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Abstract 

The combined edges systems, which are the work’s central idea, are used to introduce 

and investigate the C-space in this paper. We introduce the crucial and necessary stepping 

stone for the concepts of c-derived graphs, c-closed graphs, and c-closure. 

1. Introduction 

Many people once thought that abstract topological structures only had a little role to 

play in the generalization of real lines and complex planes, or that they had some ties to 

algebra and other disciplines of mathematics. And it appears that there is a significant 

disconnect between the uses of these frameworks in actual life. We observed that in some 

circumstances, the idea of relation is employed to generate topologies for use in 

significant applications, such as computation topologies [12], recombination spaces [9, 

10], and information granulation used in biological sciences and some other fields of 

applications. A subfield of mathematics called topological graph theory [1, 2, 3, 4, 13] 

has notions that are used in practically every other subfield of mathematics as well as 

several practical contexts. We think that topological graph structure will serve as a crucial 

foundation for bridging the topology-applications divide. For all terminology and 

notation in graph theory a novel idea in topology on a signed graph and topology on 

transitive products of a signed graph was researched by Subbaih [5] in 2007. 

Karunakaran [6] established topology �� on a graph G from a collection of spanning 

subgraphs of G in the same year. Thomas [7] investigated topology in 2013 and 

determined the topological numbers of several graphs using set indexers. By using two 
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fixed vertices and determining vertex and edge incidence depending on the distance 

between them, Shokry [8] described a new technique for creating graph topology in 2015. 

A undirected graph or graph is pair Ω = (Ʊ(Ω�, ℰ(Ω�� where Ʊ(Ω� is a non-empty set 

whose elements are called points or vertices (called vertex set) and ℰ(Ω� is the set of 

unordered pairs of elements of Ʊ(Ω� (called edge set). An edge of a graph that joins a 

vertex to itself is called a loop. If two edges of a graph are joined by a vertex, then these 

edges are called the edges ƍ incident with the edges ƍ�. The set of ƍ is {ƍ� ∈
ℰ(Ω�: ƍ�incident with ƍ} and the edges ƍ non incident with the edges ƍ�. The set of ƍ is 

{ƍ� ∈ ℰ(Ω�: ƍ�nonincident with ƍ}. A graph is symmetric if (Ԅ�, Ԅ�� ∈ ℰ(Ω� implies 

(Ԅ�, Ԅ�� ∈ ℰ(Ω�, antisymmetric if (Ԅ�, Ԅ�� ∈ ℰ(Ω� and (Ԅ�, Ԅ�� ∈ ℰ(Ω� implies 

Ԅ� = Ԅ�. A subgraph of a graph Ω is a graph each of whose vertices belong to Ʊ(Ω� and 

each of whose edges belong to ℰ(Ω�. An empty graph if the vertices set and edge set is 

empty. A degree of a vertex Ԅ in a graph Ω is the number of edges of Ω incident with Ԅ. 

Null graph is a graph that all of its vertices are of the same degree of degree zero. A star 

graph of order � (denoted by ��) is a graph that all edges are incident to each other. A 

subfamily Þ! of Ω is said to supra topology on Ω if (i) Ω, ϕ ∈ μ (ii) if ƕ% ∈ Þ!, ∀ ', then 

∪ ƕ% ∈ Þ!. (Ω, Þ!� is called supra topology space. A supra topology space (Ω, Þ!� is T�-

space if ∀ ƍ�, ƍ� ∈ Ω such that ƍ� ≠ ƍ�, there exists ƕ and ƙ are open set such that 

ƍ� ∈ ƕ & ƍ� ∉ ƙ and ƍ� ∉ ƕ & ƍ� ∈ ƙ. 

2. Combined Edges Systems and C-spaces  

In this section, we introduce and investigate the notions of combined edges systems, 

C-space and c-derived of und. g. (undirected graph).  

Definition 2.1. Let Ω = (Ʊ(Ω�, ℰ(Ω�� be an und. g. and an edge ƍ ∈ ℰ(Ω�. 

1. The edge ƍ incident with the edge ƍ� the set of ƍ is denoted by Iƍ and defined by: 

Iℰ(ƍ� = {ƍ� ∈ ℰ(Ω�: ƍ�incident with ƍ}. 

2. The edge ƍ non incident with the edge ƍ� the set of ƍ is denoted by NIƍ and 

defined by: 

NIℰ(ƍ� = {ƍ� ∈ ℰ(Ω�: ƍ�non incident with ƍ}. 

Definition 2.2. Let Ω = (Ʊ(Ω�, ℰ(Ω�� be an und. g. Then the incident with the edge 

system (resp. non incident with the edge system) of an edge ƍ ∈ ℰ(Ω� is denoted by 

IℰS(ƍ� (resp. 12ℰS(ƍ�� and defined by: IℰS(ƍ� = {Iℰ(ƍ�}, (resp. 12ℰS(ƍ� = {NIℰ(ƍ�}�. 
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Example 2.3. Let Ω = (Ʊ(Ω�, ℰ(Ω�� be an und. g. such that Ʊ(Ω� = 

{Ԅ�, Ԅ�, Ԅ3, Ԅ4, Ԅ5, Ԅ6},   ℰ(Ω� = {ƍ�, ƍ�, ƍ3, ƍ4, ƍ5, ƍ6, ƍ7}. 

 

Figure 2.1. und. g.  Ω given in Example (2.3�. 

Then 

Iℰ(ƍ�� = {ƍ�}, Iℰ(ƍ�� = {ƍ�, ƍ3}, Iℰ(ƍ3� = {ƍ�, ƍ4, ƍ5}, Iℰ(ƍ4� = {ƍ3, ƍ5, ƍ6}, 

Iℰ(ƍ5� = {ƍ3, ƍ4, ƍ7}, Iℰ(ƍ6� = {ƍ4, ƍ6}, Iℰ(ƍ7� = {ƍ5, ƍ7}. 

And  

IℰS(ƍ�� = F{ƍ�}G, IℰS(ƍ�� = F{ƍ�, ƍ3}G, IℰS(ƍ3� = F{ƍ�, ƍ4, ƍ5}G, 

IℰS(ƍ4� = F{ƍ3, ƍ5, ƍ6}G, IℰS(ƍ5� = F{ƍ3, ƍ4, ƍ7}G, IℰS(ƍ6� = F{ƍ4, ƍ6}G,  

IℰS(ƍ7� = F{ƍ5, ƍ7}G. 

Also, we have  

NIℰ(ƍ�� = {ƍ3, ƍ4, ƍ5, ƍ6, ƍ7}, NIℰ(ƍ�� = {ƍ4, ƍ5, ƍ6, ƍ7}, NIℰ(ƍ3� = {ƍ�, ƍ6, ƍ7}, 

NIℰ(ƍ4� = {ƍ�, ƍ�, ƍ7}, NIℰ(ƍ5� = {ƍ�, ƍ�, ƍ6}, NIℰ(ƍ6� = {ƍ�, ƍ�, ƍ3, ƍ5, ƍ7},  

NIℰ(ƍ7� = {ƍ�, ƍ�, ƍ3, ƍ4, ƍ6}. 

And  

12ℰS(ƍ�� = F{ƍ3, ƍ4, ƍ5, ƍ6, ƍ7}G, 12ℰS(ƍ�� = F{ƍ4, ƍ5, ƍ6, ƍ7}G,  

12ℰS(ƍ3� = F{ƍ�, ƍ6, ƍ7}G, 12ℰS(ƍ4� = F{ƍ�, ƍ�, ƍ7}G, 12ℰS(ƍ5� = F{ƍ�, ƍ�, ƍ6}G, 

12ℰS(ƍ6� = F{ƍ�, ƍ�, ƍ3, ƍ5, ƍ7}G, 12ℰS(ƍ7� = F{ƍ�, ƍ�, ƍ3, ƍ4, ƍ6}G. 

Definition 2.4. Let Ω = (Ʊ(Ω�, ℰ(Ω�� be an und. g. Then the combined edges 

systems of an edge ƍ ∈ ℰ(Ω� is denoted by HℰS(ƍ� and defined by: 
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HℰS(ƍ� = {IℰS(ƍ� , 1IℰS(ƍ�}. 

Definition 2.5. Let Ω = (Ʊ(Ω�, ℰ(Ω�� be an und. g. Then the combined edges of an 

edge ƍ ∈ ℰ(Ω� is denoted by Hℰ(ƍ� such that Hℰ(ƍ� ∈ HℰS(ƍ�. 

Example 2.6. According to Example (2.3), the combined edges systems are given by: 

HℰS(ƍ�� = F{ƍ�}, {ƍ3, ƍ4, ƍ5, ƍ6, ƍ7}G,  HℰS(ƍ�� = F{ƍ�, ƍ3}, {ƍ4, ƍ5, ƍ6, ƍ7}G, 

ℰS(ƍ3� = F{ƍ�, ƍ4, ƍ5}, {ƍ�, ƍ6, ƍ7}G,  HℰS(ƍ4� = F{ƍ3, ƍ5, ƍ6}, {ƍ�, ƍ�, ƍ7}G, 

HℰS(ƍ5� = F{ƍ3, ƍ4, ƍ7}, {ƍ�, ƍ�, ƍ6}G,  HℰS(ƍ6� = F{ƍ4, ƍ6}, {ƍ�, ƍ�, ƍ3, ƍ5, ƍ7}G, 

HℰS(ƍ7� = F{ƍ5, ƍ7}, {ƍ�, ƍ�, ƍ3, ƍ4, ƍ6}G. 

Definition 2.7. Let Ω = (Ʊ(Ω�, ℰ(Ω�� be an und. g. and suppose that Þ!: ℰ(Ω� →
P(P(ℰ(Ω��� is a mapping which assigns for each ƍ in ℰ(Ω� its combined edges system in 

P(P(ℰ(Ω���. Then the pair (Ω, Þ!� is called the C-space. 

Example 2.8. According to Example (2.3), the mapping Þ! is given by:  

Þ!(ƍ�� = F{ƍ�}, {ƍ3, ƍ4, ƍ5, ƍ6, ƍ7}G,  Þ!(ƍ�� = F{ƍ�, ƍ3}, {ƍ4, ƍ5, ƍ6, ƍ7}G, 

Þ!(ƍ3� = F{ƍ�, ƍ4, ƍ5}, {ƍ�, ƍ6, ƍ7}G,  Þ!(ƍ4� = F{ƍ3, ƍ5, ƍ6}, {ƍ�, ƍ�, ƍ7}G, 

Þ!(ƍ5� = F{ƍ3, ƍ4, ƍ7}, {ƍ�, ƍ�, ƍ6}G,  Þ!(ƍ6� = F{ƍ4, ƍ6}, {ƍ�, ƍ�, ƍ3, ƍ5, ƍ7}G, 

Þ!(ƍ7� = F{ƍ5, ƍ7}, {ƍ�, ƍ�, ƍ3, ƍ4, ƍ6}G.  

Therefore (Ω, Þ!� is a C-space. 

It might see that the concept of C-spaces without additional assumptions on und. g. 

Ω, is two general to embrace many properties. It will be seen that with suitable 

definitions, a whole concept of C-spaces can be developed and certain of its results find 

an application in generalized rough set theory.  

Definition 2.9. Let (Ω, Þ!� be a C-space. An edge ƍ in ℰ(Ω� is called a limit edge of 

a graph ƕ ⊆ Ω if every combined edgesof ƍ contains at least one edge of ƕ different 

from ƍ. The set of all limit edges of a ƕ ⊆ Ω is called the c-derived und. g. of ƕ and is 

denoted by [ℰ( ƕ� ]!
` , and : [ℰ( ƕ� ]!

` = {ƍ ∈ ℰ(Ω�;  HℰS(ƍ� ∩ (ℰ( ƕ� − {ƍ}� ≠ ϕ}.  

Example 2.10. In Example (2.8), if ƕ ⊆ Ω, ƕ = (Ʊ(ƕ�, ℰ(ƕ�� where Ʊ(ƕ� =
{Ԅ�, Ԅ�, Ԅ3, Ԅ4, Ԅ6} and ℰ(ƕ� = {ƍ�, ƍ4, ƍ5, ƍ6, ƍ7}. 
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Figure 2.2. sub und. g. ƕ of Ω given in Example (2.10). 

Then we note that [ℰ( ƕ� ]!
` = {ƍ�, ƍ3, ƍ4, ƍ5, ƍ6, ƍ7}. 

Definition 2.11. Suppose that Ƣ!: P(ℰ(Ω�� → P(ℰ(Ω�� is a mapping which assigns 

for every ƕ ⊆ Ω a set Ƣ!Vℰ( ƕ�W ⊆ ℰ(Ω� such that Ƣ!Vℰ( ƕ�W = [ℰ( ƕ� ]!
` . 

Proposition 2.12. The mapping Ƣ! satisfies the following properties: 

(X� Ƣ!(ϕ� = ϕ.  

(Y� If ƙ ⊆  ƕ, then Ƣ!Vℰ( ƙ�W ⊆ Ƣ!Vℰ( ƕ�W for all ƕ, ƙ ⊆ Ω. 

Proof. (a) Since Ƣ!Vℰ( ƕ�W = [ℰ( ƕ� ]!
`  and [ℰ( ƕ� ]!

` = {ƍ ∈ ℰ(Ω�;  HℰS(ƍ� ∩
(ℰ( ƕ� − {ƍ}� ≠ ϕ}, we note that for all ƍ ∈ ℰ(Ω�;  HℰS(ƍ� ∩ (ϕ − {ƍ}� = ϕ and hence 

[ℰ( ƕ�]!
` = ϕ thus Ƣ!(ϕ� = ϕ. 

(b) Let Ω = VƱ(Ω�, ℰ(Ω�W be an und. g. and let ƕ, ƙ ⊆ Ω and ƙ ⊆  ƕ. To prove that 

Ƣ!Vℰ( ƙ�W ⊆ Ƣ!Vℰ( ƕ�W. Let ƍ� ∈ [ℰ( ƙ�]!
` ⟹ HℰS(ƍ�� ∩ (ℰ( ƙ� − {ƍ�}� ≠ ϕ. 

Since ℰ( ƙ� ⊆ ℰ( ƕ� ⟹ HℰS(ƍ�� ∩ (ℰ( ƕ� − {ƍ�}� ≠ ϕ thus ƍ� ∈ [ℰ( ƕ�]!
` ⟹

 [ℰ( ƙ�]!
` ⊆ [ℰ( ƕ�]!

` ⟹  Ƣ!Vℰ( ƙ�W ⊆ Ƣ!Vℰ( ƕ�W. 

Example 2.13. In Example (2.8), and Example (2.10), if ƙ ⊆ Ω, ƙ = VƱ(ƙ�, ℰ(ƙ�W 

suth that Ʊ(ƙ� = {Ԅ�, Ԅ3, Ԅ4, Ԅ6}, ℰ(ƙ� = {ƍ�, ƍ4, ƍ6}. 

 

Figure 2.3. sub und. g. ƙ of Ω given in Example (2.13�. 
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Then [ℰ( ƙ�]!
` = {ƍ�, ƍ3, ƍ4, ƍ5, ƍ6}. And by Example (2.10), [ℰ( ƕ�]!

`  =
{ƍ�, ƍ3, ƍ4, ƍ5, ƍ6, ƍ7} we get that ƙ ⊆ ƕ and [ℰ( ƙ�]!

` ⊆ [ℰ( ƕ�]!
` . 

Proposition 2.14. Let (Ω, Þ!� be a C-space for all ƕ, ƙ ⊆ Ω. Then, 

(X� [ℰ( ƕ�]!
` ∪ [ℰ( ƙ�]!

` ⊆ [ℰ( ƕ ∪ ƙ�]!
`  . 

(Y� [ℰ( ƕ ∩ ƙ�]!
` ⊆ [ℰ( ƕ�]!

` ∩ [ℰ( ƙ�]!
`  . 

Proof.  

(X� Let Ω = (Ʊ(Ω�, ℰ(Ω�� be an und. g. and let ƕ, ƙ ⊆ Ω. To prove that [ℰ( ƕ�]!
` ∪

[ℰ( ƙ�]!
` ⊆ [ℰ( ƕ ∪ ƙ�]!

` . 

Since ƕ ⊆ (ƕ ∪ ƙ� by Proposition (2.12.(b)) we get  

[ℰ( ƕ�]!
` ⊆ [ℰ( ƕ ∪ ƙ�]!

` − − − (1�. 

And ƙ ⊆ (ƕ ∪ ƙ� by Proposition (2.12.(b)) we get  

[ℰ( ƙ�]!
` ⊆ [ℰ( ƕ ∪ ƙ�]!

` − − − (2�. 

From(1� and (2� we get [ℰ( ƕ�]!
` ∪ [ℰ( ƙ�]!

` ⊆ [ℰ( ƕ ∪ ƙ�]!
` . 

(Y� Let Ω = (Ʊ(Ω�, ℰ(Ω�� be an und. g. and let ƕ, ƙ ⊆ Ω. To prove that [ℰ( ƕ ∩

ƙ�]!
` ⊆ [ℰ( ƕ�]!

` ∩ [ℰ( ƙ�]!
` .  

Since (ƕ ∩ ƙ� ⊆ ƕ by Proposition (2.12.(b)) we get  

[ℰ(ƕ ∩ ƙ�]!
` ⊆ [ℰ( ƕ�]!

` − − − (1�. 

And (ƕ ∩ ƙ� ⊆ (ƙ� by Proposition (2.12.(b)) we get  

[ℰ( ƕ ∩ ƙ�]!
` ⊆ [ℰ(ƙ�]!

` − − − (2�. 

From (1� and (2� we get [ℰ( ƕ ∩ ƙ�]!
` ⊆ [ℰ( ƕ�]!

` ∩ [ℰ( ƙ�]!
` . 

Note 2.15. Let (Ω, Þ!� be a C-space for all ƕ, ƙ ⊆ Ω. Then, 

(X� [ℰ( ƕ ∪ ƙ�]!
` ⊆ [ℰ( ƕ�]!

` ∪ [ℰ( ƙ�]!
`  . 

(Y� [ℰ( ƕ�]!
` ∩ [ℰ( ƙ�]!

` ⊆ [ℰ( ƕ ∩ ƙ�]!
`  . 

It is not necessary to achieve the follwing example illustrates this. 

Example 2.16. In Example (2.8), if ƕ, ƙ ⊆ Ω, ƕ = (Ʊ(ƕ�, ℰ(ƕ�� such that Ʊ(ƕ� =
{Ԅ3, Ԅ4, Ԅ5}, ℰ(ƕ� = {ƍ�, ƍ3}, ƙ = (Ʊ(ƙ�, ℰ(ƙ�� such that Ʊ(ƙ� = {Ԅ�, Ԅ4, Ԅ6}, ℰ(ƙ� =
{ƍ4, ƍ6, ƍ7}. 
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Figure 2.4. sub und. g. ƕ, ƙ of Ω given in Example (2.16�. 

Then we note that [ℰ( ƕ�]!
` = {ƍ�, ƍ4, ƍ5}, [ℰ( ƙ�]!

` = {ƍ3, ƍ4, ƍ5, ƍ6}, [ℰ( ƕ ∪ ƙ�]!
` =

{ƍ�, ƍ�, ƍ3, ƍ4, ƍ5, ƍ6},   

[ℰ( ƕ ∩ ƙ�]!
` = ϕ. 

Proposition 2.17. Let (Ω, Þ!� be a C-space for all ƕ ⊆ Ω. If ƍ ∈ [ℰ( ƕ�]!
` , then ƍ ∈

[ℰ( ƕ − ƍ�]!
` . 

Proof. Let Ω = (Ʊ(Ω�, ℰ(Ω�� be an und. g. and let ƕ ⊆ Ω. Suppose that ƍ ∈ [ℰ( ƕ�]!
`  

 ⟹ HℰS(ƍ� ∩ (ℰ( ƕ� − {ƍ}� ≠ ϕ  

 ⟹ HℰS(ƍ� ∩ (ℰ( ƕ� ∩ {ƍ}]� ≠ ϕ  

 ⟹ HℰS(ƍ� ∩ (ℰ( ƕ − ƍ� ∩ {ƍ}]� ≠ ϕ  

 ⟹ HℰS(ƍ� ∩ (ℰ( ƕ − ƍ� − {ƍ}� ≠ ϕ.  

Thus ƍ ∈ [ℰ( ƕ − ƍ�]!
` . 

Example 2.18. In Example (2.8), if ƕ ⊆ Ω, ƕ = (Ʊ(ƕ�, ℰ(ƕ�� such that V(ƕ� =
{Ԅ3, Ԅ4, Ԅ5}, ℰ(ƕ� = {ƍ�, ƍ3}.  

 

Figure 2.5. sub und. g. ƕ of Ω given in Example (2.18�. 

Then we note that [ℰ( ƕ�]!
` = {ƍ�, ƍ4, ƍ5} and ƍ� ∈ [ℰ( ƕ�]!

` ,  ƍ� ∈ [ℰ( ƕ −

ƍ��]!
` ,  ƍ4 ∈ [ℰ( ƕ�]!

` , ƍ4 ∈ [ℰ( ƕ − ƍ4�]!
` , ƍ5 ∈ [ℰ( ƕ�]!

` , ƍ5 ∈ [ℰ( ƕ − ƍ5�]!
` . 
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Theorem 2.19. Every sub und. g. ƕ of Ω contains only one edge, then the c-derived 

und. g. of ƕ is empty set, i.e., [ℰ( ƕ�]]
` = a. 

Proof. Let Ω = (Ʊ(Ω�, ℰ(Ω�� be an und. g. and let ƕ ⊆ Ω. Suppose that ℰ( ƕ� =
{ƍ}. Now to prove that [ℰ( ƕ�]!

` = ϕ. We will prove that by contradiction. Suppose that 

[{ƍ}]!
` ≠ ϕ ⟹ ∃ ƍ� ∈ [{ƍ}]!

`  ⟹  HℰS(ƍ�� ∩ ({ƍ} − {ƍ�}� ≠ ϕ ⟹ ƍ ≠ ƍ� and ƍ ∈
IℰS(ƍ�� and ƍ ∈  1IℰS(ƍ�� and this a contradiction, then ƍ� ∉ [{ƍ}]!

`  ⟹  [ℰ( ƕ�]!
` = ϕ. 

The proof is complete. 

Theorem 2.20. If Ω = (Ʊ(Ω�, ℰ(Ω�� is star und. g., then for every sub und. g. ƕ of Ω 

the c-derived und. g. of ƕ is empty set, i.e., [ℰ( ƕ�]]
` = a.  

Proof. Let Ω = (Ʊ(Ω�, ℰ(Ω�� be a star und. g. and ƕ ⊆ Ω. To prove that [ℰ( ƕ�]!
` =

ϕ. We will prove that by contradiction. Suppose that [ℰ( ƕ�]!
` ≠ ϕ ⟹ ∃ ƍ ∈

[ℰ( ƕ�]!
` ⟹  HℰS(ƍ� ∩ (ℰ( ƕ� − {ƍ}� ≠ ϕ ⟹  HℰS(ƍ� ≠ ϕ ⟹ ∃ ƍ� ∈ HℰS(ƍ� and  

ƍ� ∈ ℰ( ƕ� and hence ∃ ƍ� incident with ƍ� and ƍ� non incident with ƍ� and this a 

contradiction with Ω is star graph. And hence [ℰ( ƕ�]!
` = ϕ. 

Theorem 2.21. If Ω = (Ʊ(Ω�, ℰ(Ω�� is null und. g., then for every sub und. g. ƕ of Ω 

the c-derived und. g. of ƕ is empty set, i.e. [ℰ( ƕ�]]
` = a.  

Proof. Clear.  

Definition 2.22. Two C-spaces (Ω�, Þ!c
� and (Ω�, Þ!d

� are said to be c-equivalent if 

the c-derived und. g. of each sub und. g. in (Ω�, Þ!c
� equal to the c-derived und. g. of the 

same sub und. g. in (Ω�, Þ!d
�.  

In other words, the two C-spaces (Ω�, Þ!c
� and VΩ�, Þ!d

W are c-equivalent if and only 

if [ℰ( ƕ�]!c
` = [ℰ( ƕ�]!d

` , for all ℰ( ƕ� ⊆ ℰ(Ω��, ℰ( ƕ� ⊆ ℰ(Ω��. 

Example 2.23. Let Ω� = VƱ(Ω��, ℰ(Ω��W,  Ω� = VƱ(Ω��, ℰ(Ω��W where Ʊ(Ω�� =
Ʊ(Ω�� = {Ԅ�, Ԅ�, Ԅ3}, ℰ(Ω�� = {ƍ�, ƍ�, ƍ3} and ℰ(Ω�� = {ƍ�}. 

 

Figure 2.6. und. g.  Ω� and Ω� given in Example (2.23�. 



Combined Edges Systems and C-space 

Earthline J. Math. Sci. Vol. 11 No. 2 (2023), 265-285 

273

Then Þ!c
 induced by Ω� is given by:  

Þ!c
(ƍ�� = F{ƍ�, ƍ3}, ϕG, Þ!c

(ƍ�� = F{ƍ�, ƍ3}, ϕG, Þ!c
(ƍ3� = F{ƍ�, ƍ�}, ϕG. 

Also Þ!d
 induced by Ω� is given by: Þ!d

(ƍ�� = F{ƍ�}, ϕG. We note that the two C-

spaces (Ω�, Þ!c
� and VΩ�, Þ!d

W are c-equivalent, since [ℰ( ƕ�]!c
` = [ℰ( ƕ�]!d

` = ϕ,

∀ ℰ( ƕ� ⊆ ℰ(Ω��, ℰ(Ω��.  

Example 2.24. Let Ω� = VƱ(Ω��, ℰ(Ω��W, Ω� = VƱ(Ω��, ℰ(Ω��W where Ʊ(Ω�� =

Ʊ(Ω�� = {Ԅ�, Ԅ�, Ԅ3}, ℰ(Ω�� = {ƍ�, ƍ�, ƍ3, ƍ4} and ℰ(Ω�� = {ƍ�, ƍ�, ƍ3, ƍ4}. 

 

Figure 2.7. und. g.  Ω� and Ω� given in Example (2.24�. 

Then Þ!c
 induced by Ω� is given by:  

Þ!c
(ƍ�� = F{ƍ�, ƍ3, ƍ4}, ϕG, Þ!c

(ƍ�� = F{ƍ�, ƍ3}, {ƍ4}G, 

Þ!c
(ƍ3� = F{ƍ�, ƍ�}, {ƍ4}G, Þ!c

(ƍ4� = F{ƍ�, ƍ4}, {ƍ�, ƍ3}G. 

Also Þ!d
 induced by Ω� is given by: 

Þ!d
(ƍ�� = F{ƍ�, ƍ3}, {ƍ4}G, Þ!d

(ƍ�� = F{ƍ�, ƍ3}, {ƍ4}G, 

Þ!d
(ƍ3� = F{ƍ�, ƍ�, ƍ4}, ϕG, Þ!d

(ƍ4� = F{ƍ3, ƍ4}, {ƍ�, ƍ�}G. 

Accordingly, there exists ƕ ⊆ Ω�, Ω�, namely ℰ( ƕ� = {ƍ�, ƍ�} such that 

[ℰ( ƕ�]!c
` ≠ [ℰ( ƕ�]!d

` , hence the two C-spaces VΩ�, Þ!c
W and (Ω�, Þ!d

� are not 

c-equivalent. 

Corollary 2.25. If Ω� = VƱ(Ω��, ℰ(Ω��W is null und. g. and Ω� = VƱ(Ω��, ℰ(Ω��W is 

star und.g., then two C-spaces (Ω�, Þ]c
� and (Ω�, Þ]d

� are c-equivalent. 

Proof. Let Ω� = VƱ(Ω��, ℰ(Ω��W be a null und. g. and Ω� = VƱ(Ω��, ℰ(Ω��W is star 

und. g. 
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To prove that (Ω�, Þ!c
� and (Ω�, Þ!d

� are c-equivalent. By Theorem (2.20�, and 

Theorem (2.22�, we get [ℰ( ƕ�]!c
` = ϕ, ∀ƕ ⊆ Ω� and [ℰ( ƕ�]!d

` = ϕ ∀ƕ ⊆ Ω�  ⟹

[ℰ( ƕ�]!c
` = [ℰ( ƕ�]!d

`  ∀ƕ ⊆ Ω�, Ω� and hence (Ω�, Þ!c
� and (Ω�, Þ!d

� are c-equivalent.  

Definition 2.26. A C-space (Ω, Þ!� is called symmetric (resp. antisymmetric) if Þ! is 

induced by a symmetric (resp. antisymmetric) und. graph.  

Example 2.27. Let Ω = VƱ(Ω�, ℰ(Ω�W be an und. g. such that Ʊ(Ω� = {Ԅ�, Ԅ�, Ԅ3},

ℰ(Ω� = {ƍ�, ƍ�, ƍ3}.  

 

Figure 2.8. und. g.  Ω given in Example (2.27�. 

Hence Þ! is defined by Þ!(ƍ�� = F{ƍ�, ƍ3}, ϕG, Þ!(ƍ�� = F{ƍ�, ƍ3}, ϕG, Þ!(ƍ3� =

F{ƍ�, ƍ�}, ϕG. Thus if (Ԅ�, Ԅ�� ∈ ℰ(Ω� implies (Ԅ�, Ԅ�� ∈ ℰ(Ω� since [Ω is und. g. 

⟹ (Ԅ�, Ԅ�� = (Ԅ�, Ԅ��]. Then Ω is symmetric und. g. and hence Þ! is induced by 

symmetric und. g. Ω. Thus (Ω, Þ!� is symmetric C-space. 

The following und. g. shown in Figure (2.9� is antisymmetric und. g. 

 

Figure 2.9. und. g. Ω. 

Theorem 2.28. If Ω = (Ʊ(Ω�, ℰ(Ω�� is antisymmetric und. g., then for every sub und. 

g. ƕ of Ω the c-derived und. g. of ƕ is empty set, i.e. [ℰ( ƕ�]]
` = a.  
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Proof. Let Ω = (Ʊ(Ω�, ℰ(Ω�� be an antisymmetric und. g. and ƕ ⊆ Ω. To prove that 

[ℰ( ƕ�]!
` = ϕ. We will prove that by contradiction. Suppose that [ℰ( ƕ�]!

` ≠ ϕ ⟹ ∃ ƍ ∈

[ℰ( ƕ�]!
` ⟹  HℰS(ƍ� ∩ (ℰ( ƕ� − {ƍ}� ≠ ϕ ⟹ ∃ ƍ� ∈ HℰS(ƍ�  and  ƍ� ∈ (ℰ( ƕ� − {ƍ}�  

⟹  ƍ� ≠ ƍ ⟹  ƍ� ∈  Iℰ(ƍ� and this a contradiction with Iℰ(ƍ� = {ƍ} since Ω  is 

antisymmetric und. g. Thus [ℰ( ƕ�]!
` = ϕ. 

3. c-closed and c-closure  

In this section, we introduce the notions of c-closed and c-closure and we study some 

of their properties. 

Definition 3.1. A C-space (Ω, Þ!�, which contains all its limit edges is called 

c-closed. The family hÞi
 of all c-closed of a C-space is defined by: 

hÞi
= Fℰ( ƕ� ⊆ ℰ(Ω�; [ℰ( ƕ�]!

` ⊆ ℰ( ƕ�G. 

Theorem 3.2. Let (Ω, Þ]� be a C-space. Then a and Ω are c-closed. 

Proof. Let (Ω, Þ!� be a C-space. Since [ϕ]!
` = ϕ ⊆ ϕ. Thus ϕ is c-closed and since 

[Ω]!
` ⊆ Ω and hence Ω is c-closed.  

Theorem 3.3. A C-space, the intersection of any family of c-closed is c-closed. 

Proof. Let (Ω, Þ!� be a C-space such that ƙ ⊆ Ω and ℰ( ƙ� =∩j (ƕj�; i ∈ I, the 

intersection of the c-close ƕj ⊆ Ω, i ∈ I. Hence ƙ ⊆ ƕj for all i ∈ I which implies 

[ℰ(ƙ�]!
` ⊆ [ℰ(ƕj�]!

`  for all i ∈ I. But [ℰ(ƕj�]!
` ⊆ ℰ(ƕj� for all i ∈ I since ƕj is c-closed 

and so [ℰ( ƙ�]!
` ⊆ ℰ(ƕj� for all i ∈ I thus, [ℰ( ƙ�]!

` ⊆∩j Vℰ(ƕj�W = ℰ( ƙ�, hence ƙ is 

c-closed. From definition of a c-closed. 

If ∩j (ƕj� = ϕ by Theorem (3.2�, we get ∩j (ƕj� is c-closed. 

If ∩j (ƕj� = Ω by Theorem (3.2�, we get ∩j (ƕj� is c-closed.  

Remark 3.4. The union of two c-closed contained in a C-space do not need to be 

c-closed as shown in the following example.  

Example 3.5. Let Ω = VƱ(Ω�, ℰ(Ω�W be an und. g. and Ʊ(Ω� =  {Ԅ�, Ԅ�, Ԅ3, Ԅ4},

ℰ(Ω� = {ƍ�, ƍ�, ƍ3, ƍ4, ƍ5}. 
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Figure 3.1. und. g. Ω given in Example (3.5�. 

Þ!(ƍ�� = F{ƍ�, ƍ4, ƍ5}, {ƍ3}G, Þ!(ƍ�� = F{ƍ�, ƍ3, ƍ4}, {ƍ5}G, 

Þ!(ƍ3� = F{ƍ�, ƍ4}, {ƍ�, ƍ5}G, Þ!(ƍ4� = F{ƍ�, ƍ�, ƍ3, ƍ5}, ϕG,  

Þ!(ƍ5� = F{ƍ�, ƍ4, ƍ5}, {ƍ�, ƍ3}G. 

Accordingly, the family hÞi
 of all c-closed of this C-space is given by:  

hÞi
= Fℰ(Ω�, ϕ, {ƍ�}, {ƍ�}, {ƍ3}, {ƍ4}, {ƍ5}, {ƍ�, ƍ�, ƍ3, ƍ5}G. 

Obviously, the sub und. g. ƕ = VƱ(ƕ�, ℰ(ƕ�W such that Ʊ(ƕ� = {Ԅ3, Ԅ4}, ℰ(ƕ� =

{ƍ3} and ƙ = VƱ(ƙ�, ℰ(ƙ�W such that Ʊ(ƙ� = {Ԅ�, Ԅ3}, ℰ(ƙ� = {ƍ�}. Then we note that 

{ƍ3}, {ƍ�} are c-closed, but their union ƕ ∪ ƙ = VƱ(ƕ ∪ ƙ�, ℰ(ƕ ∪ ƙ�W such that Ʊ(ƕ ∪

ƙ� = {Ԅ�, Ԅ3, Ԅ4}, ℰ(ƕ ∪ ƙ� = {ƍ�, ƍ3} is not c-closed, [since [ℰ(ƕ ∪ ƙ�]!
` = {ƍ�} ⟹

 [ℰ(ƕ ∪ ƙ�]!
` ⊈ ℰ(ƕ ∪ ƙ�]. 

Theorem 3.6. Let (Ω, Þ]� be a C-space. Then 

(X� Every sub und. g. ƕ of Ω contains only one edge is c-closed. 

(Y� If Ω is antisymmetric und. g., then every sub und. g. ƕ of Ω is c-closed. 

Proof.  

(X� Let ƕ is sub und. g. of Ω contains only one edge ⟹ ℰ(ƕ�  = {ƍ}. 

By Theorem (2.19), we get [ℰ(ƕ�]]
` = a. And hence [ℰ(ƕ�]]

` ⊆ ℰ(ƕ�. Therefore ƕ 

is c-closed. 

(Y� Let Ω be an antisymmetric und. g. and let ƕ ⊆ Ω be any sub und. g. by Theorem 

(2.28), we get [ℰ(ƕ�]]
` = a. And hence [ℰ(ƕ�]]

` ⊆ ℰ(ƕ�. Therefore ƕ is c-closed. 
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Corollary 3.7. Let (Ω, Þ]� be a C-space, and Ω is antisymmetric und. g. Then 

hÞl
= mVℰ(Ω�W.  

Proof. It is clear by Theorem (3.6(b��. 

Theorem 3.8. If (Ω, Þ]� is a C-space and ƕ ⊆ Ω is c-closed, then every und. g. 

contained in ƕ and containing [ℰ(ƕ�]]
`   is c-closed. 

Proof. Let (Ω, Þ!� be a C-space and ƕ, ƙ ⊆ Ω such that ƕ is c-closed and [ℰ(ƕ�]!
` ⊆

ℰ(ƙ� ⊆ ℰ(ƕ�. Since ℰ(ƙ� ⊆ ℰ(ƕ�, then [ℰ(ƙ�]!
` ⊆ [ℰ(ƕ�]!

`  and so [ℰ(ƙ�]!
` ⊆ ℰ(ƙ�, 

therefore ƙ is c-closed. 

Corollary 3.9. If (Ω, Þ]� is a C-space and ƕ ⊆ Ω is c-closed, then [ℰ(ƕ�]]
`  is 

c-closed. 

Proof. Let ƕ ⊆ Ω and c-closed. By Proposition (2.12(b�� we get [[ℰ(ƕ�]!
` ]!

` ⊆

[ℰ(ƕ�]!
`  and hence [ℰ(ƕ�]!

` ⟹  [ℰ(ƕ�]!
` ⊆ ℰ(ƕ� is c-closed. 

The converse of corollary (3.9� is not hold in general from the following example.  

Example 3.10. Let Ω = VƱ(Ω�, ℰ(Ω�W be an und.  g. and Ʊ(Ω� = {Ԅ�, Ԅ�, Ԅ3, Ԅ4},

ℰ(Ω� = {ƍ�, ƍ�, ƍ3, ƍ4, ƍ5, ƍ6}. 

 

Figure 3.2. und. g. Ω given in Example (3.10�. 

So, Þ! is given by:  

Þ!(ƍ�� = F{ƍ�, ƍ5, ƍ6}, {ƍ3, ƍ4}G, Þ!(ƍ�� = F{ƍ�, ƍ3, ƍ5, ƍ6}, {ƍ4}G, 

Þ!(ƍ3� = F{ƍ�, ƍ4}, {ƍ�, ƍ5, ƍ6}G, Þ!(ƍ4� = F{ƍ3, ƍ4}, {ƍ�, ƍ�, ƍ5, ƍ6}G,  

Þ!(ƍ5� =  F{ƍ�, ƍ�, ƍ5, ƍ6}, {ƍ3, ƍ4}G, Þ!(ƍ6� = F{ƍ�, ƍ�, ƍ5}, {ƍ3, ƍ4}G. 

Accordingly, the family hÞi
 of all c-closed of this C-space is given by:  

hÞi
= Fℰ(Ω�, ϕ, {ƍ�}, {ƍ�}, {ƍ3}, {ƍ4}, {ƍ5}, {ƍ6}, {ƍ�, ƍ5}, {ƍ�, ƍ6}, {ƍ5, ƍ6}, {ƍ�, ƍ5, ƍ6}G. 
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Let ƕ ⊆ Ω, ƕ = VƱ(ƕ�, ℰ(ƕ�W be a sub und. g. and Ʊ(ƕ� =  {Ԅ�, Ԅ3, Ԅ4}, 

ℰ(ƕ� = {ƍ�, ƍ�, ƍ6}, then [ℰ(ƕ�]!
` = {ƍ3} is c-closed, but {ƍ�, ƍ�, ƍ6} is not c-closed. 

 

Figure 3.3. sub und. g. ƕ of Ω given in Example (3.10�. 

Proposition 3.11. If Ω = (Ʊ(Ω�, ℰ(Ω�� be an antisymmetric und. g. and (Ω, Þ]� be a 

C-space and ƕ ⊆ Ω, then ƕ is c-closed if and only if [ℰ(ƕ�]]
`  is c-closed. 

Proof. Let Ω = (Ʊ(Ω�, ℰ(Ω�� be an antisymmetric und. g. and (Ω, Þ!� be a C-space 

and ƕ ⊆ Ω. 

Suppose that ƕ is c-closed. By Corollary (3.9� we get [ℰ(ƕ�]!
`  is c-closed.  

Suppos that [ℰ(ƕ�]!
`  is c-closed. Since Ω is antisymmetric und. g. by Theorem 

(3.6(b)) we get [ƕ]!
`  is c-closed.  

Proposition 3.12. Let (Ω, Þ]� be a C-space and ƕ ⊆ Ω is c-closed. If ƙ ⊆ ƕ, then 

[ℰ(ƙ�]]
` ⊆ ƕ. 

Proof. Let (Ω, Þ!� be a C-space and ƕ ⊆ Ω and ƙ ⊆ ƕ. By Proposition (2.12(b)) we 

get [ℰ(ƙ�]!
` ⊆ [ℰ(ƕ�]!

`  since ƕ is c-closed, then [ℰ(ƕ�]!
` ⊆ ƕ and hence [ℰ(ƙ�]!

` ⊆ ƕ. 

The opposite is not true, and the follwing example illustrates this. 

Example 3.13. In Example (3.5) ℰ(ƕ� = {ƍ�, ƍ�, ƍ3, ƍ5} is c-closed and let ƙ =

VƱ(ƙ�, ℰ(ƙ�W such that Ʊ(ƙ� =  {Ԅ�, Ԅ�, Ԅ3}, ℰ(ƙ� = {ƍ�, ƍ4} so [ℰ(ƙ�]!
` = {ƍ3} ⊆

ℰ(ƕ�, but ƙ ⊈ ƕ. 
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Figure 3.4. sub und. g. ƙ of Ω given in Example (3.13�.  

Definition 3.14. Let ƕ be a sub und. g. of a C-space (Ω, Þ!�. The intersection of all 

c-closed containing ƕ is called c-closure of ƕ and is denoted by Cl!Vℰ(ƕ�W, i.e.: 

Cl!Vℰ(ƕ�W =∩ {ℰ(ƙ� ∈ hÞi
; ℰ(ƕ� ⊆ ℰ(ƙ�}. 

Theorem 3.15. Let (Ω, Þ]� be a C-space and let ƕ ⊆ Ω. Then 

(X� ℰ(ƕ� ⊆ Cl!Vℰ(ƕ�W. 

(Y� Cl!Vℰ(ƕ�W = ℰ(ƕ�  ⟺  ℰ(ƕ� is c-closed.  

Proof. (X� By Definition (3.14) we get ℰ(ƕ� ⊆ Cl!Vℰ(ƕ�W. 

(Y� Let (Ω, Þ!� be a C-space and let ƕ ⊆ Ω.  

Suppose that ƕ is c-closed. To prove Cl!Vℰ(ƕ�W = ℰ(ƕ�. By Theorem (3.15(a)) we 

get ℰ(ƕ� ⊆ Cl!Vℰ(ƕ�W − − − (1�. 

Now to prove Cl!Vℰ(ƕ�W ⊆ ℰ(ƕ�. 

Let ƍ ∈ Cl!Vℰ(ƕ�W  ⟹  ƍ ∈∩ {ℰ(ƙ� ∈ hÞi
; ℰ(ƕ� ⊆ ℰ(ƙ�} since ƕ is c-closed and 

ℰ(ƕ� ⊆ ℰ(ƕ� ⟹  ƍ ∈ ℰ(ƕ� ⟹  Cl!Vℰ(ƕ�W ⊆ ℰ(ƕ� − − − (2�. 

From (1� and (2� we get Cl!Vℰ(ƕ�W = ℰ(ƕ�. 

Suppose that Cl!Vℰ(ƕ�W = ℰ(ƕ�. To prove ℰ(ƕ� is c-closed. 

Since Cl!Vℰ(ƕ�W =∩ Fℰ(ƙ� ∈ hÞi
; ℰ(ƕ� ⊆ ℰ(ƙ�G, by Theorem (3.3� we get 

Cl!Vℰ(ƕ�W is c-closed and hence ℰ(ƕ� is c-closed. 
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Example 3.16. In Example (3.5), let ƕ ⊆ Ω , ƕ = VƱ(ƕ�, ℰ(ƕ�W such that Ʊ(ƕ� =

 {Ԅ�, Ԅ3, Ԅ4}, ℰ(ƕ� = {ƍ�, ƍ3} of this C-space is given by: 

 

Figure 3.5. sub und. g. ƕ of Ω given in Example (3.16�. 

So, Cl!Vℰ(ƕ�W = {ƍ�, ƍ�, ƍ3, ƍ5}.  

Proposition 3.17. Let (Ω, Þ]� be a C-space and ƕ ⊆ Ω. Then ℰ(ƕ� ∪ [ℰ(ƕ�]]
` ⊆

Hp]Vℰ(ƕ�W. 

Proof. Let (Ω, Þ!� be a C-space and ƕ ⊆ Ω. Since ℰ(ƕ� ⊆ Cl!Vℰ(ƕ�W, then 

[ℰ(ƕ�]!
` ⊆ [Cl!Vℰ(ƕ�W]!

` , but [Cl!Vℰ(ƕ�W]!
` ⊆ Cl!Vℰ(ƕ�W because Cl!Vℰ(ƕ�W is c-closed 

and so [ℰ(ƕ�]!
` ⊆ Cl!Vℰ(ƕ�W. Accordingly, ℰ(ƕ� ∪ [ℰ(ƕ�]!

` ⊆ Cl!Vℰ(ƕ�W. 

Remark 3.18. If (Ω, Þ!� is a C-space and ƕ ⊆ Ω, then the relation ℰ(ƕ� ∪

[ℰ(ƕ�]!
` = Cl!Vℰ(ƕ�W is not necessarily true in general.  

The next example is employed as a counter example to show the above remark. 

Example 3.19. In Example (3.10�, let ƕ ⊆ Ω, ƕ = VƱ(ƕ�, ℰ(ƕ�W such that Ʊ(ƕ� =

{Ԅ�, Ԅ3, Ԅ4}, ℰ(ƕ� = {ƍ�, ƍ�, ƍ5}, then [ℰ(ƕ�]!
` = {ƍ3} and Cl!Vℰ(ƕ�W = ℰ(Ω�. 

Obviously, ℰ(ƕ� ∪ [ℰ(ƕ�]!
` ≠ Cl!Vℰ(ƕ�W. 

 

Figure 3.6. sub und. g. ƕ of Ω given in Example(3.19�. 
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Corollary 3.20. If Ω = (Ʊ(Ω�, ℰ(Ω�� is antisymmetric und. g. and (Ω, Þ]� is a 

C-space and ƕ ⊆ Ω, then ℰ(ƕ� ∪ [ℰ(ƕ�]]
` = Hp]Vℰ(ƕ�W. 

Proof. Let Ω = (Ʊ(Ω�, ℰ(Ω�� be an antisymmetric und. g. and (Ω, Þ!� be a C-space 

and ƕ ⊆ Ω. 

By Proposition (3.17�, we get ℰ(ƕ� ∪ [ℰ(ƕ�]!
` ⊆ Cl!Vℰ(ƕ�W − − − (1�. 

To prove Cl!Vℰ(ƕ�W ⊆ ℰ(ƕ� ∪ [ℰ(ƕ�]!
` .  Let ƍ ∈ Cl!Vℰ(ƕ�W since Ω is 

antisymmetric und. g. by Theorem (3.6(b�� we get ℰ(ƕ� is c-closed and by Theorem 

(3.15(b�� we get ℰ(ƕ� = Cl!Vℰ(ƕ�W then  

ƍ ∈ ℰ(ƕ� ⟹  ƍ ∈ ℰ(ƕ� ∪ [ℰ(ƕ�]!
` ⟹  Cl!Vℰ(ƕ�W ⊆ ℰ(ƕ� ∪ [ℰ(ƕ�]!

` − − − −(2�.  

From (1� and (2� we get ℰ(ƕ� ∪ [ℰ(ƕ�]!
` = Cl!Vℰ(ƕ�W. 

Proposition 3.21. If (Ω, Þ]� is a C-space, then 

(X� Cl!(ϕ� = ϕ. 

(Y� Cl!(Ω� = Ω. 

Proof. Let (Ω, Þ!� be a C-space.  

(X� By Theorem (3.2� we get ϕ is c-closed and by Theorem (3.15(b�� we get 

Cl!(ϕ� = ϕ. 

(Y� By Theorem (3.2� we get Ω is c-closed and by Theorem (3.15(b�� we get 

Cl!(Ω� = Ω. 

Proposition 3.22. If (Ω, Þ]� is a C-space and let ƕ ⊆ Ω, then 

(X� Cl!VCl!(ƕ�W = Cl!(ƕ�. 

(Y� 2q ƙ ⊆ ƕ, rℎt� Cl!(ƙ� ⊆ Cl!(ƕ�. 

(u� Cl!(ƕ ∩ ƙ� ⊆ Cl!(ƕ� ∩ Cl!(ƙ�. 

(v� Cl!(ƕ� ∪ Cl!(ƙ� ⊆ Cl!(ƕ ∪ ƙ�. 

Proof. (X� Let (Ω, Þ!� be a C-space and let ƕ ⊆ Ω. To prove that Cl!VCl!(ƕ�W =

Cl!(ƕ� by Definition (3.14� and Theorem (3.3� and Theorem (3.15(b�� we get that 

Cl!VCl!(ƕ�W = Cl!(ƕ�. 

(Y� Let (Ω, Þ!� be a C-space and let ƙ ⊆ ƕ ⊆ Ω. To prove that Cl!(ƙ� ⊆ Cl!(ƕ� let 



Hussein R. Jaffer and Khalid Sh. Al’Dzhabri 

http://www.earthlinepublishers.com 

282

ƍ ∈ Cl!(ƙ� 

⟹ ƍ ∈ ∩ {ℰ(w� ∈ hÞi
; ℰ(w� ⊆ ℰ(ƙ�} 

⟹ ƍ ∈ ∩ {ℰ(w� ∈ hÞi
; ℰ(w� ⊆ ℰ(ƙ� ⊆ ℰ(ƕ�} 

⟹ ƍ ∈ ∩ {ℰ(w� ∈ hÞi
; ℰ(w� ⊆ ℰ(ƕ�} 

⟹ ƍ ∈  Cl!(ƕ� thus Cl!(ƙ� ⊆ Cl!(ƕ�. 

(u� Let (Ω, Þ!� be a C-space and let ƙ, ƕ ⊆ Ω. To prove that Cl!(ƕ ∩ ƙ� ⊆ Cl!(ƕ� ∩
Cl!(ƙ�. 

Since ƕ ∩ ƙ ⊆ ƕ by Proposition (3.22(b�� we get Cl!(ƕ ∩ ƙ� ⊆ Cl!(ƕ� − − − (1�. 

Since ƕ ∩ ƙ ⊆ ƙ by Proposition (3.22(b�� we get Cl!(ƕ ∩ ƙ� ⊆ Cl!(ƙ� − − − (2�. 

From (1� and (2� we get Cl!(ƕ ∩ ƙ� ⊆ Cl!(ƕ� ∩ Cl!(ƙ�. 

(v� Let (Ω, Þ!� be a C-space and let ƙ, ƕ ⊆ Ω. To prove that Cl!(ƕ� ∪ Cl!(ƙ� ⊆
Cl!(ƕ ∪ ƙ�. 

Since ƕ ⊆ ƕ ∪ ƙ by Proposition (3.22(b�� we get Cl!(ƕ� ⊆ Cl!(ƕ ∪ ƙ� − − − (1�. 

Since ƙ ⊆ ƕ ∪ ƙ by Proposition (3.22(b�� we get Cl!(ƙ� ⊆ Cl!(ƕ ∪ ƙ� − − − (2�. 

From (1� and (2� we get Cl!(ƕ� ∪ Cl!(ƙ� ⊆ Cl!(ƕ ∪ ƙ�.  

Remark 3.23. In above Proposition we note that 

1. Cl!(ƕ� ∩ Cl!(ƙ� ⊈ Cl!(ƕ ∩ ƙ�. 

2. Cl!(ƕ ∪ ƙ� ⊈ Cl!(ƕ� ∪ Cl!(ƙ�. 

The following examples shows the remark above 

Example 3.24. In Example (3.5� let ƕ = VƱ(ƕ�, ℰ(ƕ�W such that Ʊ(ƕ� =

{Ԅ�, Ԅ�, Ԅ3}, ℰ(ƕ� = {ƍ�, ƍ5} and ƙ = VƱ(ƙ�, ℰ(ƙ�W such that Ʊ(ƙ� = {Ԅ�, Ԅ3, Ԅ4},

ℰ(ƙ� = {ƍ�, ƍ3}. 

 

Figure 3.7. sub und. g. ƕ, ƙ of Ω given in Example (3.24�. 
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Then we note that Cl!(ƕ� = {ƍ�, ƍ�, ƍ3, ƍ5},  Cl!(ƙ� = {ƍ�, ƍ�, ƍ3, ƍ5},  Cl!(ƕ ∩ ƙ� =
{ƍ�}, Cl!(ƕ� ∩ Cl!(ƙ� = {ƍ�, ƍ�, ƍ3, ƍ5} and hence Cl!(ƕ� ∩ Cl!(ƙ� ⊈ Cl!(ƕ ∩ ƙ�.  

Example 3.25. In Example (3.5� let ƕ = VƱ(ƕ�, ℰ(ƕ�W such that Ʊ(ƕ� =

 {Ԅ�, Ԅ�}, ℰ(ƕ� = {ƍ�} and ƙ = VƱ(ƙ�, ℰ(ƙ�W such that Ʊ(ƙ� = {Ԅ�, Ԅ3}, ℰ(ƙ� = {ƍ�}. 

 

Figure 3.8. sub und. g. ƕ, ƙ of Ω given in Example (3.25�. 

Then we note that Cl!(ƕ� = {ƍ�}, Cl!(ƙ� = {ƍ�}, Cl!(ƕ ∪ ƙ� = {ƍ�, ƍ�, ƍ3, ƍ5}, 
Cl!(ƕ� ∪ Cl!(ƙ� = {ƍ�, ƍ�} and hence Cl!(ƕ ∪ ƙ� ⊈ Cl!(ƕ� ∪ Cl!(ƙ�.  

Corollary 3.26. If Ω = (Ʊ(Ω�, ℰ(Ω�� is antisymmetric und. g. and (Ω, Þ]� is a 

C-space and ƕ, ƙ ⊆ Ω, then  

(X� Cl!(ƕ ∩ ƙ� = Cl!(ƕ� ∩ Cl!(ƙ�. 

(Y� Cl!(ƕ� ∪ Cl!(ƙ� = Cl!(ƕ ∪ ƙ�. 

Proof.  

(X� Let Ω be an antisymmetric und. g. and (Ω, Þ!� be a C-space and ƕ, ƙ ⊆ Ω by 

Proposition (3.22(c�� we get Cl!(ƕ ∩ ƙ� ⊆ Cl!(ƕ� ∩ Cl!(ƙ� − − − −(1�. 

Let ƍ ∈ [Cl!(ƕ� ∩ Cl!(ƙ�] ⟹  ƍ ∈  Cl!(ƕ� and ƍ ∈  Cl!(ƙ�. 

Since ƕ, ƙ ⊆ Ω by Theorem (3.6(b�� we get ƕ, ƙ are c-closed and by Theorem 

(3.15(b�� we get ƕ = Cl!(ƕ� and ƙ = Cl!(ƙ� ⟹  ƍ ∈  ƕ and ƍ ∈ ƙ ⟹  ƍ ∈  (ƕ ∩ ƙ� 

by Theorem (3.6(b�� and by Theorem (3.15(b�� we get  

ƍ ∈ Cl!(ƕ ∩ ƙ�  ⟹  Cl!(ƕ� ∩ Cl!(ƙ� ⊆ Cl!(ƕ ∩ ƙ� − − − −(2�. 

From (1� and (2� we get Cl!(ƕ ∩ ƙ� = Cl!(ƕ� ∩ Cl!(ƙ�. 

(Y� Let Ω be an antisymmetric und. g. and (Ω, Þ!� be a C-space and ƕ, ƙ ⊆ Ω by 

Proposition (3.22(d�� we get Cl!(ƕ� ∪ Cl!(ƙ� ⊆ Cl!(ƕ ∪ ƙ�  − − − −(1�. 

Let ƍ ∈ Cl!(ƕ ∪ ƙ�. Since (ƕ ∪ ƙ� ⊆ Ω by Theorem (3.6(b�� we get (ƕ ∪ ƙ� is 
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c-closed and by Theorem (3.15(b�� we get Cl!(ƕ ∪ ƙ� = (ƕ ∪ ƙ� ⟹  ƍ ∈  (ƕ ∪ ƙ� ⟹
 ƍ ∈  ƕ or ƍ ∈ ƙ by Theorem (3.6(b�� and by Theorem (3.15(b�� we get  ƍ ∈

 Cl!(ƕ�  or  ƍ ∈  Cl!(ƙ�  

⟹  ƍ ∈  Cl!(ƕ� ∪ Cl!(ƙ�  ⟹   Cl!(ƕ ∪ ƙ� ⊆ Cl!(ƕ� ∪ Cl!(ƙ� − − − −(2�. 

From (1� and (2� we get Cl!(ƕ ∪ ƙ� = Cl!(ƕ� ∪ Cl!(ƙ�. 

Conclusion 

Based on the findings of this study, various characteristics of the C-space employing 

combined edges systems are explored. In this paper, new ideas including the C-subspace, 

c-equivalent, c-derived undirected graphs, c-closed and c-closure. 
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