Remark 2.1. For appropriate and suitable choice of the operators and the spaces,

one can obtain several new and known classes of variational inclusions and

optimization problems as special cases of the exponentially general variational

inclusion (2.1). This shoes that problem (2.1) is quite flexible, general and unified

ones.

We also need the following well known concepts and results.

Definition 2.1. If A is a maximal monotone operator on H, then, for a constant

ρ > 0, the resolvent operator associated with A is defined by

JA(u) = (I + ρA)−1(u), for all u ∈ H,

where I is the identity operator. It is well known that a monotone operator is

maximal, if and only if, its resolvent operator is defined everywhere. In addition,

the resolvent operator is a single-valued and nonexpansive, that is,

‖JA(u)− JA(v)‖ ≤ ‖u− v‖, ∀u, v ∈ H.

Remark 2.2. It is well known that the subdifferential ∂φ of a proper, convex

and lower semicontinuous function φ : H → R ∪ {+∞} is a maximal monotone

operator, we denote by

Jϕ(u) = (I + ρ∂φ)−1(u), ∀u ∈ H,

the resolvent operator associated with ∂φ, which is defined everywhere on H.

Lemma 2.1. For a given z ∈ H, u ∈ H satisfies the inequality

〈u− z, v − u〉+ ρφ(v)− ρφ(u) ≥ 0, ∀v ∈ H, (2.14)

if and only if,

u = Jφz, (2.15)

where Jϕ = (I+ρ∂φ)−1 is the resolvent operator and ρ is a constant. This property

of the resolvent operator Jφ plays an important part in obtaining our results.
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We also need the following concepts.

Definition 2.2. An operator T : H → H is said to be:

(i) exponentially general monotone, if

〈eTu − eTv, g(u)− g(v)〉 ≥ 0, ∀u, v ∈ H.

(ii) exponentially general pseudomonotone, if

〈eTu, g(v)− g(u)〉 ≥ 0 implies 〈eTv, g(v)− g(u)〉 ≥ 0, ∀u, v ∈ H.

(iii) exponentially general quasi-monotone, if

〈eTu, g(v)− g(u)〉 > 0 implies 〈eTv, g(v)− g(u)〉 ≥ 0, ∀u, v ∈ H.

(iv) exponentially general Lipschitz continuous, if there exists a constant

δ > 0 such that

〈eTu − eTv, g(u)− g(v)〉 ≤ δ‖g(v)− g(u)‖2, ∀u, v ∈ H.

Note that for g ≡ I, the identity operator, Definition 2.2 reduces to the

standard definition of monotonicity, pseudomonotonicity, quasimonotonicity and

(relaxed) Lipschitz continuity of the operator T . Note that monotonicity implies

pseudomonotonicity and pseudomonotonicity implies quasimonotonicity, but the

converse is not true, see [8].

3 Resolvent Method

In this section, we suggest and analyze some new iterative methods for solving

the exponentially general variational inclusions (2.1). First of all, we prove that

problem (2.1)is equivalent to the fixed point problem by using the definition of

the resolvent operator.
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Lemma 3.1. The function u ∈ H is a solution of the variational inclusion (2.1),

if and only if, u ∈ H satisfies the relation

g(u) = JA[g(u)− ρeTu], (3.1)

where JA = (I + ρA)−1 is the resolvent operator and ρ > 0 is a constant.

Proof. Let u ∈ H be a solution of (2.1). Then, for a constant ρ > 0, the

exponentially general variational inclusion (2.1) can be written as

0 ∈ −g(u) + ρeTu + (I + ρA)g(u),

which is equivalent to finding u ∈ H such that

g(u) = (I + ρA)−1[g(u)− ρeTu] = JA[g(u)− ρeTu],

the required result.

Lemma 3.1 implies that the exponentially general variational inclusion (2.1)

is equivalent to the fixed point problem (3.1). This equivalent fixed point

formulation was used to suggest some implicit iterative methods for solving the

exponentially general variational inclusions. One uses the equivalent fixed point

formulation(3.1) to suggest the following iterative methods for solving variational

inclusion (2.1).

We rewrite the equation (3.1) as:

u = u− g(u) + JA[g(u)− ρeTu],

which is another fixed point formulation. This equivalent fixed point formulation

is used tp suggest the following iterative methods for solving the exponentially

general variational inclusion (2.1).

Algorithm 1. For a given u0 ∈ H, compute un+1 by the iterative scheme

un+1 = un − g(un) + JA[g(un)− ρeTun ], n = 0, 1, 2, ...

which is known as the resolvent method and has been studied extensively.
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Algorithm 2. For a given u0 ∈ H, compute un+1 by the iterative scheme

un+1 = un − g(un) + JA[g(un)− ρeT (g−1JA(g(un)−ρTun)], n = 0, 1, 2, ...

which can be viewed as the extraresolvent method for solving the classical

exponentially general variational inequalities. Using the technique of Noor [34],

one can prove the convergence of the extragradient method for pseudomonotone

operators.

Algorithm 3. For a given u0 ∈ H, compute un+1 by the iterative scheme

un+1 = un − g(un) + JA[g(un+1)− ρeTun+1 ], n = 0, 1, 2, ...

which is known as the modified resolvent method in the sense of Noor [34].

To implement Algorithm 3, we use the predictor-corrector technique.

Consequently, we obtain the following two-step iterative method.

Algorithm 4. For a given u0 ∈ H, compute un+1 by the iterative schemes

yn = un − g(un) + JA[g(un)− ρeTun ]

un+1 = un − g(un) + JA[g(yn)− ρeTyn ], n = 0, 1, 2, ...

We can rewrite the equation (3.1) as:

g(u) = JA[g(
u+ u

2
)− ρeTu].

This fixed point formulation was used to suggest the following implicit method

for solving variational inclusion. We used this equivalent formulation to suggest

implicit methods for exponentially general variational inclusion (2.1).

Algorithm 5. For a given u0 ∈ H, compute un+1 by the iterative scheme

un+1 = un − g(un) + JA[g
(un + un+1

2

)
− ρeTun+1 ], n = 0, 1, 2, ...
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For the implementation of this Algorithm 5, one can use the predictor-corrector

technique to suggest the following two-step iterative method for solving general

variational inclusions.

Algorithm 6. For a given u0 ∈ H, compute un+1 by the iterative scheme

g(yn) = JA[g(un)− ρeTun ]

un+1 = un − g(un) + JA[g
(yn + un

2

)
− ρeTyn ], λ ∈ [0, 1], n = 0, 1, 2, ...

which is a two-step iterative method:

From the equation (3.1), we have

g(u) = JA[g(u)− ρeT (u+u
2

)].

This fixed point formulation is used to suggest the implicit method for solving

the exponentially variational inclusion as

Algorithm 7. For a given u0 ∈ H, compute un+1 by the iterative scheme

un+1 = un − g(un) + JA[g(un)− ρeT (
un+un+1

2
)], n = 0, 1, 2, ....

which is another implicit method.

To implement this implicit method, one can use the predictor-corrector

technique to rewrite Algorithm 7 as equivalent two-step iterative method.

Algorithm 8. For a given u0 ∈ H, compute un+1 by the iterative scheme

g(yn) = JA[g(un)− ρeTun ],

un+1 = un − g(un) + JA[g(un)− ρeT (un+yn
2

)], n = 0, 1, 2, ....

which is known as the mid-point implicit method for solving exponentially general

variational inclusion.
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Using the techniques of Noor et al. [54], one can investigate the the convergence

analysis and other aspects of Algorithm 5.

It is obvious that Algorithm 5 and Algorithm 7 have been suggested using

different variant of the fixed point formulations (3.1). It is natural to combine

these fixed point formulation to suggest a hybrid implicit method for solving

the exponentially general variational inclusion and related optimization problems,

which is the main motivation of this paper.

One can rewrite the equation (3.1) as

g(u) = JA[g
(u+ u

2

)
− ρeT (u+u

2
)].

This equivalent fixed point formulation enables to suggest the following method

for solving the exponentially general variational inclusion (2.1).

Algorithm 9. For a given u0 ∈ H, compute un+1 by the iterative scheme

un+1 = un − g(un) + JA[g
(un + un+1

2

)
− ρeT (

un+un+1
2

)], n = 0, 1, 2, ....

which is an implicit method.

We would like to emphasize that Algorithm 9 is an implicit method. To

implement the implicit method, one uses the predictor-corrector technique. We

use Algorithm 1 as the predictor and Algorithm 9 as corrector. Thus, we obtain

a new two-step method for solving exponentially general variational inclusion.

Algorithm 10. For a given u0 ∈ H, compute un+1 by the iterative scheme

g(yn) = JA[g(un)− ρeTun ]

un+1 = un − g(un) + JA[g
(yn + un

2

)
− ρeT

(
yn+un

2

)
], n = 0, 1, 2, ...

which is a two-step method.
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For constants λ, ξ ∈ [0, 1], we can rewrite the equation (3.1) as:

g(u) = JA
[
(1− λ)g(u) + λg(u))− ρeT ((1−ξ)u+ξu)

]
.

This equivalent fixed point formulation enables to suggest the following method

for solving the exponentially general variational inclusion (2.1).

Algorithm 11. For a given u0 ∈ H, compute un+1 by the iterative scheme

g(un+1) = JA
[
(1− λ)g(un) + λg(un+1))− ρeT ((1−ξ)un+ξun+1)

]
, n = 0, 1, 2, ...

which is an implicit method.

Using the prediction-correction technique, Algorithm 11 can be written in the

following form.

Algorithm 12. For a given u0 ∈ H, compute un+1 by the iterative scheme.

g(yn) = JA[g(un)− ρeTun ]

g(un+1) = JA
[
(1− λ)g(un) + λg(yn))− ρeT ((1−ξ)un+ξyn)

]
, n = 0, 1, 2, ..

which is two step method.

For a constants ξ ∈ [0, 1], we can rewrite the equation (3.1) as:

g(u) = JA
[
g((1− ξ)u+ ξu))− ρeT ((1−ξ)u+ξu)

]
.

This equivalent fixed point formulation enables to suggest the following method

for solving the exponentially general variational inclusion (2.1).

Algorithm 13. For a given u0 ∈ H, compute un+1 by the iterative scheme

g(un+1) = JA
[
g((1− ξ)un + ξun−1)− ρeT ((1−ξ)un+ξun−1)

]
, n = 0, 1, 2, ...

which is an inertial implicit method for solving the exponentially general

variational inclusions (2.1).
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Algorithm 13 can be rewritten as the following method using the

predictor-corrector technique.

Algorithm 14. For a given u0, u1 ∈ H, compute un+1 by the iterative scheme

yn = (1− ξ)un + ξun−1)

g(un+1) = JA
[
g(yn)− ρTyn

]
, n = 0, 1, 2, ...

which is known as the inertial two-step method.

Remark 3.1. It is worth mentioning that Algorithm 12 is a unified ones. For

suitable and appropriate choice of the constant λ and ξ, one can obtain a wide

class of iterative methods for solving exponentially general variational inclusions

and related optimization problems.

We now define the resolvent residue vector by the relation

R(u) = g(u)− JA[g(u)− ρeTu]. (3.2)

From Lemma 3.1, it is clear the u ∈ H, g(u) ∈ K is a solution of (2.1), if and only

if, u ∈ H, g(u) ∈ H is a zero of the equation

R(u) = 0. (3.3)

For a positive constant γ, we can rewrite equation (3.3) as

g(u) + ρeTu = g(u) + ρeTu−γR(u).

This fixed-point formulation allows us to suggest and analyze the following

iterative method.

Algorithm 15. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative scheme

g(un+1) = g(un) + ρeTun − ρeTun+1−γR(un),

which is known as the implicit iterative method.
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In order to implement Algorithm 15, one has to compute the solution

implicitly, which is itself a difficult problem. In order to over come this

difficulty, we suggest another iterative method, the convergence which also

requires monotonicity of the operator.

For a positive step size γ, equation (3.3) can be written as

g(u) = g(u)− γR(u). (3.4)

This fixed-point formulation allows to suggest the following iterative method for

solving the exponentially general variational inequalities (2.1).

Algorithm 16. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative schemes

g(un+1) = g(un)− γnR(un), n = 0, 1, 2 . . .

Note that for γn = 1, Algorithm 16 coincides with Algorithm 12.

It is well known that the convergence analysis of Algorithm 12 requires that

both the operators T and g must be strongly monotone and Lipschitz continuous.

These strict conditions rule out many important applications of Algorithm 15.

To overcome these drawbacks, one uses the technique of updating the solution.

Using this technique, we can rewrite the equation (3.3) in the form

g(u) = JA[g(u)− ρeTg−1JA[g(u)−ρTu]], (3.5)

if g−1 exists.

We use this fixed-point formulation to suggest the following

extraresolvent-type method for solving exponentially general variational

inclusion (2.1).

Algorithm 17. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative scheme.
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Predictor step.

g(vn) = JA[g(un)− ρneTun ],

where ρn satisfies

ρn〈eTun − eTg
−1JA[g(un)−ρeTun ], R(un)〉 ≤ σ‖R(un)‖2, σ ∈ (0, 1).

Corrector step.

g(un+1) = JA[g(un)− αneTvn ], n = 0, 1, 2 . . . ,

where

αn =
(1− σ)‖R(un)‖2

‖eTvn‖2

eTvn = eTg
−1JA[g(un)−ρnTun ].

For g ≡ I, the identity operator, Algorithm 17 reduces to:

Algorithm 18. For a given u0 ∈ H, compute un+1 by the iterative schemes:

Predictor step.

vn = JA[un − ρneTun ],

where ρn satisfies the relation

ρn〈eTun − eTvn , R(un)〉 ≤ σ‖R(un)‖2, σ ∈ (0, 1).

Corrector step.

un+1 = JA[un − αneTvn ],

where

αn =
(1− σ)‖R(un)‖2

‖eTvn‖2

eTvn = eTJA[un−ρneTun ].
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Algorithm 18 is an improved version of the extragradient-type method.

Now consider

g(w) = (1− η)g(u) + ηJA[g(u)− ρeTu] = g(u)− ηR(u) ∈ H, (3.6)

from which we have

g(u) = JA[g(u)− ρeTg−1(g(u)−ηR(u))].

This fixed-point formulation is used to suggest and analyze the following modified

extraresolvent method for exponentially general variational inclusion (2.1).

Algorithm 19. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative schemes

Predictor step.

g(wn) = g(un)− ηnR(un),

where ηn = amk , and mk is the smallest nonnegative integer m such that

ρnηn〈eTun − eTg
−1(g(un)−amkR(un)), R(un)〉 ≤ σ‖R(un)‖2, σ ∈ (0, 1).

Corrector step.

g(un+1) = JA[g(un)− αneTg
−1(g(un)−ηnR(un))], n = 0, 1, 2 . . . ,

where

αn =
(ηn − σ)‖R(un)‖2

‖eTg−1(g(un)−ηnR(un))|2
.

For g ≡ I, where I is the identity operator, we obtain a variant form of

the modified extraresolvent-type methods for solving exponentially variational

inequalities

For ηn = 1, Algorithm 19 is exactly Algorithm 17.

For a positive constant α, one can rewrite equation (3.1) as

g(u) = JA[(1− α)g(u) + αg(u)− ρeTu], (3.7)

which is the fixed-point problem. This equivalent fixed-point formulation allows

us to suggest the following iterative method.
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Algorithm 20. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative scheme

g(un+1) = JA[(1− α)g(un) + αg(un−1)− ρeTun ], n = 0, 1, 2, . . .

which can be rewritten in the equivalent form as:

Algorithm 21. For given u0, u1 ∈ H, compute the approximate solution un+1 by

the iterative scheme

g(yn) = (1− α)g(un) + αg(un−1)

g(un+1) = JA[g(yn)− ρeTun ], n = 0, 1, 2, . . .

which is known as the inertial method for solving the exponentially general

variational inclusions (2.1) and appears to a new one.

For g = I, the identity operator, Algorithm 21 reduces to the inertial method

for solving exponentially general variational inclusions. Note that αn = 0,

Algorithm 20 is equivalent to Algorithm 12. The process described above is

reminiscent to a technique by which two-step methods can be derived as one step

method. Compare this method for the heavy-ball method of Polyak [61]. Using

the above technique, one can suggest a number of new and improved methods for

the exponentially general variational inclusions (2.1) and related problems.

Using this technique, we can suggest the following inertial type methods for

solving exponentially general variational inequalities (2.1).

Algorithm 22. For given u0, u1 ∈ H, compute un+1 by the recurrence relation

wn = un −Θn (un − un−1)

g(un+1) = JA
[
g(wn)− ρeTwn

]
, n = 1, 2, . . . ,

where Θn ∈ [0, 1], for all n ≥ 1.

Algorithm 22 is known as modified inertial method for solving inequality (2.1).
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Algorithm 23. For given u0, u1 ∈ H, compute un+1 by the recurrence relation

wn = un −Θn (un − un−1)

g(yn) = JA
[
g(wn)− ρeTwn

]
,

g(un+1) = JA
[
g(yn)− ρeTyn

]
, n = 1, 2, . . . ,

where Θn ∈ [0, 1],∀n ≥ 1.

Algorithm 23 is a three-step modified inertial method for solving the

exponentially general variational inclusion(2.1).

We now suggest a four-step inertial method for solving the exponentially general

variational inclusion (2.1).

Algorithm 24. For given u0, u1 ∈ H, compute µn+1 by the recurrence relation

wn = un −Θn (un − un−1) ,

xn = (1− γn)un + γn
{
wn − g(wn) + JA

[
g(wn)− ρeTwn

] }
,

yn = (1− βn)un + βn
{
xn − g(xn) + JA

[
g(xn)− ρeTxn

] }
,

un+1 = (1− αn)un + αn
{
yn − g(yn) + JA

[
g(yn)− ρeTyn

] }
, n = 1, 2, . . . ,

where αn, βn, γn,Θn ∈ [0, 1], ∀n ≥ 1.

If g = I, the identity, then Algorithm (24) reduces to:

Algorithm 25. For given µ0, µ1 ∈ H, compute µn+1 by the recurrence relation

wn = un −Θn (un − un−1) ,

xn = (1− γn)un + γnJA
[
wn − ρeTwn

]
,

un+1 = (1− αn)un + αnJA
[
yn − ρeTyn

]
, n = 1, 2, . . . ,

where αn, βn, γn,Θn ∈ [0, 1], ∀n ≥ 1.

Lemma 3.1 implies that the variational inclusions(2.1) are equivalent to the

fixed point problems. These alternate equivalent formulations are very useful from
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the numerical point of view. These fixed point formulations can be used to suggest

and analyze the iterative algorithm for solving exponentially general variational

inclusion (2.1).

4 Resolvent Equations Technique

In this section, we introduce the exponentially general resolvent equations. To be

more precise, let RA ≡ I−JA, where I is the identity operator and JA = (I+ρA)−1

is the resolvent operator. Let g : H −→ H be an invertible operator. For given

nonlinear operators T, g : H −→ H, consider the problem of finding z ∈ H such

that

eTg
−1JAz + ρ−1RAz = 0, (4.1)

where ρ > 0 is a constant. Equations of type (4.1) are called the exponentially

general resolvent equations.

If g = I, then general resolvent equations(4.1) collapse to finding z ∈ H such

that

eTJAz + ρ−1RAz = 0, (4.2)

which are known as the exponentially resolvent equations.

If A(.) ≡ ∂ϕ(.), where ∂ϕ is the subdifferential of a proper, convex and

lower semicontinuous function ϕ : H −→ R ∪ {+∞}, then exponentially general

resolvent equations are equivalent to finding z ∈ H such that

eTg
−1Jϕz + ρ−1Rϕz = 0, (4.3)

which are also called the exponentially general resolvent equations. Using these

resolvent equations, one can suggest and analyze a number of iterative methods

for solving exponentially general mixed variational inequalities. If g ≡ I, the

identity operator, then the problem (4.3) reduces to finding z ∈ H such that

eTJϕz + ρ−1Rϕz = 0, (4.4)
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which are called the resolvent equations. For the applications, formulation and

numerical methods of the resolvent equations, see [16–19,22–27].

We remark that, if ϕ is the indicator function of a closed convex set K in

H, then Jϕ ≡ PK , the projection of H onto K. Consequently problem (4.4) is

equivalent to finding z ∈ H such that

eTg
−1PKz + ρ−1QKz = 0, (4.5)

Equations of the type (4.5) are known as the exponentially general Wiener-Hopf

equations. For g = I and eTu = Φ(u), we obtain the original Wiener-Hopf

(normal) equations introduced and studied by Shi [65] and Robinson [62]

in connection with the classical variational inequalities. We would like to

mention that the Wiener-Hopf equations technique is being used to develop some

implementable and efficient iterative algorithms for solving variational inequalities

and related fields.

We now prove that the exponentially general variational inclusion (2.1) is

equivalent to the resolvent equations (4.1) by invoking Lemma 3.1 and this is the

prime motivation of our next result.

Theorem 4.1. The exponentially general variational inclusion (2.1) has a

solution u ∈ H, if and only if, the exponentially resolvent equation (4.1) has a

solution z ∈ H, where

g(u) = JAz (4.6)

z = g(u)− ρeTu, (4.7)

where JA is the resolvent operator and ρ > 0 is a constant.

Proof. Let u ∈ H be a solution of (2.1). Then, by Lemma 3.1, we have

g(u) = JA[g(u)− ρeTu]. (4.8)

Let z = g(u)− ρeTu in (4.8). Then

g(u) = JAz
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and

z = JAz − ρeTg
−1JAz,

which implies that

eTg
−1JAz + ρ−1RAz = 0,

the required result.

From Theorem 4.1, we conclude that the exponentially general variational

inclusion (2.1) and the exponentially resolvent equations (4.1) are equivalent.

This alternative formulation plays an important and crucial part in suggesting

and analyzing various iterative methods for solving exponentially variational

inclusions and related optimization problems. In this paper, by suitable and

appropriate rearrangement, we suggest a number of new iterative methods for

solving the exponentially general variational inclusions (2.1).

(I). The equations (4.1) can be written as

RAz = −ρeTg−1JAz,

which implies that, using (4.6),

z = JAz − ρeTg
−1JAz = g(u)− ρeTu.

This fixed point formulation enables us to suggest the following iterative method

for solving the exponentially general variational inclusion (2.1).

Algorithm 26. For a given z0 ∈ H, compute un+1 by the iterative schemes

g(un) = JAzn (4.9)

zn+1 = g(un)− ρeTun , n = 0, 1, 2, .. . . . (4.10)
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(II). The equations (4.1) may be written as

z = JAz − ρeTg
−1JAz + (1− ρ−1)RAz

= u− ρeTu + (1− ρ−1)RAz, using (4.6).

Using this fixed point formulation, we suggest the following iterative method.

Algorithm 27. For a given z0 ∈ H, compute un+1 by the iterative schemes

g(un) = JAzn

zn+1 = un − ρeTun + (1− ρ−1)RAzn, n = 0, 1, 2, . . .

(III). If the operator T is linear and T−1 exists, then the resolvent equation(4.1)

can be written as

z = (I − ρ−1geT
−1)RAz,

which allows us to suggest the iterative method.

Algorithm 28. For a given z0 ∈ H, compute zn+1 by the iterative scheme

zn+1 = (I − ρ−1geT
−1)RAzn , n = 0, 1, 2 . . .

We remark that if g ≡ I, the identity operator, then Algorithms 26, 27 and

28 reduce to the following algorithms for solving variational inclusions(2.3).

Algorithm 29. For a given z0 ∈ H, compute zn+1 by the iterative schemes

un = JAzn

zn+1 = un − ρeTun , n = 0, 1, 2, . . .

Algorithm 30. For a given z0 ∈ H, compute zn+1 by the iterative schemes

un = JAzn

zn+1 = un − ρeTun + (1− ρ−1)RAzn, n = 0, 1, 2.. . . . .
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Algorithm 31. For a given z0 ∈ H, compute zn+1 by the iterative scheme

zn+1 = (I − ρ−1eT
−1)RAzn , n = 0, 1, 2, .. . . . .

We note that Algorithm 30 and Algorithm 31 are new even for the variational

inclusions (2.3).

We now study the convergence analysis of Algorithm 26. One can study the

convergence analysis of Algorithms 27-31 in a similar way.

Theorem 4.2. Let T, g : H −→ H be both exponentially strongly monotone with

constants α > 0, σ > 0 and exponentially Lipschitz continuous with constants

β > 0, δ > 0 respectively. If

|ρ− α

β2
| <

√
α2 − β2k(2− k)

β2
(4.11)

α > β
√
k(2− k), (4.12)

where

k = 2
√

1− 2σ + δ2, (4.13)

then there exists z ∈ H satisfying the exponentially resolvent equation(4.1) and

the sequence {zn} generated by Algorithm 26 converges to z in H strongly.

Proof. Let z ∈ H be a solution of the exponentially resolvent equation(4.1). Then

from (4.7) and (4.10), we have

||zn+1 − z|| = ||g(un)− g(u)− ρ(eTun − eTu)||

≤ ||un − u− (g(un)− g(u))||

+||un − u− ρ(eTun − eTu)||. (4.14)

Since T is exponentially strongly monotone with constant α > 0 and

exponentially Lipschitz continuous with constant β > 0, so

‖un − u− ρ(eTun − eTu)‖2 = ‖un − u‖2 − 2ρ < eTun − eTu, un − u >

+ρ2‖eTun − eTu|‖2

≤ (1− 2ρα+ ρ2β2)‖un − u‖2, (4.15)
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and similarly

‖un − u− (g(un)− g(u))‖2 ≤ (1− 2σ + δ2)‖un − u‖2, (4.16)

where σ > 0 and δ > 0 are the exponentially strongly exponentially monotonicity

and exponentially Lipschitz continuity constants of the operator g respectively.

Combining (4.14), (4.15) and (4.16), we have

‖zn+1 − z‖ ≤ {
k

2
+
√

1− 2ρα+ ρ2β2}||un − u||. (4.17)

From (4.15) and (4.17), we obtain

‖un − u‖ ≤ ‖un − u− (g(un)− g(u))‖+ ‖JAzn − JAz‖

≤ k

2
‖un − u‖+ ‖zn − z‖,

which implies that

‖un − u‖ ≤ (
1

1− k
2

)‖zn − z‖. (4.18)

Combining (4.18) and (4.17), we have

‖zn+1 − z‖ ≤
k
2 + t(ρ)

1− k
2

‖zn − z‖ = θ‖zn − z‖, (4.19)

where

t(ρ) =
√

1− 2ρα+ ρ2β2

θ = (
k

2
+ t(ρ))/(1− k

2
).

From (4.11) and (4.19), it follows that θ < 1. and consequently it follows that

the sequence {zn} generated by Algorithm 26 converges to z strongly in H, the

required result.

From Theorem 4.2, it is clear that the convergence of Algorithms 27–31

requires the operators T, g to be exponentially strongly monotone and
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exponentially Lipschitz continuous. These strict conditions limit the applications

of these algorithms to many important problems arising in pure and applied

sciences. These facts motivated Noor [18, 19, 22] to use the exponentially

resolvent equations technique to suggest other iterative methods for solving

mixed variational inequalities. As special cases, we obtain the modified

forward-backward splitting method of Tseng [68], which he suggested using the

updating method of the solution in the spirit of the extragradient method.

We define the residue vector R(u) by the relation

R(u) = g(u)− JA[g(u)− ρeTu]. (4.20)

From Lemma 3.1, it follows that u ∈ H is a solution of exponentially general

variational inclusion (2.1), if and only if, u ∈ H is a zero of the equation

R(u) = 0. (4.21)

Using the fact that RA = I − JA, the exponentially resolvent equations (4.1)

can be written as

z − JAz + ρeTg
−1JAz = 0.

Thus, for a positive stepsize γ, we can write the above equation as

g(u) = g(u)− γ{z − JAz + ρeTg
−1JAz}

= g(u)− γD(u),

where

D(u) = z − JAz + ρeTg
−1JAz

= R(u)− ρeTu + ρeTg
−1JA[g(u)−ρeTu], using (3.16). (4.22)

This fixed point formulation enables us to suggest the following iterative

methods for solving the exponentially variational inclusion (2.1).
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Algorithm 32. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative schemes

zn = g(un)− ρeTun

D(un) = zn − ρJAzn + ρeTg
−1JAzn

g(un+1 = g(un)− γD(un), n = 0, 1, 2 . . .

Algorithm 33. For a given u0 ∈ H, compute un+1 by the iterative schemes

zn = g(un)− ρeTun

D(un) = zn − JAzn + ρeTg
−1JAzn

g(un+1) = JA[g(un)− γD(un)], n = 0, 1, 2, . . .

If A(.) ≡ ∂ϕ(.), where ∂ϕ is the subdifferential of a proper, convex and lower

semicontinuous function ϕ : H −→ R ∪ {+∞}, then JA ≡ Jϕ = (I + ∂ϕ)−1, the

exponentially resolvent operator and consequently Algorithm 33 collapses to:

Algorithm 34. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative schemes

zn = g(un)− ρeTun

D(un) = zn − Jϕzn + ρeTg
−1Jϕzn

g(un+1) = g(un)− γD(un), n = 0, 1, 2 . . .

For g ≡ I, the identity operator, Algorithm 34 collapses to the following new

iterative method for solving the exponentially variational inclusion(2.3).

Algorithm 35. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative schemes

zn = un − ρeTun

D(un) = zn − JAzn + ρeTJAzn

un+1 = JA[un − ρeTun ], n = 0, 1, 2, . . . .
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Note that for γ = 1, Algorithm 35 reduces to:

Algorithm 36. For a given u0 ∈ H, compute un+1 by the iterative scheme

un+1 = JA[JA[un − ρeTun ]− ρeTJA[un−ρTun] + ρeTun ], n = 0, 1, 2 . . . .

Algorithm 36 would coincide with the modified forward-backward splitting

method of Tseng [68] for JA = PK , the projection operator from H onto K. Note

that Tseng [68] used the technique of updating the solution to suggest his method,

whereas we have used the resolvent equations technique to suggest. In brief, for

a suitable and proper choice of the operators T, g, JA, and PK , one can obtain a

number of new and old methods for solving the variational inclusions and related

problems.

We now study the convergence analysis of Algorithm 34. In a similar way,

one can study the convergence criteria of Algorithms 32, 33, 35 and 36. For this

purpose, we need the following results.

Lemma 4.1. Let ū ∈ H be a solution of (2.6) and T : H −→ H be exponentially

general quasimonotone and exponentially g-Lipschitz continuous with constant δ >

0. Then

〈g(u)− g(ū), D(u)〉 ≥ {1− ρδ}||R(u)||2, ∀u ∈ H. (4.23)

Proof. Since T is exponentially general quasi-monotone, for all v, ū ∈ H,

〈eT ū, g(v)− g(ū)〉+ ϕ(g(v))− ϕ(g(ū)) > 0.

implies that

〈eTv, g(v)− g(ū)〉+ ϕ(g(v))− ϕ(g(ū)) ≥ 0. (4.24)

Taking g(v) = Jϕ[g(u)− ρTu] in (4.24), we obtain

〈eTg−1Jϕ[g(u)−ρTu], Jϕ[g(u)− ρeTu]− g(ū)〉+ ϕ(Jϕ[g(u)− ρeTu])

−ϕ(g(ū)) ≥ 0. (4.25)
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Letting z = g(u)− ρeTu, u = Jϕ[g(u)− ρeTu], and v = g(ū) in (2.6), we have

〈g(u)− ρeTu − Jϕ[g(u)− ρeTu], Jϕ[g(u)− ρeTu]− g(ū)〉+ ϕ(g(ū))

−ϕ(Jϕ[g(u)− ρeTu]) ≥ 0,

which implies that

〈R(u)− ρeTu, Jϕ[g(u)− ρeTu]− g(ū)〉+ ϕ(g(ū))− ϕ(Jϕ[g(u)− ρeTu]) ≥ 0.(4.26)

Adding (4.25), (4.26) and using (4.17), we have

〈R(u)− ρeTu + ρeTg
−1Jϕ[g(u)−ρTu], g(u)− g(ū)−R(u)〉 ≥ 0. (4.27)

From the above equations, we

〈D(u), g(u)− g(ū)〉 ≥ 〈R(u), D(u)〉. (4.28)

Now using the exponentially g-Lipschitz continuity of T with constant δ > 0, we

obtain

〈R(u), D(u)〉 = 〈R(u), R(u)− ρeTu + ρeTg
−1Jϕ[g(u)−ρTu]〉

= ‖R(u)‖2 − ρ〈R(u), eTu − eTg−1Jϕ[g(u)−ρTu]〉

≥ {1− ρδ}‖R(u)‖2. (4.29)

Combining (4.28) and (4.29), we have

〈g(u)− g(ū), D(u)〉 ≥ {1− ρδ}‖R(u)‖2,

the required result.

Lemma 4.2. The sequence {un} generated by Algorithm 35 for exponentially

variational inclusion (2.6) satisfies the inequality

‖g(un+1)− g(ū)‖2 ≤ ‖g(un)− g(ū)‖2 − γ(1− ρδ)(2− γ(1− ρδ))‖R(un)‖2,

∀ū ∈ H. (4.30)
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Proof. From (4.20) and Algorithm 35, we have

‖g(un+1)− g(ū)‖2 = ‖g(un)− g(ū)− γD(un)‖2

≤ ||g(un)− g(ū)||2 − 2γ < g(un)− g(ū), D(un) > +γ2‖D(un)‖2

≤ ‖g(un)− g(ū)‖2 − γ(1− ρδ)(2− γ(1− ρδ))‖R(un)‖2.

Theorem 4.3. Let g be invertible. Then the approximate solution un+1 obtained

from Algorithm 35 converges to a solution ū of the exponentially variational

inclusion (2.6).

Proof. Let u∗ ∈ H be a solution of (2.6). From (4.26), it follows that the sequence

{un} is bounded and
∞∑
n=0

γ(1− ρδ)(2− γ(1− ρδ))‖R(un)‖2 ≤ ‖g(u0)− g(ū)‖2,

and consequently

lim
n→∞

R(un) = 0.

Let ū be the cluster point of {un} and the subsequence {unj} of the sequence

{un} converge to ū. Since R is continuous, so

R(ū) = lim
j→∞

R(unj ) = 0,

and ū is the solution of the exponentially variational inclusion (2.6) by invoking

Lemma 4.1 and

‖g(un+1)− g(ū‖2 ≤ ‖g(un)− g(ū)‖2.

Thus it follows from the above inequality that the sequence {un} hasexactly one

cluster point and

lim
n→∞

g(un) = g(ū).

Since g is invertible, so

lim
n→∞

(un) = ū,

which is the solution of the exponentially variational inclusion (2.4).
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5 Dynamical Systems Technique

Using the fixed-point formulation of the variational inequalities, Dupuis and

Nagurney [12] introduced and considered the projected dynamical systems, where

the right hand side of the ordinary differential equation is a projected operator

associated with variational inequalities. The innovative and novel feature of a

projected dynamical system is that its set of stationary points corresponds to

the set of solutions of the corresponding variational inequality problem. Hence,

equilibrium and nonlinear problems arising in various branches in pure and applied

sciences, which can be formulated in the setting of the variational inequalities,

can now be studied in the more general setting of dynamical systems. It has

been shown [12,22,34,52,54] that the dynamical systems are useful in developing

some efficient numerical techniques for solving variational inequalities and related

optimization problems. In recent years, much attention has been given to study

the globally asymptotic stability of these projected dynamical systems. We

use this equivalent fixed point formulation to suggest and analyze the resolvent

dynamical system associated with the exponentially general variational inclusions

(2.1).

du

dt
= λ{JA[g(u)− ρeTu]− g(u)}, u(t0) = u0 ∈ H, (5.1)

where λ is a parameter. The system of type (5.1) is called the resolvent

exponentially general dynamical system. Here the right hand side is related to

the resolvent operator and is discontinuous on the boundary. It is clear from the

definition that the solution to (5.1) always stays in the constraint set. This implies

that the qualitative results such as the existence, uniqueness and continuous

dependence of the solution on the given data can be studied.

Using the fixed-point formulation (3.1), we can suggest the following resolvent

dynamical system

du

dt
= λ{JA[g(u)− α{ηR(u)− ρeTg−1(g(u)−ηR(u))} − g(u)}, u(t0) = u0 ∈ H, (5.2)

where α and η are positive constants. For α = 1 and η = 1, we can obtain several
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new resolvent-type dynamical systems associated with exponentially variational

inclusions, which are quite different from the previously known ones.

From Lemma 4.1, it follows that the exponentially general variational

inclusions are equivalent to the exponentially resolvent equations (4.1). This

equivalence is used to suggest the following dynamical system associated with the

exponentially general variational inclusions (2.1) as:

du

dt
= λ{JA[g(u)− ρeTu]− ρeTg−1JA[g(u)−ρeTu] + ρeTu − g(u)}, u(t0) = u0 ∈ H,(5.3)

which is called the exponentially general resolvent dynamical system.

The equilibrium points of the exponentially dynamical system (5.1) are

naturally defined as follows.

Definition 5.1. An element u ∈ H, g(u) ∈ H is an equilibrium point of the

exponentially dynamical system (5.1), if du
dt = 0, that is,

JA[g(u)− ρeTu]− g(u) = 0.

Thus it is clear that u ∈ H, g(u) ∈ H is a solution of the exponentially

general variational inclusion (2.1) if and only if u ∈ H, g(u) ∈ H is an equilibrium

point. In a similar way, one can define the concept of equilibrium points for other

exponentially dynamical systems.

Definition 5.2. The exponentially dynamical system is said to converge to the

solution set S∗ of (2.1), if, irrespective of the initial point, the trajectory of the

dynamical system satisfies

lim
t→∞

dist(u(t), S∗) = 0, (5.4)

where

dist(u, S∗) = infv∈S∗‖u− v‖.

It is easy to see, if the set S∗ has a unique point u∗, then (5.14) implies that

lim
t→∞

u(t) = u∗.
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If the dynamical system is still stable at u∗ in the Lyapunov sense, then the

dynamical system is globally asymptotically stable at u∗.

Definition 5.3. The exponentially dynamical system is said to be globally

exponentially stable with degree η at u∗, if, irrespective of the initial point, the

trajectory of the system satisfies

‖u(t)− u∗‖ ≤ µ1‖u(t0)− u∗‖exp(−η(t− t0)), ∀t ≥ t0,

where µ1 and η are positive constants independent of the initial point.

It is clear that the globally exponentially stability is necessarily globally

asymptotically stable and the exponentially dynamical system converges

arbitrarily fast.

We now show that the trajectory of the solution of the general dynamical

system (5.1) converges to the unique solution of the exponentially general

variational inequality (2.1). The analysis is in the spirit of Noor [34]. In a similar

way, one can consider the other exponentially dynamical systems.

Theorem 5.1. Let the operators T, g : H −→ H be both Lipschitz continuous with

constants β > 0 and µ > 0 respectively. Then, for each u0 ∈ H, there exists a

unique continuous solution u(t) of the exponentially dynamical system (5.1) with

u(0) = u0 over [t0,∞).

Proof. Let

G(u) = λ{JA[g(u)− ρeTu]− g(u)},

where λ > 0 is a constant. For all u, v ∈ H, we have

‖G(u)−G(v)‖ ≤ λ{‖JA[g(u)− ρeTu]− JA[g(v)− ρeTv]‖+ ‖g(u)− g(v)‖}

≤ 2λ‖g(u)− g(v)‖+ λρ‖eTu − eTv‖

≤ λ{2µ+ βρ}‖u− v‖.
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This implies that the operator G(u) is a Lipschitz continuous in H, and for each

u0 ∈ H, there exists a unique and continuous solution u(t) of the dynamical system

(5.1), defined on an interval t0 ≤ t < T1 with the initial condition u(t0) = u0. Let

[t0, T1) be its maximal interval of existence. Then we have to show that T1 =∞.
Consider, for any u ∈ H,

‖G(u)‖ = λ‖JA[g(u)− ρeTu]− g(u)‖

≤ λ{‖JA[g(u)− ρeTu]− JA[g(0)]‖+ ‖JA[g(0)]− g(u)‖}

≤ λ{ρ‖eTu‖+ ‖JA[g(u)]− JA[0]‖+ ‖JA[0]− g(u)‖}

≤ λ{(ρβ + 2µ)‖u‖+ ‖JA[0]‖}.

Then

‖u(t)‖ ≤ ‖u0‖+

∫ t

t0

‖Tu(s)‖ds

≤ (‖u0‖+ k1(t− t0)) + k2

∫ t

t0

‖u(s)‖ds,

where k1 = λ‖JA[0]‖ and k2 = λ(ρβ + 2µ). Hence by the Gronwall lemma [41],

we have

‖u(t)‖ ≤ {‖u0‖+ k1(t− t0)}ek2(t−t0), t ∈ [t0, T1).

This shows that the solution is bounded on [t0, T1). So T1 =∞.

Theorem 5.2. Let the operators T, g : H −→ H be both exponentially Lipschitz

continuous with constants β > 0 and µ > 0 respectively. If the operator g : H −→
H is strongly monotone with constant γ > 0 and λ < 0, then the dynamical system

(5.1) converges globally exponentially to the unique solution of the exponentially

general variational inclusion(2.1).

Proof. Since the operators T, g are both Lipschitz continuo, it follows from

Theorem 5.1 that the exponentially dynamical system (5.1) has unique solution
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u(t) over [t0, T1) for any fixed u0 ∈ H. Let u(t) be a solution of the initial value

problem (5.1) For a given u∗ ∈ H satisfying (2.1), consider the Lyapunov function

L(u) = λ‖g(u(t))− g(u)∗‖2, u(t) ∈ H. (5.5)

From (5.1) and (5.5), we have

dL(u)

dt
= 2λ〈g(u(t))− g(u)∗, JA[g(u(t))− ρeTu(t)]− g(u(t))〉

= −2λ〈g(u(t))− g(u)∗, g(u(t))− g(u∗)〉

+2λ〈g(u(t))− g(u)∗, JA[g(u(t))− ρeTu(t)]− g(u∗)〉

≤ −2λγ‖g(u(t))− g(u)∗‖2

+2λ〈g(u(t))− g(u)∗, JA[g(u(t))− ρeTu(t)]− g(u∗)〉, (5.6)

where u∗ ∈ H is a solution of (2.1). Thus

g(u∗) = JA[g(u∗)− ρeTu∗ ].

Using the exponentially Lipschitz continuity of the operators T, g, we have

‖JA[g(u)− ρeTu]− JA[g(u∗)− ρeTu∗ ]‖ ≤ ‖g(u)− g(u∗)− ρ(eTu − eTu∗)‖

≤ (µ+ ρβ)‖u− u∗‖. (5.7)

From (5.6) and (5.7), we have

du

dt
‖u(t)− u∗‖ ≤ 2αλ‖u(t)− u∗‖,

where

α = µ+ ρβ − γ.

Thus, for λ = −λ1, where λ1 is a positive constant, we have

‖u(t)− u∗‖ ≤ ‖u(t0)− u∗‖e−αλ1(t−t0),

which shows that the trajectory of the solution of the exponentially dynamical

system (5.1) converges globally exponentially to the unique solution of the

exponentially general variational inclusions (2.1).
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We now suggest a second order exponentially resolvent dynamical system

associated with the exponentially general variational inequalities (2.1) as:

d2u

dt2
+ γ

du

dt
= JA[g(u)− ρeTu]− g(u), u(t0) = u0, u′(t0) = v0 ∈ H. (5.8)

For g ≡ I, it can be shown that the solution of the second order exponentially

resolvent dynamical system (5.8) converges weakly to the solution of the classical

variational inequality (2.8). It is an open problem to study the asymptotic and

stability analysis of the such type of the exponentially resolvent dynamical system

in the context of exponentially variational inclusions.

We now consider exponentially resolvent dynamical system associated with

the exponentially variational inclusion. Using the equivalent formulation (3.1),

we suggest a new class of exponentially resolvent dynamical systems as

dg(u)

dt
= λ{JA[g(u)− ρeTu]− g(u)}, u(t0) = u0 ∈ H, (5.9)

where λ is a parameter. The system of type (5.9) is called the exponentially

resolvent dynamical system associated with the exponentially general variational

inclusion (2.1).

We use the exponentially resolvent dynamical system (5.9) to suggest some

iterative for solving the exponentially general variational inclusion (2.1). These

methods can be viewed in the sense of Noor [42] involving the double resolvent

operator.

For simplicity, we consider the dynamical system

dg(u)

dt
+ g(u) = JA[g(u)− ρeTu], u(t0) = α. (5.10)

We construct the implicit iterative method using the forward difference scheme.

Discretizing the equation (5.10), we have

g(un+1)− g(un)

h
+ g(un+1) = JA[g(un)− ρeTun+1 ], (5.11)

where h is the step size. Now, we can suggest the following implicit iterative

method for solving the variational inclusion (2.1).
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Algorithm 37. For a given u0 ∈ H, compute un+1 by the iterative scheme

g(un+1) = JA

[
g(un)− ρeTun+1 − g(un+1)− g(un)

h

]
, n = 0, 1, 2, . . . .

This is an implicit method and is quite different from the known implicit

method.

If A(g(u)) = ∂φ(g(u), then JA = Jφ and Algorithm 37 is equivalent to the

following iterative method:

Algorithm 38. For a given u0 ∈ H, compute un+1 by the iterative scheme

g(un+1) = Jφ

[
g(un)− ρeTun+1 − g(un+1)− g(un)

h

]
, n = 0, 1, 2, . . . .

Using Lemma 3.1, Algorithm 38 can be rewritten in the equivalent form as:

Algorithm 39. For a given u0 ∈ H, compute un+1 by the iterative scheme

〈ρeTun+1 +
1 + h

h
(g(un+1)− g(un)), g(v)− g(un+1)〉

+φ(g(v)− φ(g(un+1) ≥ 0, ∀v ∈ H. (5.12)

We now study the convergence analysis of algorithm 39 under some mild

conditions.

Theorem 5.3. Let u ∈ H : g(v) ∈ H be a solution of the exponentially general

variational inequality (2.1). Let un+1 be the approximate solution obtained from

( 5.12). If T is g-monotone, then

‖g(u)− g(un+1)‖2 ≤ ‖g(u)− g(un)‖2 − ‖g(un)− g(un+1)‖2. (5.13)

Proof. Let u ∈ H : g(v) ∈ H be a solution of (2.6). Then

〈eTv, g(v)− g(u)〉+ φ(g(v))− φ(g(u)) ≥ 0, ∀v ∈ H, (5.14)
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since T is a exponentially general monotone operator.

Set v = un+1 in (5.14), to have

〈eTun+1 , g(un+1)− g(u)〉+ φ(g(v))− φ(g(un+1)) ≥ 0. (5.15)

Taking v = u in ( 5.12), we have

〈ρeTun+1 + {(1 + h)g(un+1)− (1 + h)g(un)

h
}, g(u)− g(un+1)〉 ≥ 0. (5.16)

From (5.15) and (5.16), we have

〈(1 + h)(g(un+1)− g(un)), g(u)− g(un+1)〉 ≥ 0. (5.17)

From (5.17) and using 2〈a, b〉 = ‖a+ b‖2 − ‖a‖2 − ‖b‖2, ∀a, b ∈ H, we obtain

‖g(un+1)− g(u)‖2 ≤ ‖g(u)− g(un)‖2 − ‖g(un+1)− g(un)‖2, (5.18)

the required result.

Theorem 5.4. Let u ∈ H be the solution of the exponentially general variational

inequality (2.6). Let un+1 be the approximate solution obtained from (5.12). If T

is a exponentially general monotone operator and g−1 exists, then un+1 converges

to u ∈ H satisfying (2.6).

Proof. Let T be a exponentially general monotone operator. Then, from (5.13),

it follows the sequence {ui}∞i=1 is a bounded sequence and

∞∑
i=1

‖g(un)− g(un+1)‖2 ≤ ‖g(u)− g(u0)‖2,

which implies that

lim
n→∞

‖un+1 − un‖2 = 0, (5.19)

since g−1 exists.
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Since sequence {ui}∞i=1 is bounded, so there exists a cluster point û to which

the subsequence {uik}∞k=1 converges. Taking limit in (5.12) and using (5.19), it

follows that û ∈ K satisfies

〈eT û, g(v)− g(û)〉+ φ(g(v))− φ(g( ˆg(u)) ≥ 0, ∀v ∈ H : g(v) ∈ H,

and

‖g(un+1)− g(u)‖2 ≤ ‖g(u)− g(un)‖2.

Using this inequality, one can show that the cluster point û is unique and

lim
n→∞

un+1 = û.

We now suggest another implicit iterative method for solving (2.1).

Discretizing (5.10), we have

g(un+1)− g(un)

h
+ g(un+1) = JA[g(un+1)− ρeTun+1 ], (5.20)

where h is the step size.

This formulation enable us to suggest the following iterative method.

Algorithm 40. For a given u0 ∈ H, compute un+1 by the iterative scheme

g(un+1) = JA

[
g(un+1)− ρeTun+1 − g(un+1)− g(un)

h

]
.

Using Lemma 3.1, Algorithm 40 can be rewritten in the equivalent form as:

Algorithm 41. For a given u0 ∈ H, compute un+1 by the iterative scheme

〈ρeTun+1 + {g(un+1)− g(un)

h
}, g(v)− g(un+1)〉

+ρφ(g(v))− ρφ(g(un+1) ≥ 0, ∀v ∈ H : g(v) ∈ H. (5.21)

http://www.earthlinepublishers.com



Iterative Methods and Sensitivity Analysis ... 93

Again using the exponentially resolvent dynamical systems, we can suggested

some iterative methods for solving the exponentially general variational

inequalities and related optimization problems.

Algorithm 42. For a given u0 ∈ K, compute un+1 by the iterative scheme

g(un+1) = PK

[
(h+ 1)(g(un)− g(un+1))

h
− ρeTun

]
, n = 0, 1, 2, . . . ,

Discretizing (5.10), we have

g(un+1)− g(un)

h
+ g(un) = JA[g(un+1)− ρeTun+1 ], (5.22)

where h is the step size.

This formulation enable us to suggest the following iterative method for h = 1.

Algorithm 43. For a given u0 ∈ H, compute un+1 by the iterative scheme

g(un+1) = JA

[
g(un+1)− ρeTun+1

]
which is well known double resolvent iterative method for solving the exponentially

general variational inclusion (2.1).

In a similar way, one can suggest a wide class of implicit iterative methods for

solving variational inclusions and related optimization problems. the comparison

of these methods with other methods is an interesting problem for future research.

6 Sensitivity Analysis

In recent years variational inequalities are being used as mathematical

programming models to study a large number of equilibrium problems arising in

finance, economics, transportation, operations research and engineering sciences.
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The behaviour of such equilibrium problems as a result of changes in the problem

data is always of concern. In this section, we study the sensitivity analysis

of the exponentially variational inclusion, that is, examining how solutions of

such problems change when the data of the problems are changed. We like to

mention that sensitivity analysis is important for several reasons. First, estimating

problem data often introduces measurement errors, sensitivity analysis helps in

identifying sensitive parameters that should be obtained with relatively high

accuracy. Second, sensitivity analysis may help to predict the future changes

of the equilibrium as a result of changes in the governing system. Third,

sensitivity analysis provides useful information for designing or planning various

equilibrium systems. Furthermore, from mathematical and engineering point of

view, sensitivity analysis can provide new insight regarding problems being studied

can stimulate new ideas and techniques for problem solving. Sensitivity analysis

for variational inequalities has been studied by many authors including Noor and

Noor [35], Moudafi and Noor [21] using quite different techniques. The techniques

suggested so far vary with the problem being studied. The equivalence between

the variational inequalities and the fixed-point problem to study the sensitivity

analysis of the classical variational inequalities. This technique has been modified

and extended by many authors for studying the sensitivity analysis of various

other classes of variational inequalities. This approach has strong geometrical

flavor. It is well known that the variational inequalities are equivalent to the

Wiener-Hopf equations, see Noor [34]. This fixed-point equivalence is obtained

by a suitable and appropriate rearrangement of the Wiener-Hopf equations. The

Wiener-Hopf equation approach is quite general, flexible unified and provides us

with a new technique to study the sensitivity analysis of variational inequalities

without assuming the differentiability of the given data. Our analysis is in the

spirit of Noor and Noor [35].

We now consider the parametric versions of the problem (2.1). To be more

precise, let M be an open subset of H in which the parameter λ takes values. Let

T (u, λ) be a given operator defined on H ×M and takes values in H. From now

onward, we denote Tλ(.) := T (., λ) unless otherwise specified. The parametric
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exponentially general variational inclusion problem is to find (u, λ) ∈ H×M such

that

0 ∈ eTλu +Aλ(g(u)). (6.1)

We also assume that the parametric exponentially general variational inclusion

(6.1) has a unique solution ū for some λ̄ ∈M.

Related to the parametric exponentially general variational inclusion (6.1),

we consider the parametric exponentially resolvent equations. We consider the

problem of finding (z, λ) ∈ H ×M such that

eTλg
−1JAλz + ρ−1RAλz = 0, (6.2)

where ρ > 0 ia constant and RAλ ≡ I − JAλ , is defined on the set of (z, λ) with

λ ∈ M and takes values in H. The equations of the type (6.2) are called the

exponentially parametric resolvent equations.

Using Lemma 4.1, one can easily establish the equivalence between problems

(6.1) and (6.2).

Lemma 6.1. The parametric exponentially general variational inclusion (6.1)

has solution (u, λ) ∈ H ×M if and only if the parametric exponentially resolvent

equation (6.1) has a solution (z, λ), if

g(u) = PKλz, (6.3)

z = g(u)− ρeTλ(u). (6.4)

From Lemma 4.1, we see that the problems (6.1) and (6.2) are equivalent. We

use this equivalence to study the sensitivity analysis of the exponentially general

variational inclusion (2.1). We assume that for some λ̄ ∈ M, problem (6.2) has

a unique solution z̄ and X is a closure of a ball in H centered at z̄. We want

to investigate those conditions under which for each λ in a neighborhood of z̄,

problem (6.2) has a unique solution z(λ) near z̄ and the function z(λ) is Lipschitz

continuous and differentiable.

First of all, we recall the following well known concepts.
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Definition 6.1. Let Tλ(.) be an operator on X ×M. Then, λ ∈M, ∀u, v ∈ X,
the operator Tλ is said to be:

(a) locally strongly exponentially exponentially monotone, if there exists a

constant α > 0 such that

〈Tλ(u)− Tλ(v), u− v〉 ≥ α‖u− v‖2.

(b) locally exponentially Lipschitz continuous, if there exists a constant β >

0 such that

‖eTλ(u) − eTλ(v)‖ ≤ β‖u− v‖.

From (a) and (b), it follows that α ≤ β.

We now consider the case, when the solutions of the parametric exponentially

resolvent equations (6.2) lie in the interior of X. Following the ideas and technique

of Noor and Noor [35], we consider the map

Fλ(z) = JAλz − ρe
Tλ(u), ∀(z, λ) ∈ X ×M,

= g(u)− ρeTλ(u), (6.5)

where

g(u) = JAλz. (6.6)

We have to show that the map Fλ(z) defined by (6.5) has a fixed point, which

is solution of the exponentially resolvent equation (6.2). We have to show that

the map Fλ(z) defined by (6.5) is a contraction map with respect to z uniformly

in λ ∈M.

Lemma 6.2. Let Tλ(.) be a locally strongly exponentially monotone with constant

α > 0 and locally exponentially Lipschitz continuous with constant β > 0. If the

operator g is strongly monotone with constant σ > 0 and Lipschitz continuous

with constant δ > 0, then

‖Fλ(z1)− Fλ(z2)‖ ≤ θ‖z1 − z2‖,
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θ =
k +

√
1− 2αρ+ β2ρ2

1− k
, (6.7)

for

|ρ− α

β2
| <

√
α2 − 4k(1− k)β2

β2
, (6.8)

α > 2β
√
k(1− k) (6.9)

k =
√

1− 2δ + σ2 < 1. (6.10)

Proof. ∀z1, z2 ∈ H, and λ ∈M, we have

‖Fλ(z1)− Fλ(z2)‖ ≤ ‖u1 − u2 − (g(u1)− g(u2))‖

+‖u1 − u2 − ρ(eTλ(u1) − eTλ(u2))‖. (6.11)

Using the strongly monotonicity and Lipschitz continuity of the operator g, we

have

‖u1 − u2 − (g(u1)− g(u2))‖2 ≤ ‖u1 − u2‖2 − 2〈(u1 − u2, g(u1)− g(u2)〉

+‖g(u1)− g(u2)‖2

≤ (1− 2δ + σ2)‖u1 − u2‖2. (6.12)

In a similar way, we have

‖u1 − u2 − ρ(eTλ(u1) − eTλ(u2))‖2 ≤ (1− 2ρα+ β2ρ2)‖u1 − u2‖2. (6.13)

From (6.6) and (6.12), we obtain

‖u1 − u2‖ ≤ ‖u1 − u2 − (g(u1)− g(u2))‖+ ‖JAλz1 − JAλz2‖

≤ k‖u1 − u2‖+ ‖z1 − z2‖,

which implies

‖u1 − u2‖ ≤
1

1− k
‖z1 − z2‖. (6.14)
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Combining (6.14) and (6.11), we have

‖Fλ(z1)− Fλ(z2)‖ ≤ {k +
√

1− 2ρα+ ρ2β2

1− k
}‖z1 − z2‖

= θ‖z1 − z2‖, using (6.7).

From (6.8)-(6.10), it follows that θ < 1 and consequently, the map Fλ(z) defined

by (6.5) is a contraction map and has a fixed point z(λ), which is a solution of

the resolvent equation (6.2).

Remark 6.1. From Lemma 6.2, we see that the map Fλ(z) defined by (6.5) has

a unique fixed point z(λ), that is, z(λ) = Fλ(z). Also, by assumption, the function

z̄, for λ = λ̄ is a solution of the parametric resolvent equation (6.2). Again using

Lemma 6.2, we see that z̄, for λ = λ̄, is a fixed point of Fλ(z) and it is also a fixed

point of Fλ̄(z). Consequently, we conclude that

z(λ̄) = z̄ = Fλ̄(z(λ̄)).

Using Lemma 6.2 and technique of Noor and Noor [35], we can prove the

continuity of the solution z(λ) of the parametric resolvent equation (6.2). We

include its proof to convey an idea of the technique.

Lemma 6.3. Assume that the operator Tλ(.) is locally Lipschitz continuous with

respect to the parameter λ. If the operators Tλ(.) is locally exponentially Lipschitz

continuous and the map λ −→ JAλ is continuous (or Lipschitz continuous), then

the function z(λ) satisfying (6.2) is (Lipschitz) continuous at λ = λ̄.

Proof. ∀λ ∈M, invoking Lemma 6.2 and the triangle inequality, we have

‖z(λ)− z(λ̄)‖ ≤ ‖Fλ(z(λ))− Fλ̄(z(λ̄))‖+ ‖Fλ(z(λ̄)− Fλ̄(z(λ̄))‖

≤ θ‖z(λ)− z(z̄)‖+ ‖Fλ(z(λ̄))− Fλ̄(z(λ̄))‖. (6.15)
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From (6.15) and the fact that the operator Tλ(.) is a locally Lipschitz continuous

with respect to the parameter λ, we have

‖Fλ(z(λ̄))− Fλ̄(z(λ̄))‖ = ‖u(λ̄)− u(λ̄) + ρ(eTλ(u(λ̄)) − eTλ̄(u(λ̄)))‖

≤ ρµ‖λ− λ̄‖. (6.16)

Combining (6.15) and (6.16), we obtain

‖z(λ)− z(λ̄)‖ ≤ ρµ

1− θ
‖λ− λ̄‖, ∀λ, λ̄ ∈M,

from which the required result follows.

We now state and prove the main result of this section and is the motivation

of our next result.

Theorem 6.1. Let ū be the solution of the parametric exponentially general

variational inclusion (6.1) and z̄ be the solution of the exponentially parametric

resolvent equation (6.2) for λ = λ̄. Let Tλ(.) be the locally strongly exponentially

monotone Lipschitz continuous operator. Let the operator g be also strongly

monotone Lipschitz continuous operator. If the map λ −→ PKλ is (Lipschitz)

continuous at λ = λ̄, then there exists a neighborhood N ⊂ K of λ̄ such that for

λ ∈ N, the parametric exponentially resolvent equation (6.2) has a unique solution

z(λ) in the interior of X, z(λ̄) = z̄ and z(λ) is (Lipschitz) continuous at λ = λ̄.

Proof. Its proof follows from Lemma 6.2, Lemma 6.3 and Remark 6.1.

Conclusion

In this paper, we have introduced and studied some new classes of exponentially

general variational inclusions. Some interesting and important known and new

classes of exponentially general variational inequalities and optimizations are

discussed. We have proved that the exponentially general variational inclusions

are equivalent to this fixed point problems, resolvent equations and dynamical
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systems. These alternative formulations are used to discuss the existence of a

solution of the exponentially general variational inclusions and suggest some new

iterative methods for solving the exponentially general variational inclusions.

These new methods include extraresolvent method, modified double resolvent

methods and inertial type are suggested using the techniques of resolvent

method, resolvent equations and dynamical systems. Convergence analysis of

the proposed method is discussed for monotone operators. We have given only

the glimpse of the applications of the exponentially dynamical systems. This

technique is quite flexible and unified one. Using the ideas and techniques of

this paper, one can suggest and investigate several new implicit methods for

solving various classes of exponentially general variational inclusions and related

problems. The implementation and comparison of these methods with other

methods needs further efforts. We have also discussed the sensitivity analysis of

the exponentially general variational inclusions. Since the exponentially general

variational inclusions include the classical variational inequalities, mixed (quasi)

variational inequalities, and complementarity problems as special cases, the

technique developed in this paper can be used to study the sensitivity analysis of

these problems. The fixed formulation of the exponentially general variational

inclusions allows us to study the Holder and Lipschitz continuity of the solution

of the parametric exponentially problems. It is worth mentioning that the

resolvent equations technique does not require the differentiability of the given

data. In fact, our results represents a refinement and significant improvement of

previous known results.
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