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Abstract 

Let M be a Γ-semiring. In this paper we obtain some properties of L-fuzzy ideals in 

.MM ×  Our results take inspiration from [1]. The readers are left with a conjecture.  

1. Introduction and Preliminaries 

Definition 1.1 [1]. A partially ordered set (poset) is a pair ( ),, ≤X  where X is a 

nonempty set and ≤  is a partial order (a reflexive, transitive, and antisymmetric binary 

relation) on X. 

Definition 1.2 [1]. For any subset A of X and ,Xx ∈  we say x is a lower bound 

(upper bound) of A if ax ≤  xa ≤(  respectively) for all .Aa ∈  

Definition 1.3 [1]. A poset ( )≤,X  is called a lattice if every nonempty finite subset 

of X has a greater lower bound (glb or infimum) and a least upper bound (lub or 

supremum) in X.  

Remark 1.4 [1]. Let ( )≤,X  be a lattice. For any ,, Xba ∈  define =∧ ba  

{ }ba,inf  and { },,sup baba =∨  then ∧  and ∨  are binary operations on X which are 

commutative, associative, and idempotent and satisfy the absorption law 

( ) ( ).baaabaa ∧∨==∨∧  
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Example 1.5 [1]. Let ( )∨∧,,X  be an algebraic system satisfying the properties in 

the previous remark, in which the partial order is defined by 

,bbabaaba =∨⇔∧=⇔≤  

then ( )∨∧,,X  is a lattice. 

Definition 1.6 [1]. A lattice ( )∨∧,,X  is called distributive if ( ) =∨∧ cba  

( ) ( )caba ∧∨∧  for all Xcba ∈,,  (equivalently ( ) ( ) ( )cabacba ∨∧∨=∧∨  for 

all ).,, Xcba ∈  

Definition 1.7 [1]. A lattice ( )∨∧,,X  is called a bounded lattice if it has the 

smallest element 0 and largest element 1, that is, there are elements 0 and 1 in X, such 

that 10 ≤≤ x  for all .Xx ∈  

Definition 1.8 [1]. A partially ordered set in which every subset has an infimum and 

supremum is called a complete lattice 

Definition 1.9 [1]. Two elements a, b of a bounded lattice ( )1,0,,, ∨∧L  are 

complements if 0=∧ ba  and .1=∨ ba  In this case each of a, b is the complement of 

the other. 

Definition 1.10 [1]. A complement lattice is a bounded lattice in which every 

element has a complement. 

Definition 1.11 [2]. A set S together with two associative binary operations called 

addition and multiplication (denoted by + and ·) is called a semiring provided the 

following holds: 

(a) addition is a commutative operation, 

(b) multiplication distributes over addition both from the left and from the right, 

(c) there exists S∈0  such that xx =+ 0  and 000 =⋅=⋅ xx  for each .Sx ∈  

Definition 1.12 [2]. Let ( )+,M  and ( )+Γ,  be commutative semigroups. If there 

exists a mapping MMM ֏×Γ×  (images to be denoted by ),,, Γ∈α∈α Myxyx  

satisfying the following axioms for all Mzyx ∈,,  and ,, Γ∈βα  then M is called a 

Γ-semiring 
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(a) ( ) ,zxyxzyx α+α=+α   

(b) ( ) ,zyzxzyx α+α=α+  

(c) ( ) ,yxyxyx β+α=β+α  

(d) ( ) ( ) .zyxzyx βα=βα  

Definition 1.13 [2]. A Γ-semiring M is said to have a zero element if there exists an 

element M∈0  such that 00 +==+ xxx  and ,000 =α=α xx  for all .Mx ∈  

Example 1.14 [2]. Every semiring M is a Γ-semiring with M=Γ  and ternary 

operation as the usual semiring multiplication. 

Example 1.15 [2]. Let M be a Γ-semiring, and A be a nonempty subset of M. A is 

called a Γ-subsemiring of M if A is a sub-semigroup of ( )+,M  and .AAA ⊆Γ  

Definition 1.16 [2]. Let M be a Γ-semiring. A subset A of M is called a left (right) 

ideal of M if A is closed under addition and AAM ⊆Γ  ( ).AMA ⊆Γ  Moreover, we say 

A is an ideal of M if it is both a left ideal and right ideal. 

Definition 1.17 [3]. Let M be a nonempty set, a mapping [ ]1,0: ֏Mf  is called a 

fuzzy subset of M. 

Definition 1.18 [3]. Let f be a fuzzy subset of a nonempty set M, for [ ],1,0∈t  the 

set  

( ){ }txfMxft ≥∈= :  

is called a level subset of M with respect to f. 

Definition 1.19 [4]. Let M be a Γ-semiring. A fuzzy subset µ of M is said to be a 

fuzzy Γ-subsemiring of M if it satisfies the following conditions 

(a) ( ) ( ) ( ){ },,min yxyx µµ≥+µ  

(b) ( ) ( ) ( ){ },,min yxyx µµ≥αµ  for all .,, Γ∈α∈ Myx  

Definition 1.20 [4]. Let M be a Γ-semiring. A fuzzy subset µ of M is said to be a 

fuzzy left (right) ideal of M if for all Myx ∈,  and Γ∈α  the following conditions hold 

(a) ( ) ( ) ( ){ },,min yxyx µµ≥+µ   

(b) ( ) ( ) ( )( ).xyyx µµ≥αµ  
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Definition 1.21 [4]. Let M be a Γ-semiring. A fuzzy subset µ of M is said to be a 

fuzzy ideal of M if for all Myx ∈,  and Γ∈α  the following conditions hold 

(a) ( ) ( ) ( ){ },,min yxyx µµ≥+µ   

(b) ( ) ( ) ( ){ }.,max yxyx µµ≥αµ  

Definition 1.22 [2]. Let M be a Γ-semiring. An ideal I of M is called a k-ideal if for 

all IyxMyx ∈+∈ ,,  and Iy ∈  implies .Ix ∈  

Definition 1.23 [3]. Let M be a Γ-semiring. A fuzzy subset [ ]1,0: ֏Mµ  is 

nonempty if µ is not the constant function. 

Definition 1.24 [3]. Let M be a Γ-semiring. For any two fuzzy subsets λ, µ of M, 

µ⊆λ  means ( ) ( )xx µ≤λ  for all .Mx ∈  

Definition 1.25 [4]. Let M be a Γ-semiring, and let f, g be fuzzy subsets of M. Then 

gf �  is defined as  

( ) ( ) ( ) ( ){ }{ }


= α=

otherwise0

,minsup ygxf
zgf

yxz
�  

gf +  is defined as  

( ) ( ) ( ) ( ){ }{ }


=+ +=

otherwise0

,minsup ygxf
zgf

yxz
 

gf ∪  is defined as  

( ) ( ) ( ) ( ){ }zgzfzgf ,max=∪  

and gf ∩  is defined as 

( ) ( ) ( ) ( ){ }zgzfzgf ,min=∩  

,,, Γ∈α∈ Myx  for all .Mz ∈  

Definition 1.26 [2].  A function ,: MRf ֏  where R and M are Γ-semirings is said 

to be a Γ-semiring homomorphism if ( ) ( ) ( )bfafbaf +=+  and ( ) ( ) ( )bfafbaf α=α  

for all ,, Rba ∈  and .Γ∈α  
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Definition 1.27 [4]. Let A be a nonempty subset of a Γ-semiring M. The 

characteristic function of A is a fuzzy subset of M, and is defined by  

( )


 ∈

=χ
otherwise.0

if1 Ax
xA  

Definition 1.28 [4]. Let M be a Γ-semiring, “0” be the zero element in M, and f be a 

fuzzy ideal of M. We say f is a k-fuzzy ideal of M if ( ) ( )0fyxf =+  and ( ) ( )0fyf =  

implies ( ) ( )0fxf =  for all ., Myx ∈  

Definition 1.29 [4]. Let M be a Γ-semiring, and f be a fuzzy ideal of M. We say f is a 

fuzzy k-ideal of M if  

( ) ( ) ( ){ }yfyxfxf ,min +≥  

for all ., Myx ∈  

2. Main Results 

Notation 2.1. ( )∨∧≤= ,,,LL  will denote a complemented lattice. 

Notation 2.2. M will denote a Γ-semiring, and its zero element will be denoted “0”. 

Definition 2.3. A mapping LMM ֏×µ :  will be called a L-fuzzy subset of .2
M  

Definition 2.4. A L fuzzy subset µ of MM ×  will be called a L-fuzzy Γ-subsemiring 

of 2
M  if the following conditions are satisfied:  

(a) ( ) ( ) ( ){ },,,,min, myzxmzyx µµ≥++µ  

(b) ( ) ( ) ( ){ },,,,min, myzxmzyx µµ≥ααµ  for all ( ) ( ) ,,,, MMmyzx ×∈ .Γ∈α  

Definition 2.5. A L-fuzzy Γ-subsemiring of ,MM ×  µ, will be called a L-fuzzy left 

(right) ideal of 2
M  if 

( ) ( ) ( )( ).,,, zxmymzyx µµ≥ααµ  

Moreover if µ is a fuzzy left and fuzzy right ideal of ,MM ×  then µ will be called a 

L-fuzzy ideal of .2
M  
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Theorem 2.6. Let µ be a L-fuzzy ideal of .MM ×  Then ( ) ( )0,0, µ≤µ yx  for all 

( ) ., MMyx ×∈  

Proof. Let ( ) ,, MMyx ×∈  .Γ∈α  Now observe that ( ) ( )yx ααµ=µ 0,00,0  

( ),, yxµ≥  therefore ( ) ( ),0,0, µ≤µ yx  for all ( ) ., MMyx ×∈  

Theorem 2.7. µ is a L-fuzzy left ideal of 2
M  iff for Lt ∈  such that ,∅≠µt  tµ  is 

a left ideal of .MM ×  

Proof. (⇒) Let µ be a L-fuzzy left ideal of MM ×  and Lt ∈  be such that .∅≠µt  

Let ( ) ( ) ,,,, tmyzx µ∈  then it follows that 

( ) ( ) tmyzx ≥µµ ,,,  

⇒ 

( ) ( ) ( ){ } .,,,min, tmyzxmzyx ≥µµ≥++µ  

Let ( ) ( ) ,,,, tmyMMzx µ∈×∈  and ,Γ∈α  then ( ) ( ) .,, tmymzyx ≥µ≥ααµ  It 

follows that ., tmzyx µ∈αα  Therefore tµ  is a left ideal of .MM ×  

(⇐) Suppose that tµ  is a left ideal of .MM ×  Let ( ) ( ) MMmyzx ×∈,,,  and 

( ) ( ){ }.,,,min myzxt µµ=  Then 

( ) ( ) tmyzx ≥µµ ,,,  

⇒  

( ) ( ) tmyzx µ∈,,,  

⇒  

( ) tmzyx ≥++µ ,  

⇒  

( ) ( ) ( ){ }.,,,min, myzxmzyx µµ≥++µ  

Now let ( ) ( ) .,,,
2

Mmyzx ∈  

( ) smy =µ ,  
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⇒  

( ) smy µ∈,  

⇒  

smzyx µ∈αα ,  

⇒  

( ) ( ).,, mysmzyx µ=≥ααµ  

It follows that µ is a L-fuzzy left ideal. 

Theorem 2.8. Define ( ) ( ) ( ){ }.0,0,, µ≥µ|×∈=µ yxMMyxM  If µ is a L-fuzzy 

ideal of ,MM ×  then µM  is an ideal of .2
M  

Proof. Let µ be a L-fuzzy ideal of MM ×  and ( ) ( ) ,,,, µ∈ Mmyzx  then it follows 

that 

( ) ( ) ( ) ( )0,0,,0,0, µ≥µµ≥µ myzx  

which implies that 

( ) ( ) ( ){ } ( )0,0,,,min, µ≥µµ≥++µ myzxmzyx  

which implies that 

( ) ., µ∈++ Mmzyx  

Now observe that 

( ) ( ) ( ){ } ( )0,0,,,min, µ≥µµ≥ααµ myzxmzyx  

implies that 

( ) ., µ∈αα Mmzyx  

Now let ( ) ( ) ,,,, MmyMzx ∈∈ µ  and ,Γ∈α  then it follows that 

( ) ( )0,0, µ≥µ zx  

which implies 

( ) ( ) ( )0,0,, µ≥µ≥αα zxzmxym  
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which implies 

( ) ., µ∈αα Mzmxy  

Similarly, we have 

( ) ., µ∈αα Mmzyx  

It now follows that µM  is an ideal of .MM ×  

Theorem 2.9. Let µ and γ be two L-fuzzy ideals of ,MM ×  then γµ ∩  is a L-fuzzy 

ideal of .MM ×  

Proof. Let ( ) ( ) ,,,, MMmyzx ×∈  and ,Γ∈α  then we have the following 

( ) ( ) ( ) ( ){ }mzyxmzyxmzyx ++γ++µ=++γµ ,,,min,∩  

( ) ( ){ } ( ) ( ){ }{ }myzxmyzx ,,,min,,,,minmin γγµµ≥  

( ) ( ){ } ( ) ( ){ }{ }mymyzxzx ,,,min,,,,minmin γµγµ=  

( ) ( ) ( ) ( ){ }.,,,min myzx γµγµ= ∩∩  

On the other hand 

( ) ( ) ( ) ( ){ }mzyxmzyxmzyx ααγααµ=ααγµ ,,,min,∩  

( ) ( ){ } ( ) ( ){ }{ }myzxmyzx ,,,max,,,,maxmin γγµµ≥  

( ) ( ){ } ( ) ( ){ }{ }mymyzxzx ,,,min,,,,minmax γµγµ=  

( ) ( ) ( ) ( ){ }.,,,max myzx γµγµ= ∩∩  

It now follows that γµ ∩  is a L-fuzzy ideal of .MM ×  

Definition 2.10. Let M be a Γ-semiring, and µ be a L-fuzzy ideal of .MM ×  We say 

µ is a L-fuzzy k ideal of 2
M  if  

( ) ( ) ( ){ }mymzyxzx ,,,min, µ++µ≥µ  

for all .,,, Mmzyx ∈  Moreover, if ( ) ( ) ( ) ,0,0,,0, =µ⇒=µ=++µ zxmymzyx  

then we say µ is a kL −  fuzzy ideal of .MM ×  
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Theorem 2.11. Let M be a Γ-semiring, and let f and g be L-fuzzy k ideals of .
2

M  

Then gf ∩  is a L-fuzzy k ideal of .2M  

Proof. Let M be a Γ-semiring, and let f and g be L-fuzzy k ideals of .2M  By the 

previous theorem, gf ∩  is a L-fuzzy k ideal of .2M  Let ,,,, Mmzyx ∈  and observe 

we have the following 

( ) ( ) ( ) ( ){ }zxgzxfzxgf ,,,min, =∩  

( ) ( ){ } ( ) ( ){ }{ }mygmzyxgmyfmzyxf ,,,min,,,,minmin ++++≥  

( ) ( ){ } ( ) ( ){ }{ }mygmyfmzyxgmzyxf ,,,min,,,,minmin ++++≥  

( ) ( ) ( ) ( ){ }.,,,min mygfmzyxgf ∩∩ ++=  

Hence gf ∩  is a L fuzzy k ideal of .MM ×  

Definition 2.12. Let X be a set and µ be a L-fuzzy subset of ,XX ×  and ., Lba ∈  

The mapping ,:,: LXXLXX
M
b

T
a ֏֏ ×µ×µ  and LXX

MT
ab ֏×µ :,  will be 

called a fuzzy type translation, a fuzzy type multiplication, and a fuzzy type magnified 

translation of µ respectively, if for all ,, Mzx ∈  

( ) ( ) azxzx
T
a ∨µ=µ ,,  

( ) ( )zxbzx
M
b ,, µ∧=µ  

( ) ( )( ) .,,, azxbzx
MT

ab ∨µ∧=µ  

Theorem 2.13. Let M be a Γ-semiring, and let µ be a L-fuzzy subset of ,MM ×  and 

let .La ∈  µ is a L-fuzzy ideal of MM ×  iff T
aµ  is a L-fuzzy ideal of .MM ×  

Proof. (⇒) Suppose µ is a L-fuzzy ideal of .MM ×  Let Mmzyx ∈,,,  and  

.Γ∈α  Now observe we have the following 

( ) ( ) amzyxmzyx
T
a ∨++µ=++µ ,,  

( ) ( ){ } amyzx ∨µµ≥ ,,,min  
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( ) ( ){ }amyazx ∨µ∨µ= ,,,min  

{ ( ) ( )}.,,,min myzx
T
a

T
a µµ=  

On the other hand 

( ) ( ) amzyxmzyx
T
a ∨ααµ=ααµ ,,  

( ) ( ){ } amyzx ∨µµ≥ ,,,min  

( ) ( ){ }amyazx ∨µ∨µ= ,,,min  

{ ( ) ( )}.,,,min myzx
T
a

T
a µµ=  

It now follows that T
aµ  is a L-fuzzy ideal of .MM ×  

(⇐) Suppose that ,La ∈  T
aµ  is a L-fuzzy ideal of .MM ×  Let Mmzyx ∈,,,  and 

.Γ∈α  Now 

( ) { ( ) ( )}myzxmzyx
T
a

T
a

T
a ,,,min, µµ≥++µ  

⇒  

( ) ( ) ( ){ }amyazxamzyx ∨µ∨µ≥∨++µ ,,,min,  

⇒  

( ) ( ) ( ){ } amyzxamzyx ∨µµ≥∨++µ ,,,min,  

⇒  

( ) ( ) ( ){ }.,,,min, myzxmzyx µµ≥++µ  

On the other hand 

( ) { ( ) ( )}myzxmzyx
T
a

T
a

T
a ,,,max, µµ≥ααµ  

⇒  

( ) ( ) ( ){ }amyazxamzyx ∨µ∨µ≥∨ααµ ,,,max,  

⇒  

( ) ( ) ( ){ } amyzxamzyx ∨µµ≥∨ααµ ,,,max,  
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⇒  

( ) ( ) ( ){ }.,,,max, myzxmzyx µµ≥ααµ  

It now follows that µ is a L-fuzzy ideal of .MM ×  

3. Open Problem 

Conjecture 3.1. Let M be a Γ-semiring, and let µ be a L-fuzzy subset of ,MM ×  

and .La ∈  Then µ is a L-fuzzy k ideal of MM ×  iff T
aµ  is a L-fuzzy k ideal of .MM ×  

4. Concluding Remarks 

The present paper has introduced a concept of L-fuzzy ideals in couple Γ-semirings, 

and investigated some of their properties. Finally, we have a left the reader with an open 

problem inspired by Theorem 3.20 [1]. 
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