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Abstract

Opial inequality was developed to provide bounds for integral of functions
and their derivatives. It has become an indispensable tool in the theory of
mathematical analysis due to its usefulness. A refined Jensen inequality for
multivariate functions is employed to establish new Opial-type inequalities

for convex functions of several variables on time scale.

1 Introduction

Opial [11] discussed problems involving functions and their derivatives. His work
motivated many researchers to obtain a general version of the results and several

methods have been used to extend the inequality in the following directions:
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Godunova and Levin [6] extended and provided sharper inequality compare to
[11]. Rozanova [14] adopted convex function to improve [6] by using absolutely
continuous function. In [12], Qi refined the results in |11] and obtained a more
generalized Opial-type inequalities. In [13], Rauf and Anthonio generalized [5]
through convexity and reiterated that the absolute value on both sides of the
inequalities therein are not necessary. Bohner and Kaymakcalan [4] presented a
version of Opial inequality for time scales and pointed out some of its applications
to so-called dynamic equations. Such dynamic equations contain both differential
and difference equations as special cases. Various extensions of their inequality
were provided as well. Saker [15] proved some new Opial dynamic inequalities
involving higher order derivatives on time scales. The results were proved by
using Holder’s inequality, a simple consequence of Keller’s chain rule and Taylor
monomials on time scales. Some continuous and discrete inequalities were used to
derive special cases in their results. Some weighted generalization of Opial type
inequalities in two independent variables for two functions was established in [9].

They also obtain weighted Opial-type inequalities by using p-norms.

An interval, in the time-scale context, is always understood as the intersection of
a real interval with a given time-scale. We shall write the delta derivatives f* for
a function f defined on T and it turns out that:

(i) fA = f’is the usual derivative if T = R; and

(i) f2 = Af is the usual forward difference operator if T = Z.

1.1 Some Basic Definitions

The derivative of a function f : T — R denoted by f2 is as follows: Let t € T,
if a number o € R such that for all € > 0 there exists a neighborhood U of ¢t with

[f(e(t) = f(s) —alo(t) = s)| <elo(t) —s)|. (1.1)

The fundamentals of time scales calculus, Opial inequality and its applications
can be sourced from [1], [2], [3], [4], [6], [7], [8], [9], [10], |11} [13] & [16].
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Throughout the work, refined Jensen inequality of the form (1.2)) is employed

(/: f(a:(t))dA(s)>< < (/t d)\(s)>g< (/:cp(f(z(t)))éd)\(s)><, (1.2)

2 Some Results on Opial-Type Inequalities

In this section, we shall discuss Opial-type inequalities on time scale. We begin

with the following theorem.

Theorem 2.1. Let T be a time scale with x,y,t € T. Suppose ¢ and ( are real
numbers, x,y,t € Crq([0,t]T,R) where ¢(y) is positive rd-continuous function on
[0,t]T such that qﬁ(y)% < ¢(y). Let ¢(x) be a convex and increasing function on
[0,00) with $(0) = 0 and t(x) be absolutely continuous on [0,t], z(0) = 0 with
Lebesque-Stieltjes integrable function with respect to g(x). Then, it follows that

(AtAg@»¢%ax»ﬂcwr5tL?(AtAg@»ﬂcw)1+c. (2.1)

Proof. By Jensen inequality, we let ¢(t) = t¢ in (1.2)) and have

</ Ag(y ) <tc (/Ot Ag(y)wl(é(y))>

J) ﬁb([mwmm)

£ (/Ot Ag(y)¢(y)> : (2.2)

IN
=

that is
¢'(y)

IN

Assuming .
o) = [ Bg)t@

which can be written as

t'(a) =y ()" (2.3)
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Combining (2.2) and (2.3]) and also integrate with respect to g(x) yields

/O Ag(x)¢'(t(z))t (z) < tlzc/o Ag(@)d! (y(D)y' ()¢ =T (y(1))+¢
1-¢ t ) ¢+1
_ < /0 Ag(a)t (:@) (2.4)
which is Godunova and Levin result when T = R. ]

Remark 2.2. 1t [ Ag(y)é(y)F < [ Ag(y)é(y), then

() < tfso( tAg(y)¢(y)> (2.5)
0

t

[ ag@d @)@ <7 [ Aa@d o1 6 =T o)
1-¢ t ) ¢
=t < ; Ag(x)t (x)) . (2.6)
However, if we choose ¢ so that
t Q Q
) = [ Bg@) = [ do@r@) =5 [ Agr@ v rep.l

(2.7)

Combination of and gives

Q / ! C;l 1 Q C

| ss)s e < (2 / Ag(as)t(m)) | (2.8)

Theorem 2.3. Let T be a time scale with x,y,t € T. If { is a real number,
z,y,t € Crq([0,t]T,R) where ¢(y) is positive rd-continuous function on [0,t]r.
Suppose ¢(t) and ®(t) are conver and increasing functions on [0, c0) with ¢(0) =0
and t(x) is absolutely continuous on [0,t] satisfying t(0) = t(x) = 0. Then,

-1 1\ ¢
[ Ag(x)u(an] 4 ( [ a0t (21 u(x)) )
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Proof. From (|1.2]) we have

Q t'(x ‘ l
(545 o I 20 (5585) 5
Jo? Ag(x)u(z) o At

Jy () Ag () I oo t(@) \¢
(((m) M(w)) <\ ssu] [ sgo) (515w

s [ s < [ [ sston] -

By combining (2.8)) and (| - yields

[ sz ([ s (523 ) )

Theorem 2.4. Let T be a time scale with x,y,t € T. Suppose ¢ and { are real
numbers, x,y,t € Crq([0,x]T,R) where y and g(y) are positive rd-continuous
functions on [0,Qr such that f[o,t] Ag(s)p(s) < oo. If ¢(t) is a convexr and
increasing function on [0,00) with ¢(0) = 0, ti1(z) and ta2(x) are absolutely
continuous on [0,z] with t(0) = 0. Suppose ¢1(t) and ¢2(t) are continuous
differentiable functions defined on [0,t] and also are positive convex on [0,00)

Then, the inequality below follows:

Ag(x) ($1(t1(2)) Py (ta(2))th () + da(ta(2)) ) (81 ()t (z))

[ <

< ([ / t Ag<x>u<x>] N ( / Ag(o) (Z((;S) )CM@)) ) (2.13)
. 1\ ¢

([ swe] ([ s (5 )
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Proof. The proof is similar to the latter Theorem.
By applying (1.2), it gives

1 (1(2)) 6 (12 (o (/ Ag(t)d(un) ) (2.14)

s

and

Pa(ta(2)), (1 () < 15" ( / Ag<t>¢<y2><> ° (2.15)

Taking addition of (2.14]) and (2.15)) and integrate over [0,¢] with respect to g(x)
yields

/0 Ag() (¢1(tr ()P (t2(2))t5(7) + Pa(ta(x)) ¢ (t1 ()t (2))
¢

< ([ [ agton)] < ( [ asto (442 )CW)) é) (216)
1y ¢

>< ([ [ gt < ( [ 2 (j’j((jj)cu(x)) ) .

Ift1(x) = ti(x) = t(z), p2((z)) = ¢1(z) and ¢ = 1, reduces to the following

interesting inequality

/0 Ag() (¢1(tr(2))Ph(t2(2))t5(7) + Pa(ta(x)) P (t1 ()t (2))

([ o (35 )we0) a1y

Furthermore, let ¢(y) and ®(y) be convex functions on [0, 00), ¢(0) = ®(0) = 0,
¢'(y) < ¢(y) and by applying (2.8) we have,

P(H(2)D(F (2)) < 17 ( / ¢<y><Ag<t>)C (' (2)). (2.18)

Integrate ([2.18]) with respect to g(x) yields

[ sastianeen << [ s ([ 50 >é¢><t/<x>>.
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i N (g (B @)
o] oo )t“>_t<¢< 1 (o ))
which is

()=o)
e o) 1 i)

In view of (2.18) and (2.20) we have

/OQ Ag(z)p(t(z))®(t (z)) gtilﬂ/ ( << / A N >§))

x ®(t'(x))Ag(w

1 t
if a= / O(t'(x))Ag(z) and b = ®(¢'(z)) in latter inequality yields
0

Assuming

/ Bg@)o(t(@)o(t @) <1 " Ag(t)o (1971 (1))
0
Q b
- / / Ag(t)Ag(x)e (t071(t))
0 0
(2.21)
which is Qi’s result when T = R. O

3 Refined Sub-variate and Multi-variate Opial-type

Inequalities on Time Scales

We present our main results on Jensen inequality for functions of several variables

on time scale as follows:

Theorem 3.1. Let T be a time scale with x,y,t € T. Let ¢ be real numbers, let
x,y,t € Crq([0,t]T,R) where y and ¢(y) are positive rd-continuous functions on
[0,t]T. Let t(x) be absolutely continuous function which is non-decreasing on [0, z]
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and let t;, u; > 0Vi = 1,2 and p(x) be convex function, u(x) be Lebesque-Stieltjes
integrable function with respect to g(x). Then the following inequality holds:

g t(@) +th(@) \C, Vo (@) + ta(a)
/0 Ag(s) (WM) (ph(z) + po())p (WW(M(%)#LW(T/)))

z (s (s ¢
<o ( [ 8g(6) 4 0) + ) (m) ) .

Proof. From (1.2), we have

i Dg(s) B it () + pip(s) |
fox Ag(S)//l (s) + //2(3) (3.1)
L NP GO RS AORS

< o J, S0 e (HET)

(3.1) can be written as

(U5 Agls) A (1 () + ()
(s Ag(s)(uh (5) + ()

x (s (s ¢

: M/ AL + 00 (i%iiiié)
(g Ag(s) +u2 yi(s) +yh(s) \©
- < +u2 /Ag 9+ #a(®)) uﬁ(8)+u’2(8)>

~ (pa(s) 4 pa2(s) Yy (s) + v5(s) \©
=@ T G /Ag $)+ Ha(s)) <ua<s>+ua<s>)

< (m(5) + pa(s) i (s) + vh(s) \ ¢

< (@) + ) / Ag()n(s) + (s ))<u’1(8)+u’2(8))

which can be expressed in the following form with the fact that y(t) =

fg:,ua:dgx

(s) + th(s) y1(s) +y5(s)
| aa K )+ st < [ gt tasene (L)
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further estimation of the inequality yields

0 T) + pg pa(x) + p2(z))
e , yi () + yh(x) \©
[T , yi(s) +yh(s) \©

x o ( " 8066) G+ o) (15T )

that is

[ s < () +ty(a ))>>C(u’1(x)+u’2(x))90’< “(9”)”2(””)<m<x>+m<x>>)

(@) + py(x (11 (@) + pa(2)
/ / yi(S) + yé(S) ‘
< (/O Ag(x) (Nl(x) +ﬂ2(x)) (N/l(x) +N/2(35)> >
(3.5)

which is Rozanova’s result. In general, the above can be extended to n‘* term as

g @)+ +t(z) \©, N
2ot (Gt ) ko)
o ti(x) + -+ ta(x) 2 .
¢ (D (o) o)) (36)
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which implies

[ T (E) ()

(Tt

< </ Ag(x (Zn:”;l ><M>C>

Theorem 3.2. Let T be a time scale with v, u,x,y,t € T. Let ( be real numbers,
let z,y,t € Cra([0,t]T,R) where y and ¢(y) are positive rd-continuous functions
on [0,t]r. Let @;(t) = tS are non-negative, convex and increasing functions on
(0,00). If ti(x) are absolutely continuous defined on [0,9Q], satisfying t;(0) = 0
Vi € N. Then,

O]

0 Mé_n(s)

X (9 <u3n<s> (2
(

0
<u ( Ag(s)its(s) ( !
0

Q /
< vy ( Ag(s)ii(s) <ti”“)
0

o Q gl (6) < t5_n(s) ><3n Un(s) (un(s) < tn(s) >Cn>

) X Vg </OQ ph(s)Ag(z) <Z/2((Z)))C2>
(3 s
) e ( b < 7((3 )
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Proof. The proof is similar to the proof of Theorem 3.1 by combining ((1.2)) and
(3.1)), it follows that

Jo Ag(s }((Z))“ (s)
Jo Ag(s)i(s)

By simplification, (3.9)) yields
RPN GOSN NATTORS ( o (220) <2>
| s (57) 1()(#1()(”1(5)) ) b(0) (o) (22
Q s $) ) 62
+f Ag(m)ua(s>( %(s) va(s) (m(s (29 >v1<s> (ms)

Q , / s t3(s ¢2 ,
[ st (B0 vy (o) (24) >v0<s>
C3—

+/ Ag(z)ps—n( (fi T;(Z)) n(s) <Mn (;T(?))Cn

CSW

X V3 (5) (usn(s . S)

< [ sotane (28 ) < satont (o (4 >)) )W < /()tAg<s)M2<s>(zjziz>))<2>
+ QAg(s)uus)(yiﬁ))Clv s)< “agts u2<s>(y;t)))42>v;(s>< OtAg(s)m(s)(Zilg)“>
/Ag i) ( Z(U) U3<s)<0tdg( )u3<s)(Zi((3)Cs>vg<s) (/Otdg(s)uo(s)(zﬁ;i)))@)
b g9 (:_i;)c on(s) ( [ st o (zi;)g>
X () ( [ dotsipan(s (;‘Z—EDC)

= [0 [on (st [0 () ) s (o [ 2000 (23)°)
o s [ 300 (AE3) e s [ 00 (3]

— (/QAg«c)ua(s)( ((,;)))<1>M2 </O Ag(xw’g(s)(uz’;))@)
o (awo (7)o ([ (557
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In conclusion, if R =T, pp > 2, pn(x) = pa(z) = p(x), p1(x) = w2(z) = ¢(x),
t1(z) = ta(z) = t(z) and v1(z) = vo(z) = v(z) = 1, then (3.10) yields

Q

oo (BN ta(s) \ ti(s) \*
; Ag(z) pa(s) <,u2(8) v5(s) (NQ(S) <M2(3)> ) (ﬂl(S) <ﬂ1(5)> ))

Also if R = T and vy () = ve(x) = v(x) in , we obtain

[ s (53 w0 (“(S) (fﬁiz)g) (“(S) <Z(<)))C> (3.12)
2 |
Ao ()

Remark 3.3. Inequality (1.2]) was employed to obtain the generalized Opial-type

inequalities for convex functions of several variables on time scales.
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