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Abstract

This study gets a new general theorem related to necessary and sufficient

conditions for ϕ−| D,β; δ |k summability of the series
∑
anλn whenever the

series
∑
an is summable ϕ− | C, β; δ |, where C = (cnv) and D = (dnv) are

two positive normal matrices, k ≥ 1, δ ≥ 0 and −β(δk + k − 1) + k > 0.

1 Introduction

In summability theory, the topic of summability of some infinite series (IS) or

factored IS attracts the attention of researchers. There are many studies that

give sufficient conditions for absolute Riesz summability and absolute matrix

summability of IS. Let us mention about the recent studies. Bor [1, 2, 3] proved

the theorems on sufficient conditions for absolute Riesz summability of the series∑
an

Pnλn
npn

by using the different class of sequences. Bor and Agarwal [4] proved a

theorem gives absolute summability of an factored IS by using an almost increasing

sequence. Sonker and Munjal [5], Karakaş [6], Kartal [7] obtained the sufficient

conditions for absolute Riesz summability of the series
∑
anλn via an almost

increasing sequence. Karakaş [8], Kartal [9, 10], Özarslan [11, 12, 13], Özarslan

and Kartal [14] proved theorems on generalized absolute matrix summability

methods. In [15], Özarslan and Şakar obtained the sufficient conditions for

absolute Riesz summability of the series
∑
anµn where (µn) is a (φ, δ) monotone

sequence. Also, we can refer to some other papers about the relative strength of
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absolute summability methods, the sufficient or necessary conditions for absolute

summability of IS, some equivalence theorems on summability. In [16], Özarslan

and Kandefer studied on the relative strength of two absolute matrix summability

methods. Özarslan and Ari [17] acquired the necessary and sufficient conditions

in order that ϕ− | A; δ |k summability of the series
∑
an implies the ϕ− | B; δ |k

summability of the same series, where A = (anv) and B = (bnv) are two positive

normal matrices, and (ϕn) is a sequence of positive numbers, k ≥ 1, δ ≥ 0.

Özarslan and Özgen [18] got a result gives necessary conditions for absolute matrix

summability, and then Özgen [19] obtained the sufficiency part of this result. Sezer

and Çanak [20], Bor [21] obtained the equivalence theorems about summability

of the series. In the present article, the purpose is to get a more general theorem

gives the necessary and sufficient conditions for absolute matrix summability than

the theorems in articles some of which mentioned here.

2 Preliminaries

Let
∑
an be an IS with its partial sums (sn). Let C = (cnv) be a normal matrix

which means a lower triangular matrix of nonzero diagonal entries. Then C defines

the sequence-to-sequence transformation, mapping the sequence s = (sn) to Cs =

(Cn(s)), where

Cn(s) =

n∑
v=0

cnvsv, n = 0, 1, ...

Let C = (cnv) be a normal matrix, then two lower semimatrices C̄ = (c̄nv) and

Ĉ = (ĉnv) are defined as follows:

c̄nv =
n∑
i=v

cni, n, v = 0, 1, ... (1)

ĉ00 = c̄00 = c00, ĉnv = c̄nv − c̄n−1,v, n = 1, 2, ... (2)

and

∆̄Cn(s) = Cn(s)− Cn−1(s) =

n∑
v=0

ĉnvav. (3)
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If C is a normal matrix, then C ′ = (c′nv) denotes the inverse of C, and Ĉ = (ĉnv)

is a normal matrix and it has two-sided inverse Ĉ ′ = (ĉ′nv) which is also normal

(see [22]).

Definition 1. (l1, lk) denotes the set of all matrices C which map l1 into lk defined

by lk :=
{
x = (xj) :

∑
|xj |k <∞

}
.

Lemma 1. [23] Let 1 ≤ k <∞. C = (cnv) ∈ (l1, lk) ⇐⇒ supv
∑∞

n=1 |cnv|
k <∞.

Definition 2. [24] Let (ϕn) be a sequence of positive numbers. The series
∑
an

is said to be summable ϕ− | C, β; δ |k, k ≥ 1, δ ≥ 0 and β is a real number, if

∞∑
n=1

ϕβ(δk+k−1)
n | Cn(s)− Cn−1(s) |k<∞

For ϕn = n for all values of n, β = 1 and δ = 0, we get |C|k summability

method [25].

3 Known Result

The following theorem about absolute matrix summability of IS has proved in

[26].

Theorem 1. Let k ≥ 1. Let C = (cnv) and D = (dnv) be two positive normal

matrices satisfy

cn−1,v ≥ cnv for n ≥ v + 1 (4)

cn0 = 1, n = 0, 1, ... (5)

In order that
∑
anλn is summable |D|k whenever

∑
an is summable |C|, it is

necessary that

|λn| = O

(
n

1
k
−1 cnn
dnn

)
(6)
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∞∑
n=v+1

nk−1
∣∣∣∆v

(
d̂nvλv

)∣∣∣k = O
(
ckvv

)
(7)

∞∑
n=v+1

nk−1
∣∣∣d̂n,v+1λv+1

∣∣∣k = O (1) . (8)

Also (6)-(8) and

dn0 = 1, n = 0, 1, ... (9)

cnn − cn+1,n = O(cnncn+1,n+1) (10)

∞∑
v=r+2

|d̂nv ĉ′vrλv| = O
(∣∣∣d̂n,r+1λr+1

∣∣∣) (11)

are sufficient for the consequent to hold.

4 Main Result

The aim of the article is to generalize Theorem 1 as in the following form.

Theorem 2. Let C = (cnv) and D = (dnv) be two positive normal matrices satisfy

(4) and (5). Let ϕβδn = O(1). In order that
∑
anλn is summable ϕ − | D,β; δ |k

whenever
∑
an is summable ϕ− | C, β; δ |, it is necessary that

|λn| = O

(
ϕ

−β(δk+k−1)
k

n
cnn
dnn

)
(12)

∞∑
n=v+1

ϕβ(δk+k−1)
n

∣∣∣∆v

(
d̂nvλv

)∣∣∣k = O
(
ckvv

)
(13)

∞∑
n=v+1

ϕβ(δk+k−1)
n

∣∣∣d̂n,v+1λv+1

∣∣∣k = O (1) . (14)

Also (9)-(11) and (12)-(14) are sufficient for the consequent to hold, where k ≥ 1,

δ ≥ 0 and −β(δk + k − 1) + k > 0.
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Proof of Theorem 2

Necessity. Let (In) and (Un) denote C-transform and D-transform of the series∑
an and

∑
anλn. By (3), we get

∆̄In =
n∑
v=0

ĉnvav and ∆̄Un =
n∑
v=0

d̂nvavλv. (15)

Let us define

C =
{
a = (ai) :

∑
ai is summable ϕ− | C, β; δ |

}

D =
{
aλ = (aiλi) :

∑
aiλi is summable ϕ− | D,β; δ |k

}
.

If the above spaces are normed by

||I|| =

{ ∞∑
n=0

ϕβδn
∣∣∆̄In∣∣} and ||U || =

{ ∞∑
n=0

ϕβ(δk+k−1)
n

∣∣∆̄Un∣∣k}
1
k

(16)

then these are BK-spaces. By the hypotheses of the theorem, since the ϕ −
| C, β; δ | summability of the series

∑
an implies the ϕ− | D,β; δ |k summability

of the series
∑
anλn, we can write

||I|| <∞ =⇒ ||U || <∞.

Let us consider the inclusion map T : C → D defined by T (x) = x. Since C and

D are BK-spaces, this map is continuous. Thus, there exists a constant M > 0

so that ||U || ≤M ||I|| . By writing av = ev − ev+1 in (15), we have

∆̄In =


0, n < v

ĉnv, n = v

∆v ĉnv, n > v

and ∆̄Un =


0, n < v

d̂nvλv, n = v

∆v

(
d̂nvλv

)
, n > v

.

Then (16) implies the following equality

||I|| =

{
ϕβδv cvv +

∞∑
n=v+1

ϕβδn |∆v ĉnv|

}
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and

||U || =

{
ϕβ(δk+k−1)
v dkvv |λv|

k +
∞∑

n=v+1

ϕβ(δk+k−1)
n

∣∣∣∆v

(
d̂nvλv

)∣∣∣k} 1
k

.

Here, using the fact that ||U || ≤M ||I||, we get

ϕβ(δk+k−1)
v dkvv |λv|

k +
∞∑

n=v+1

ϕβ(δk+k−1)
n

∣∣∣∆v

(
d̂nvλv

)∣∣∣k
≤Mkϕβ(δk)

v ckvv +Mk

( ∞∑
n=v+1

ϕβδn |∆v (ĉnv)|

)k
.

By using the above inequality and the equality
∑∞

n=v+1 |∆v(ĉnv)| = O(cvv) by

(1), (2), (4), we get

ϕβ(δk+k−1)
v dkvv |λv|

k +

∞∑
n=v+1

ϕβ(δk+k−1)
n

∣∣∣∆v

(
d̂nvλv

)∣∣∣k = O(ckvv)

which means each term on the left equals to O(ckvv). For the the first one, we have

ϕβ(δk+k−1)
v dkvv |λv|

k = O(ckvv) =⇒ |λv| = O

(
ϕ

−β(δk+k−1)
k

v
cvv
dvv

)
and this gives that (12) is necessary.

For the second one, we get

∞∑
n=v+1

ϕβ(δk+k−1)
n

∣∣∣∆v

(
d̂nvλv

)∣∣∣k = O(ckvv)

that means (13) is necessary. Similarly, by writing av = ev+1 in (15), we have

∆̄In =

{
0, n ≤ v

ĉn,v+1, n > v
and ∆̄Un =

{
0, n ≤ v

d̂n,v+1λv+1, n > v
.

Then again from (16), we obtain

||I|| =

{ ∞∑
n=v+1

ϕβδn |ĉn,v+1|

}
and ||U || =

{ ∞∑
n=v+1

ϕβ(δk+k−1)
n

∣∣∣d̂n,v+1λv+1

∣∣∣k} 1
k

.
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Similary, we can write

∞∑
n=v+1

ϕβ(δk+k−1)
n

∣∣∣d̂n,v+1λv+1

∣∣∣k ≤Mk

{ ∞∑
n=v+1

ϕβδn |ĉn,v+1|

}k
and we get

∑∞
n=v+1 |ĉn,v+1| = O(1) by (1), (2), (4), (5). Therefore

∞∑
n=v+1

ϕβ(δk+k−1)
n

∣∣∣d̂n,v+1λv+1

∣∣∣k = O(1)

that means (14) is necessary.

Sufficiency.

By the equalities in (15), we can write av =
∑v

r=0 ĉ
′
vr∆̄Ir and ∆̄Un =∑n

v=0 d̂nvλv
∑v

r=0 ĉ
′
vr∆̄Ir.

Since d̂n0 = d̄n0 − d̄n−1,0 = 0, we have

∆̄Un =
n∑
v=1

d̂nvλv

v∑
r=0

ĉ′vr∆̄Ir

=
n∑
v=1

d̂nvλv ĉ
′
vv∆̄Iv +

n∑
v=1

d̂nvλv ĉ
′
v,v−1∆̄Iv−1 +

n∑
v=1

d̂nvλv

v−2∑
r=0

ĉ′vr∆̄Ir

= d̂nnλnĉ
′
nn∆̄In +

n−1∑
v=1

(
d̂nvλv ĉ

′
vv + d̂n,v+1λv+1ĉ

′
v+1,v

)
∆̄Iv

+

n−2∑
r=0

∆̄Ir

n∑
v=r+2

d̂nvλv ĉ
′
vr. (17)

For δnv(Kronecker delta), by using the equality
∑n

k=v ĉ
′
nk ĉkv = δnv, we get

d̂nvλv ĉ
′
vv + d̂n,v+1λv+1ĉ

′
v+1,v =

d̂nvλv
ĉvv

+ d̂n,v+1λv+1

(
− ĉv+1,v

ĉvv ĉv+1,v+1

)
=

d̂nvλv
cvv

− d̂n,v+1λv+1
(c̄v+1,v − c̄vv)
cvvcv+1,v+1

=
d̂nvλv
cvv

− d̂n,v+1λv+1
(cv+1,v+1 + cv+1,v − cvv)

cvvcv+1,v+1

=
∆v(d̂nvλv)

cvv
+ d̂n,v+1λv+1

(cvv − cv+1,v)

cvvcv+1,v+1
.
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If we write this equality in (17), we obtain

∆̄Un =
dnnλn
cnn

∆̄In +
n−1∑
v=1

∆v(d̂nvλv)

cvv
∆̄Iv +

n−1∑
v=1

d̂n,v+1λv+1
(cvv − cv+1,v)

cvvcv+1,v+1
∆̄Iv

+
n−2∑
r=0

∆̄Ir

n∑
v=r+2

d̂nvλv ĉ
′
vr

= Un,1 + Un,2

so that

Un,1 =
dnnλn
cnn

∆̄In +

n−1∑
v=1

∆v(d̂nvλv)

cvv
∆̄Iv +

n−1∑
v=1

d̂n,v+1λv+1
(cvv − cv+1,v)

cvvcv+1,v+1
∆̄Iv

and

Un,2 =
n−2∑
r=0

∆̄Ir

n∑
v=r+2

d̂nvλv ĉ
′
vr.

Now, we show that

∞∑
n=1

ϕβ(δk+k−1)
n |Un,i|k <∞ for i = 1, 2.

First

ϕ
β(δk+k−1)

k
n Un,1 = ϕ

β(δk+k−1)
k

n
dnnλn
cnn

∆̄In + ϕ
β(δk+k−1)

k
n

n−1∑
v=1

∆v(d̂nvλv)

cvv
∆̄Iv

+ ϕ
β(δk+k−1)

k
n

n−1∑
v=1

d̂n,v+1λv+1
(cvv − cv+1,v)

cvvcv+1,v+1
∆̄Iv

=

∞∑
v=1

hnv∆̄Iv

such that

hnv =


ϕ
β(δk+k−1)

k
n

{
∆v(d̂nvλv)

cvv
+ d̂n,v+1λv+1

(cvv−cv+1,v)
cvvcv+1,v+1

}
, 1 ≤ v ≤ n− 1

ϕ
β(δk+k−1)

k
n

dnnλn
cnn

, v = n

0, v > n

.
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By Lemma 1,
∑∣∣∣∣ϕβ(δk+k−1)

k
n Un,1

∣∣∣∣k < ∞ whenever
∑∣∣∆̄In∣∣ < ∞ is equivalently

supv
∑∞

n=1 |hnv|
k <∞ and by using (10), (12), (13), (14), we have

∞∑
n=1

|hnv|k = O(1)

{
ϕβ(δk+k−1)
n

∣∣∣∣dnnλncnn

∣∣∣∣k

+
∞∑

n=v+1

ϕβ(δk+k−1)
n

∣∣∣∣∣∆v(d̂nvλv)

cvv
+ d̂n,v+1λv+1

(cvv − cv+1,v)

cvvcv+1,v+1

∣∣∣∣∣
k


= O(1) as v →∞.

Now

ϕ
β(δk+k−1)

k
n Un,2 = ϕ

β(δk+k−1)
k

n

n−2∑
r=0

∆̄Ir

n∑
v=r+2

d̂nvλv ĉ
′
vr =

∞∑
r=0

pnr∆̄Ir

so that

pnr =

 ϕ
β(δk+k−1)

k
n

∑n
v=r+2 d̂nvλv ĉ

′
vr, 0 ≤ r ≤ n− 2

0, r > n− 2
.

Again by Lemma 1,
∑∣∣∣∣ϕβ(δk+k−1)

k
n Un,2

∣∣∣∣k < ∞ whenever
∑∣∣∆̄In∣∣ < ∞ is

equivalently supr
∑∞

n=1 |dnr|
k <∞ and by using (11), (14), we have

∞∑
n=1

|dnr|k =
∞∑

n=r+2

|dnr|k = O(1)
∞∑

n=r+2

ϕβ(δk+k−1)
n

{ ∞∑
v=r+2

∣∣∣d̂nvλv ĉ′vr∣∣∣
}k

= O(1)

∞∑
n=r+2

ϕβ(δk+k−1)
n

∣∣∣d̂n,r+1λr+1

∣∣∣k
= O(1) as r →∞.

Thus, we obtain that

∞∑
n=1

ϕβ(δk+k−1)
n |Un,i|k <∞ for i = 1, 2.
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5 Conclusions

In this paper, a new general theorem related to necessary and sufficient conditions

for absolute matrix summability of IS is proved. In case of ϕn = n for all values

of n, β = 1 and δ = 0, the equalities (12), (13) and (14) reduce to the equalities

(6), (7) and (8) respectively, thence Theorem 2 reduces to Theorem 1. Theorem

2 may be the basis for further studies, the result can be generalized for different

summability methods.
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[13] H. S. Özarslan, Generalized almost increasing sequences, Lobachevskii J. Math. 42(1)

(2021), 167-172. https://doi.org/10.1134/S1995080221010212
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[18] H. S. Özarslan and H. N. Özgen, Necessary conditions for absolute matrix

summability methods, Boll. Unione Mat. Ital. 8(3) (2015), 223-228.

https://doi.org/10.1007/s40574-015-0039-8
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