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Abstract 

Let ( )RTn  be the upper triangular matrix ring over a unital commutative ring whose 

characteristic is not a divisor of m. Suppose that ( ) ( )RTRTf nn →:  is an additive map 

such that ( ) ( ) mm
XXfXfX =  for all ( ) ,RTX n∈  where 1≥m  is an integer. We 

consider the problem of describing the form of the map ( ).XfX →  

1. Introduction and Results 

For a ring R we say that the map RRf →:  is commuting if ( )[ ] 0, =xxf  for 

every ,Rx ∈  where [ ] baabba −=,  denotes the standard commutator. The study of 

such maps was inspired by Posner [13] who proved that if a prime ring has a nonzero 

centralizing derivation, then it must be commutative. This theorem was generalized in 

many ways (see for instance [1, 10, 11, 12, 15]). The first general result regarding 

commuting maps comes from Brešar [4] who has shown that additive commuting maps f 

over a simple unital ring R must be of the form ( ) ( ),: RZRxxf →µ+λ=  where 

( )RZ  denotes the center of R. This form is usually called a standard form for the 

commuting map. 

There are plenty of results on commuting maps (for example [7, 8, 9, 16]) and the 
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readers are referred to the survey paper [5] for acquaintance with the development of the 

theory of commuting maps and the various results that have been established. 

In 2000, Beidar et al. [2] proved that a similar result holds true over ( ),FTr  the ring 

of rr ×  upper triangular matrices over a field F. Their work showed that any linear 

commuting map ( ) ( )FTFTf rr →:  is again of the standard form, so ( ) ( )xxxf µ+λ=  

for some F∈λ  and linear map ( ) ( )( ).: FTZFT rr →µ  In [6] Cheung extended this 

result to triangular algebras. 

Recently, in [3], Bounds extended some of these results to the case ( )FNr  - the ring 

of strictly upper triangular matrices over a field F of characteristic zero. The author 

proved that if ( ) ( )FNFNf rr →:  is a commuting linear map, then there exists F∈λ  

and an additive map ( ) Ω→µ FNr:  such that ( ) ( )xxxf µ+λ=  for all ( ),FNx r∈  

where { }Fcbacebeae rrr ∈++=Ω − ,,:,2,11,1  and jie ,  denotes the standard matrix 

unit. 

For a positive integer m, a map RRf →:  is said to be m-power commuting if 

[ ( ) ] 0, =m
xxf  for all .Rx ∈  Clearly, every commuting map is a 1-power commuting 

map. In [17] Brešar and Hvala studied 2-power commuting additive maps and showed 

that if R is a prime ring with the extended centroid C, 2=charR  and RRf →:  is a                                                                                            

2-power commuting additive map, then there exist C∈λ  and an additive map 

CR →δ :  such that ( ) ( )xxxf δ+λ=  for all .Rx ∈  Later, Beidar et al. [18] extended 

this result to m-power commuting additive maps and proved that if R is a prime ring with 

the extended centroid C, 0=charR  or mcharR >  and RRf →:  is an m-power 

commuting additive map, then there exist C∈λ  and an additive map CR →δ :  such 

that ( ) ( )xxxf δ+λ=  for all .Rx ∈  Recently, in [19], Liu and Yang characterize the                          

m-power commuting additive maps on invertible or singular matrices. 

In this paper, we examine m-power commuting additive maps over the ring of upper 

triangular matrices ( )RTn  over a commutative ring R whose characteristic is not a 

divisor of m. Precisely, we will show that the following theorems are true. 

Theorem 1. Let R be a commutative ring. If ( ) ( )RTRTf nn →:  is an additive 

commuting map, then there exist R∈λ  and an additive map  ( ) RRTn →δ :  such that 

( ) ( ) nIXXXf δ+λ=  for all ( ).RTX n∈  
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Theorem 2. Let R be a commutative ring whose characteristic is not a divisor of m. 

If ( ) ( )RTRTf nn →:  is an additive m-commuting map, then there exist R∈λ  and an 

additive map ( ) RRT →δ ∞:  such that ( ) ( ) nIXXXf δ+λ=  for all ( ).RTX n∈  

2. Preliminaries and Commuting Additive Maps of ( )RTn  

We denote by ( )RTn  a set of upper triangular matrices over a commutive ring R. For 

ji <≤1  by ije  we mean the matrix unit - the matrix whose only nonzero entry is 1 in 

the ( )ji, th position. It is known that the product of ije  and kle  is equal to 

,iljkklij eee δ=×  where ijδ  is the Kronecker delta. 

For any ( ) ( ),RTaA nij ∈=  to abbreviate notation and facilitate calculations, we will 

write ∑ ≤≤≤=
nji jiijeaA

1 , .  In particular, we put ∑ == n

i iin eI
1 ,  and we write 

( )( )RTZ n  for the center of ( ) ( )( ) ., nnn RIRTZRT =  

In order to prove our main result, we first need to establish following lemmas. 

Lemma 2.1. Suppose that ( ) ( )RTRTf nn →:  is an additive map satisfying 

( ) ( ) XXfXXf =  for all ( )).RTX n∈  Then ( ) ( ) ( ) ( ) 0=−−+ XYfYXfXYfYXf  

for all ( )., RTYX n∈  

Lemma 2.2. Suppose that ( ) ( )RTRTf nn →:  is an additive map satisfying 

( ) ( ) XXfXXf =  for all ( )RTX n∈  and .Rr ∈  Then there exists R∈λ  such that 

( ) .nn rIrIf λ=  

Proof. Let Rr ∈  for every ( ),RTX n∈  ( ) ( ) ( ) ( ) −−+ nnn rIXfXrIfrIXf  

( ) ( ) .0=XfrIn  Then ( )[ ] .0, =XrIf n  Thus, ( ) ( )( ).RTZrIf nn ∈  Consequently, there 

exists R∈λ  such that ( ) .nn rIrIf λ=  

Lemma 2.3. Suppose that ( ) ( )RTRTf nn →:  is an additive map satisfying 

( ) ( ) XXfXXf =  for all ( ).RTX n∈  Then ( )iief α  is a diagonal matrix with ,R∈α  

( ) ( )iiiiiiii efeeef α=α  and ( ) ( ) ( ) ( )ijijijij efeeef αα=αα  for all distinct integers ji,  

with .1 nji ≤<≤  
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Proof. Write ( ) ( )∑ ≤≤≤ α=α
nsr sr

ii
rsii eaef

1 , ,  where each FFa
ii
rs →:  is an 

additive map for .1 nts ≤≤≤  We have ( ) ( ) ( ) ( )iiiiiiii eefefe αα=αα  and .0≠α  This 

implies that ( ) ( ).iiiiiiii efeeef α=α  

Let j be an integer such that j≤1  with .ij ≠  Then we have ( ) =α jjiiii eefe  

( ) .0=α iiiijj eefe  This implies ( ) ( ) .0=α=α ii
ij

ii
ij aa  

Let kj,  be an integer such that kj,1 ≤  with ikj ≠,  and .0≠α  For iieX α=  

and ,jjeY β=  we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0=αα−αα−αα+αα iijjjjiiiijjjjii efeefeeefeef  

we obtain 

( ) ( ) ( ) ( ) .jjiiiijjiijjjjii eefeefefeefe α+α=α+α  

Multiplying by kke  from the left and by jje  from the right, we get ( ) .0=α jjiikk eefe  

This implies ( ) .0=αii
kja  Thus ( )iief α  is a diagonal matrix, as desired. Write 

( ) ( )∑ ≤≤ α=α
nr rr

ii
rrii eaef

1 , .  From ( ) ( ) ( ) ( )nijnijnijnij IefIeIeIef +α+α=+α+α  

we have ( ) ( ) ( ) ( )ijijijij efeeef αα=αα  and .0≠α  This implies ( ) =α ijij eef  

( ).ijij efe α  

Lemma 2.4. For all ,R∈α  there exist ,Ri ∈λ  RRi →δ :  additive map such that 

( ) ( ) niiiiii Ieef αδ+αλ=α  for all integers i with .1≥i  

Proof. Write ( ) ( )∑ ≤≤ α=α
nr rr

ii
rrii eaef

1 ,  for all distinct integers kji ,,  with 

( ),, ilk ≠≤  we have  

( ) ( ) ( ) ( ) .0=βα−αβ+αβ−βα kliiiikliiklklii efeeefefeeef  

Multiplying by kke  from the left and by lle  from the right, we get 

( ) ( ) .0=αβ−βα kl
ii
llkl

ii
kk eaea  
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This implies ( ) ( ) ( ),αδ=α=α i
ii
ll

ii
kk aa  it follows that 

( ) ( ) ( ( ) ( )) ( ) .

1

,∑
≤≤

αδ+αδ−α=α=α
nr

niiii
ii
iirr

ii
rrii Ieaeaef  

For all distinct integers ji,  with ( )ji <  we have  

( ) ( ) ( ) ( ) .0=βα−αβ+αβ−βα ijiiiiijiiijijii efeeefefeeef  

Multiplying by iie  from the left and by jje  from the right, this implies 

( ) ( ) ( ) ,0=βα−αβδ−βα jjijiiijiij
ii
ii eefeeea  

it follows that ( ) ( ) ( ) .0=βα−αβδ−βα ij
iji

ii
ii aa  Thus for 1=β  we get 

( ) ( ) ( ) .1 iij
ij
iji

ii
ii aa αλ=αλ=α=αδ−α  

Hence ( ) ( ) .niiiiii Ieef αδ+αλ=α  

Lemma 2.5. For all ,, R∈βα  for all distinct integers ji,  with ,1 nji ≤<≤  then 

there exists ,R∈λ  and the additives maps RRa
ii
iii →δ :,   such that ( ) iiii eef λα=α  

( ) ni Iαδ+  and ( ) ( ) .n
ii
iiijij Iaeef β+λβ=β  

Proof. Write ( ) ( )∑ ≤≤≤ α=α
nsr sr

ii
rsij eaef

1 , ,  for all distinct integers ji,  with 

.1 nji ≤<≤  Then by assumption, 

( ) ( ) ( ) ( ).ijiiijiiijiiijii eefeeeeeef β+αβ+α=β+αβ+α  

Hence,  

( ) ( ) ( ) ( ).iiijijiiijiiiiij efeefeeefeef αβ+βα=βα+αβ  

Multiplying by iie  from the left and by jje  from the right, this implies that  

( ) ( ) ( ) ,jjiiijjjijiiijiiii eefeeefeeefe αβ+βα=βα  

we obtain ( ).β=βλ ij
iji a  
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For .ik <  Multiplying by kke  from the left and by iie  from the right, this implies 

( ) .0=βki
ija  

For ( ).jlli ≠<  Multiplying by iie  from the left and by lle  from the right, this 

implies ( ) .0=βil
ija  

Similarly, using ( ) ( ) =β+αβ+α ijjjijjj eeeef ( ) ( )ijjjijjj eefee β+αβ+α  we have 

( ).β=βλ ij
ijj a  Hence ( ) .i

ij
ijj a βλ=β=βλ  

We notice .ji λ=λ=λ  In particular, ( ) ( ) ∞αδ=λα=α Ieef iiiii  for ,jk <  

( ),ik ≠  by assumption, ( ) ( ) ( ) ( ).jjijijjjijjjjjij efeefeeefeef αβ+βα=βα+αβ  

Multiplying by kke  from the left and by jje  from the right, hence ( ) iiij eef αβ  

( ) ( ) ( ).iiijijiiijii efeefeeef αβ+βα=βα+  

Multiplying by iie  from the left and by jje  from the right, this implies that  

( ) .0=βkj
ija  

Similarly, using for ( )illj ≠< ,  multiplying by jje  from the left and by lle  from 

the right, it follows that ( ) .0=βjl
ija  

Let kl <  and { }., ji∉  From ( ) ( ) ( ) ( )ijkkijkkijkkijkk eefeeeeeef α+α+=α+α+  

and multiplying by lle  from the left and by kke  from the right, we get ( ) .0=βlk
ija  

Hence ( ) ( ) ( )∑ ≤ β+β=β
r rr

ii
rrij

ij
ijij eaeaef

1 , .  

From ( ) ( ) ( ) ( ),ijijijij efeeef αβ=αβ  multiplying by iie  from the left and by jje  

from the right, we get ( ) ( ).β=β ij
jj

ij
ii aa  

From ( ) ( ) ( ) ( ).ljijljijljijljij eefeeeeeef β+αβ+α=β+αβ+α  Multiplying by lle  

from the left and by jje  from the right, we get ( ) ( ).αβ=βα ij
jj

ij
ll

aa  Then 

( ) ( ) ( ) ( ) ( ) .n
ij
iiijijn

ij
iiij

ij
ijij IaeefIaeaef β+βλ=β=β+β=β  
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Proof of Theorem 1. Suppose that ( ) ( )RTRTf nn →:  is an additive map satisfying 

( ) ( ) XXfXXf =  for all ( ).RTX n∈  We put ∑ ≤≤≤=
nji jiijeaX

1 , ,  then 

 ( ) 












= ∑

≤≤≤ nji

jiijexfXf

1

,  

( )∑
≤≤≤

=
nji

jiijexf

1

,  

( ) ( )∑ ∑
≤≤ ≤<≤

+=
ni nji

jiijiiii exfexf

1 1

,,  

( ( ) ) ( )∑ ∑
≤≤ ≤<≤

+λ+δ+λ=
ni nji

nij
ij
iiijijniiiiiii IxaexIxex

1 1

 

( ) ( )∑ ∑
≤≤ ≤<≤

+δ+λ=
ni nji

nij
ij
iiniii IxaIxX

1 1

 

( ) .nIXX δ+λ=  

This proves Theorem 1. 

3. m-commuting Additive Maps of ( )RTn  

Lemma 3.1. Let m be a natural number and let R be a commutative ring whose 

characteristic is not a divisor of m. Suppose that ( ) ( )RTRTf nn →:  is an additive map 

satisfying ( ) ( ) mm
XXfXfX =  for all ( )RTX n∈  and ,Rr ∈  then ( ) ∈nrIf  

( )( ).RTZ n  

Proof. Let ., R∈βα  Moreover, let .ji <  Clearly,  

( ) ( ) ( ) ( ).nij
m

ijnij
m

ij IefIeIefIe β+αβ+α=β+αβ+α ∞∞  

This implies  

( ) ( ) =β+αβ+αβ −
nijn

m
ij

m
IefIem

1 ( ) ( ).1
n

m
ij

m
nij IemIef β+αββ+α −  
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Hence 

( ) ( ) .ijnijnijij eIefIefe β+α=β+α  

Similarly, using Rr ∈βα,,  we obtain 

( ( ) ) ( ( ) ) .ijnijnijij eIrefIrefe +β+α=+β+α  

The difference of above two relations yields ( ) ( ) ,ijnnij erIfrIfe =  then ( ) ∈nrIf  

( )( ).RTZ n  

Lemma 3.2. Let m be a natural number and let R be a commutative ring whose 

characteristic is not a divisor of m. Suppose that ( ) ( )RTRTf nn →:  is an additive map 

satisfying ( ) ( ) mm
XXfXfX =  for all ( ),RTX n∈  then ( ) ( ) XXfXXf =  for all 

( ).RTX n∈  

Proof. We have ( ) ( ) mm
XXfXfX =  for every ( ).RTX n∈  Clearly,  

[ ( ) ( ) ] [ ( ) ( ) ] .0,, =+++ m
nn

m
n pIXpIfpIXXf  

Recall that ( ) ( )( ).RTZrIf nn ∈  Thus, 

[ ( ) ]∑
≤≤≤

− =
nmk

kk
m

km
XXfCp

1

.0,  

Using matrix notation we can rewrite these systems in the following way: For 

1...,,2,1 −=== mppp  

( )[ ]
[ ( ) ]
[ ( ) ]

[ ( ) ]

.0

,

,

,

,

1

1333

1222

1111

3

2

332211

332211

332211

321

=













































−−−

−−−

−−−

mm
mm

m
m

m
m

m

m
mm

m
m

m
m

m

m
mm

m
m

m
m

m

m
mmmm

XXf

XXf

XXf

XXf

CCmCmCm

CCCC

CCCC

CCCC

⋮

⋯

⋮⋮⋮⋮⋮

⋯

⋯

⋯

 

Because the determinant of the Vandermonde matrix formed by the coefficients of the 

system is not zero, we get that ( )[ ] .0, =XXf  This proves Theorem 2. 
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