Maclaurin Coefficient Estimates for a New Subclasses of \boldsymbol{m}-Fold Symmetric Bi-Univalent Functions

Abbas Kareem Wanas ${ }^{1,{ }^{1, *}}$ and Hussein Kadhim Raadhi ${ }^{2}$
Department of Mathematics, College of Science, University of Al-Qadisiyah, Iraq
e-mail: abbas.kareem.w@qu.edu.iq ${ }^{1}$; ma20.post2@qu.edu.iq ${ }^{2}$

Abstract

In this paper, we obtain upper bounds for the first two Taylor-Maclaurin $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for two new families $\Upsilon_{\Sigma_{m}}(\eta, \gamma ; \alpha)$ and $\Upsilon_{\Sigma_{m}}^{*}(\eta, \gamma ; \beta)$ of holomorphic and m-fold symmetric bi-univalent functions defined in the open unit disk U. Further, we point out several certain special cases for our results.

1. Introduction

Denote by \mathcal{A} the family of functions f that are holomorphicin the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$ and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$ and having the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

We also denote by S the subfamily of \mathcal{A} consisting of functions satisfying (1.1) which are also univalent in U. According to the Koebe one-quarter theorem (see [8]), every function $f \in S$ has an inverse f^{-1} which satisfies

$$
f^{-1}(f(z))=z,(z \in U)
$$

and

$$
f\left(f^{-1}(w)\right)=w, \quad\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

Received: September 8, 2022; Revised \& Accepted: October 12, 2022; Published: October 18, 2022 2020 Mathematics Subject Classification: 30C45, 30C50, 30C80.
Keywords and phrases: analytic functions, univalent functions, bi-univalent functions, m-fold symmetric biunivalent functions, coefficient estimates.
*Corresponding author
where

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. We denote by Σ the family of bi-univalent functions in U given by (1.1). For a brief history and interesting examples in the family Σ see the pioneering work on this subject by Srivastava et al. [22], which actually revived the study of bi-univalent functions in recent years. In a considerably large number of sequels to the aforementioned work of Srivastava et al. [22], several different subfamilies of the bi-univalent function family Σ were introduced and studied analogously by the many authors (see, for example, [1,2,5,10,11, 12, 16, 18, 19, 20, 25,26,27]).

For each function $f \in S$, the function $h(z)=\sqrt[m]{f\left(z^{m}\right)},(z \in U, m \in \mathbb{N})$ is univalent and maps the unit disk U into a region with m-fold symmetry. A function is said to be m fold symmetric (see [13]) if it has the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1}, \quad(z \in U, m \in \mathbb{N}) \tag{1.3}
\end{equation*}
$$

We denote by S_{m} the family of m-fold symmetric univalent functions in U, which are normalized by the series expansion (1.3). In fact, the functions in the family S are onefold symmetric.

In [23] Srivastava et al. defined m-fold symmetric bi-univalent functions analogues to the concept of m-fold symmetric univalent functions. They gave some important results, such as each function $f \in \Sigma$ generates an m-fold symmetric bi-univalent function for each $m \in \mathbb{N}$. Furthermore, for the normalized form of f given by (1.3), they obtained the series expansion for f^{-1} as follows:

$$
\begin{align*}
g(w)= & w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1} \\
& -\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1}+\cdots \tag{1.4}
\end{align*}
$$

where $f^{-1}=g$. We denote by Σ_{m} the family of m-fold symmetric bi-univalent functions in U. It is easily seen that for $m=1$, the formula (1.4) coincides with the formula (1.2) of the family Σ. Some examples of m-fold symmetric bi-univalent functions are given as follows:

$$
\left(\frac{z^{m}}{1-z^{m}}\right)^{\frac{1}{m}},\left[\frac{1}{2} \log \left(\frac{1+z^{m}}{1-z^{m}}\right)\right]^{\frac{1}{m}} \text { and }\left[-\log \left(1-z^{m}\right)\right]^{\frac{1}{m}}
$$

with the corresponding inverse functions

$$
\left(\frac{w^{m}}{1+w^{m}}\right)^{\frac{1}{m}},\left(\frac{e^{2 w^{m}}-1}{e^{2 w^{m}}+1}\right)^{\frac{1}{m}} \text { and }\left(\frac{e^{w^{m}}-1}{e^{w^{m}}}\right)^{\frac{1}{m}}
$$

respectively.
Recently, many authors investigated bounds for various subfamilies of m-fold biunivalent functions (see [3,4,7,9,14,17,21,23,24,28,29]).

In order to prove our main results, we require the following lemma.
Lemma 1.1 [3]. If $h \in \mathcal{P}$, then $\left|c_{k}\right| \leq 2$ for each $k \in \mathbb{N}$, where \mathcal{P} is the family of all $\operatorname{Re}(h(z))>0,(z \in U)$.

Here

$$
h(z)=1+c_{1} z+c_{2} z^{2}+\cdots, \quad(z \in U)
$$

2. Coefficient Bounds for the Function Family $\Upsilon_{\Sigma_{m}}(\eta, \gamma ; \alpha)$

Definition 2.1. A function $f \in \Sigma_{m}$ given by (1.3) is said to be in the family $\Upsilon_{\Sigma_{m}}(\eta, \gamma ; \alpha)(0 \leq \alpha \leq 1, \eta \geq 0,0 \leq \gamma \leq 1)$ if it satisfies the following conditions:

$$
\begin{gather*}
\left|\arg \left((1-\eta)\left[(1-\gamma) \frac{z f^{\prime}(z)}{f(z)}+\gamma\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]+\eta \frac{\gamma z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\gamma z f^{\prime}(z)+(1-\gamma) f(z)}\right)\right| \\
<\frac{\alpha \pi}{2}, \quad(z \in U) \tag{2.1}
\end{gather*}
$$

and

$$
\begin{align*}
& \left\lvert\, \arg \left((1 - \eta) \left[(1-\gamma) \frac{w g^{\prime}(w)}{g^{\prime}(w)}\right.\right.\right.\left.\left.+\gamma\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]+\eta \frac{\gamma w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\gamma w g^{\prime}(w)+(1-\gamma) g(w)}\right) \mid \\
&<\frac{\alpha \pi}{2}, \quad(w \in U) \tag{2.2}
\end{align*}
$$

where the function $g=f^{-1}$ is given by (1.4).

In particular, for one-fold symmetric bi-univalent functions, we denote the family $\Upsilon_{\Sigma_{1}}(\eta, \gamma ; \alpha)=\Upsilon_{\Sigma}(\eta, \gamma ; \alpha)$.

Remark 2.1. It should be remarked that the families $\Upsilon_{\Sigma_{m}}(\eta, \gamma ; \alpha)$ and $\Upsilon_{\Sigma}(\eta, \gamma ; \alpha)$ are a generalization of well-known families consider earlier. These families are:

1. For $\eta=\gamma=0$, the family $\Upsilon_{\Sigma_{m}}(\eta, \gamma ; \alpha)$ reduces to the family $S_{\Sigma_{m}}^{\alpha}$ which was considered by Altinkaya and Yalcin [3].
2. For $\eta=0$, the family $\Upsilon_{\Sigma}(\eta, \gamma ; \alpha)$ reduces to the family $M_{\Sigma}(\alpha, \gamma)$ which was introduced by Liu and Wang [15].
3. For $\eta=\gamma=0$, the family $\Upsilon_{\Sigma}(\eta, \gamma ; \alpha)$ reduces to the family $S_{\Sigma}^{*}(\alpha)$ which was given by Brannan and Taha [6].

Theorem 2.1. Let $f \in \Upsilon_{\Sigma_{m}}(\eta, \gamma ; \alpha)(0<\alpha \leq 1, \eta \geq 0,0 \leq \gamma \leq 1, m \in \mathbb{N})$ be given by (1.3). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{2 \alpha}{\sqrt{\alpha\left[2 m(2 \gamma m+1)+2 m\left[\eta \gamma m^{2}(\gamma-1)+\gamma m(m+2)+1\right]+\left(m^{2} \alpha-m^{2}\right)(1+\gamma m)^{2}\right.}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq \frac{4 \alpha^{2}}{m^{2}(1+\gamma m)^{2}}+\frac{\alpha}{m(2 \gamma m+1)} \tag{2.4}
\end{equation*}
$$

Proof. It follows from conditions (2.1) and (2.2) that

$$
\begin{equation*}
\left((1-\eta)\left[(1-\gamma) \frac{z f^{\prime}(z)}{f(z)}+\gamma\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]+\eta \frac{\gamma z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\gamma z f^{\prime}(z)+(1-\gamma) f(z)}\right)=[p(z)]^{\alpha} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left((1-\eta)\left[(1-\gamma) \frac{w g^{\prime}(w)}{g(w)}+\gamma\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]+\eta \frac{\gamma w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\gamma w g^{\prime}(w)+(1-\gamma) g(w)}\right)=[q(w)]^{\alpha}, \tag{2.6}
\end{equation*}
$$

where $g=f^{-1}$ and p, q in \mathcal{P} have the following series representations:

$$
\begin{equation*}
p(z)=1+p_{m} z^{m}+p_{2 m} z^{2 m}+p_{3 m} z^{3 m}+\cdots \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{m} w^{m}+q_{2 m} w^{2 m}+q_{3 m} w^{3 m}+\cdots \tag{2.8}
\end{equation*}
$$

Comparing the corresponding coefficients of (2.5) and (2.6) yields

$$
\begin{align*}
& m(\gamma m+1) a_{m+1}=\alpha p_{m} \tag{2.9}\\
& \begin{aligned}
& m\left[2(2 \gamma m+1) a_{2 m+1}-\left(\eta \gamma m^{2}(\gamma-1)+\gamma m(m+2)+1\right) a_{m+1}^{2}\right] \\
&=\alpha p_{2 m}+\frac{\alpha(\alpha-1)}{2} p_{m}^{2} \\
&-m(\gamma m+1) a_{m+1}=\alpha q_{m}
\end{aligned}
\end{align*}
$$

and

$$
\begin{gather*}
2 m\left[(2 \gamma m+1)\left(2 a^{2} m+1-a_{2 m+1}\right)-m\left(\eta \gamma m^{2}(\gamma-1)+\gamma m(m+1)\right]\right] a_{m+1}^{2} \\
=\alpha q_{2 m}+\frac{\alpha(\alpha-1)}{2} q_{m}^{2} \tag{2.12}
\end{gather*}
$$

Making use of (2.9) and (2.11), we obtain

$$
\begin{equation*}
p_{m}=-q_{m} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
2 m^{2}(\gamma m+1)^{2} a_{m+1}^{2}=\alpha^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{2.14}
\end{equation*}
$$

Also, from (2.10), (2.12) and (2.14), we find that

$$
\begin{aligned}
{[2 m(2 \gamma m+1)} & +m\left[\eta \gamma m^{2}(\gamma-1)+\gamma m(m+1)\right] a_{m+1}^{2} \\
& =\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}+q_{m}^{2}\right) \\
& =\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{m^{2}(\alpha-1)(1+\gamma m)^{2}}{\alpha} a_{m+1}^{2}
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
a_{m+1}^{2}=\frac{\alpha^{2}\left(p_{2 m}+q_{2 m}\right)}{\gamma\left[2 m(2 \gamma m+1)+m\left[\eta \gamma m^{2}(\gamma-1)+\gamma m(m+1)\right]-m^{2}(\gamma-1)(1+\gamma m)^{2}\right.} . \tag{2.15}
\end{equation*}
$$

Now, taking the absolute value of (2.15) and applying Lemma 1.1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we obtain

$$
\left|a_{m+1}\right| \leq \frac{2 \alpha}{\sqrt{\alpha\left[2 m(2 \gamma m+1)+2 m\left[\eta \gamma m^{2}(\gamma-1)+\gamma m(m+2)+1\right]-m^{2}(\gamma-1)(1+\gamma m)^{2}\right.}}
$$

This gives the desired estimate for $\left|a_{m+1}\right|$ as asserted in (2.3).

In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (2.12) from (2.10), we get

$$
\begin{equation*}
2 m(2 \gamma m+1)\left[2 a_{m+1}^{2}-2 a_{2 m+1}\right]=\alpha\left(p_{2 m}-q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}-q_{m}^{2}\right) \tag{2.16}
\end{equation*}
$$

It follows from (2.13), (2.14) and (2.16) that

$$
\begin{equation*}
a_{2 m+1}=\frac{2 \alpha^{2}\left(p_{m}^{2}+q_{m}^{2}\right)}{4 m^{2}(1+\gamma m)^{2}}+\frac{\alpha\left(p_{2 m}-q_{2 m}\right)}{4 m(2 \gamma m+1)} . \tag{2.17}
\end{equation*}
$$

Taking the absolute value of (2.17) and applying Lemma 1.1 once again for the coefficients $p_{m}, p_{2 m}, q_{m}$ and $q_{2 m}$, we obtain

$$
\left|a_{2 m+1}\right| \leq \frac{2 \alpha^{2}(m+1)}{m^{2}(1+\gamma m)^{2}}+\frac{\alpha}{m(2 \gamma m+1)}
$$

which completes the proof of Theorem 2.1.
For one-fold symmetric bi-univalent functions, Theorem 2.1 reduces to the following corollary:

Corollary 2.1. Let $f \in \Upsilon_{\Sigma}(\eta, \gamma ; \alpha)(0<\alpha \leq 1, \eta \geq 0,0 \leq \gamma \leq 1)$ be given by (1.1). Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{\alpha\left[2(2 \gamma+1)+2[\eta \gamma(\gamma-1)+3 \gamma+1]+(\alpha-1)(1+\gamma)^{2}\right.}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(1+\gamma)^{2}}+\frac{\alpha}{2 \gamma+1} .
$$

3. Coefficient Bounds for the Function Family $\Upsilon_{\Sigma_{m}}^{*}(\eta, \gamma ; \beta)$

Definition 3.1. A function $f \in \Sigma_{m}$ given by (1.3) is said to be in the family $\Upsilon_{\Sigma_{m}}^{*}(\eta, \gamma ; \beta)(0 \leq \beta<1, \eta \geq 0,0 \leq \gamma \leq 1)$ if it satisfies the following conditions:

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\eta)\left[(1-\gamma) \frac{z f^{\prime}(z)}{f(z)}+\gamma\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]+\eta \frac{\gamma z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\gamma z f^{\prime}(z)+(1-\gamma) f(z)}\right\}>\beta \tag{3.1}
\end{equation*}
$$

and

$$
\begin{gather*}
\operatorname{Re}\left\{(1-\eta)\left[(1-\gamma) \frac{w g^{\prime}(w)}{g(w)}+\gamma\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]+\eta \frac{\gamma w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\gamma w g^{\prime}(w)+(1-\gamma) g(w)}\right\}>\beta \tag{3.2}\\
(0 \leq \beta<1, \eta \geq 0,0 \leq \gamma \leq 1, m \in \mathbb{N}, z, w \in U)
\end{gather*}
$$

where the function $g=f^{-1}$ is given by (1.4).

In particular, for one-fold symmetric bi-univalent functions, we denote the family $\Upsilon_{\Sigma_{1}}^{*}(\eta, \gamma ; \beta)=\Upsilon_{\Sigma}^{*}(\eta, \gamma ; \beta)$.

Remark 3.1. It should be remarked that the families $\Upsilon_{\Sigma_{m}}^{*}(\eta, \gamma ; \beta)$ and $\Upsilon_{\Sigma}^{*}(\eta, \gamma ; \beta)$ are a generalization of well-known families consider earlier. These families are:

1. For $\eta=\gamma=0$, the family $\Upsilon_{\Sigma_{m}}^{*}(\eta, \gamma ; \beta)$ reduce to the family $S_{\Sigma_{m}}^{\beta}$ which was considered by Altinkaya and Yalcin [3].
2. For $\eta=0$, the family $\Upsilon_{\Sigma}^{*}(\eta, \gamma ; \beta)$ reduce to the family $B_{\Sigma}(\beta, \gamma)$ which was introduced by Liu and Wang [15].
3. For $\eta=\gamma=0$ and $\gamma=1$, the family $\Upsilon_{\Sigma}^{*}(\eta, \gamma ; \beta)$ reduce to the family $S_{\Sigma}^{*}(\beta)$ which was given by Brannan and Taha [6].

Theorem 3.1. Let $f \in \Upsilon_{\Sigma_{m}}^{*}(\eta, \gamma ; \beta)(0 \leq \beta<1, \eta \geq 0,0 \leq \gamma \leq 1, m \in \mathbb{N})$, be given by (1.3). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leq \frac{2}{m} \sqrt{\frac{1-\beta}{(1+\delta)(\delta+2 \gamma(1+\lambda m))+\gamma(\gamma-1)(1+\lambda m)^{2}}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leq \frac{2(m+1)(1-\beta)^{2}}{m^{2}(\delta+\gamma(1+\lambda m))^{2}}+\frac{1-\beta}{m(\delta+\gamma(1+2 \lambda m))} \tag{3.4}
\end{equation*}
$$

Proof. It follows from conditions (3.1) and (3.2) that there exist $p, q \in \mathcal{P}$ such that

$$
\begin{gather*}
\left((1 - \eta) \left[(1-\gamma) \frac{z f^{\prime}(z)}{f(z)}+\right.\right. \\
\left.\left.=\gamma\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]+\eta \frac{\gamma z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\gamma z f^{\prime}(z)+(1-\gamma) f(z)}\right) \tag{3.5}\\
\\
=\beta+(1-\beta) p(z)
\end{gather*}
$$

and

$$
\begin{gather*}
\left((1-\eta)\left[(1-\gamma) \frac{w g^{\prime}(w)}{g(w)}+\gamma\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]+\eta \frac{\gamma w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\gamma w g^{\prime}(w)+(1-\gamma) g(w)}\right) \\
=\beta+(1-\beta) q(w) \tag{3.6}
\end{gather*}
$$

where $p(z)$ and $q(w)$ have the forms (2.7) and (2.8), respectively. Equating coefficients (3.5) and (3.6) yields

$$
\begin{gather*}
m(\gamma m+1) a_{m+1}=(1-\beta) p_{m} \tag{3.7}\\
m\left[2(2 \gamma m+1) a_{2 m+1}-\left(\eta \gamma m^{2}(\gamma-1)+\gamma m(m+2)+1\right) a_{m+1}^{2}\right]=(1-\beta) p_{2 m} \tag{3.8}\\
-m(\gamma m+1) a_{m+1}=(1-\beta) q_{m} \tag{3.9}
\end{gather*}
$$

and

$$
\begin{align*}
2 m(2 \gamma m+1)\left(2 a_{m+1}^{2}-a_{2 m+1}\right) & -m\left(\eta \gamma m^{2}(\gamma-1)+\gamma m(m+2)+1\right) a_{m+1}^{2} \\
= & (1-\beta) q_{2 m} . \tag{3.10}
\end{align*}
$$

From (3.7) and (3.9), we get

$$
\begin{equation*}
p_{m}=-q_{m} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2 m^{2}(\gamma m+1)^{2} a_{m+1}^{2}=(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{3.12}
\end{equation*}
$$

Adding (3.8) and (3.10), we obtain

$$
\begin{equation*}
\left[4 m(2 \gamma m+1)+2 m\left(\eta \gamma m^{2}(\gamma-1)+\gamma m(m+2)+1\right] a_{m+1}^{2}=(1-\beta)\left(p_{2 m}+q_{2 m}\right)\right. \tag{3.13}
\end{equation*}
$$

Therefore, we have

$$
a_{m+1}^{2}=\frac{(1-\beta)\left(p_{2 m}+q_{2 m}\right)}{4 m(2 \gamma m+1)+2 m\left(\eta \gamma m^{2}(\gamma-1)+\gamma m(m+2)+1\right)} .
$$

Applying Lemma 1.1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we obtain

$$
\left|a_{m+1}\right| \leq \sqrt{\frac{1-\beta}{m(2 \gamma m+1)+2 m\left(\eta \gamma m^{2}(\gamma-1)+\gamma m(m+2)+1\right.}} .
$$

This gives the desired estimate for $\left|a_{m+1}\right|$ as asserted in (3.3).
In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (3.10) from (3.8), we get

$$
2 m(2 \gamma m+1)\left[2 a_{m+1}^{2}-2 a_{2 m+1}\right]=(1-\beta)\left(p_{2 m}-q_{2 m}\right),
$$

or equivalently

$$
a_{2 m+1}=\frac{2}{2} a_{m+1}^{2}+\frac{(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{4 m(2 \gamma m+1)} .
$$

Upon substituting the value of a_{m+1}^{2} from (3.12), it follows that

$$
a_{2 m+1}=\frac{2(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right)}{4 m^{2}(\gamma m+1)^{2}}+\frac{(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{4 m(2 \gamma m+1)}
$$

Applying Lemma 1.1 once again for the coefficients $p_{m}, p_{2 m}, q_{m}$ and $q_{2 m}$, we obtain

$$
\left|a_{2 m+1}\right| \leq \frac{4(1-\beta)^{2}}{m^{2}(\gamma m+1)^{2}}+\frac{1-\beta}{m(2 \gamma m+1)}
$$

which completes the proof of Theorem 3.1.
For one-fold symmetric bi-univalent functions, Theorem 3.1 reduces to the following corollary:

Corollary 3.1. Let $f \in \Upsilon_{\Sigma}^{*}(\eta, \gamma ; \beta)(0 \leq \beta<1, \eta \geq 0,0 \leq \gamma \leq 1)$, be given by (1.1). Then

$$
\left|a_{2}\right| \leq 2 \sqrt{\frac{1-\beta}{(2 \gamma+1)+2(\eta \gamma(\gamma-1)+3 \gamma+1}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{(\gamma+1)^{2}}+\frac{1-\beta}{2 \gamma+1}
$$

4. Conclusion

This paper has introduced a new subfamilies $\Upsilon_{\Sigma_{m}}(\eta, \gamma ; \alpha)$ and $\Upsilon_{\Sigma_{m}}^{*}(\eta, \gamma ; \beta)$ of Σ_{m} and find estimates on the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions in each of these new subfamilies.

References

[1] E. A. Adegani, S. Bulut and A. A. Zireh, Coefficient estimates for a subclass of analytic bi-univalent functions, Bull. Korean Math. Soc. 55(2) (2018), 405-413.
[2] I. Aldawish, S. R. Swamy and B. A. Frasin, A special family of m-fold symmetric biunivalent functions satisfying subordination condition, Fractal Fractional 6 (2022), 271. https://doi.org/10.3390/fractalfract6050271
[3] S. Altinkaya and S. Yalçin, Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions, Journal of Mathematics 2015 (2015), Art. ID 241683, 1-5. https://doi.org/10.1155/2015/241683
[4] S. Altinkaya and S. Yalçin, On some subclasses of m-fold symmetric bi-univalent functions, Commun. Fac. Sci. Univ. Ank. Series Al 67(1) (2018), 29-36.
https://doi.org/10.1501/Commua1_0000000827
[5] A. Amourah, A. Alamoush, and M. Al-Kaseasbeh, Gegenbauer polynomials and bi univalent functions, Palestine Journal of Mathematics 10(2) (2021), 625-632. https://doi.org/10.3390/math10142462
[6] D. A. Brannan and T. S. Taha, On Some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math. 31(2) (1986), 70-77.
[7] S. Bulut, Coefficient estimates for general subclasses of m-fold symmetric analytic biunivalent functions, Turkish J. Math. 40 (2016), 1386-1397.
https://doi.org/10.3906/mat-1511-41
[8] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[9] S. S. Eker, Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turk. J. Math. 40 (2016), 641-646. https://doi.org/10.3906/mat-1503-58
[10] B. A. Frasin and M. K. Aouf, Coefficient bounds for certain classes of bi-univalent functions, Hacettepe Journal of Mathematics and Statistics 43(3) (2014), 383-389.
[11] S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc. 20 (2012), 179-182. https://doi.org/10.1016/j.joems.2012.08.020
[12] B. Khan, H. M. Srivastava, M. Tahir, M. Darus, Q. Z. Ahmad and N. Khan, Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions, AIMS Mathematics 6 (2021), 1024-1039.
[13] W. Koepf, Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc. 105 (1989), 324-329.
https://doi.org/10.1090/S0002-9939-1989-0930244-7
[14] T. R. K. Kumar, S. Karthikeyan, S. Vijayakumar and G. Ganapathy, Initial coefficient estimates for certain subclasses of m-fold symmetric bi-univalent functions, Advances in Dynamical Systems and Applications 16(2) (2021), 789-800.
[15] X. F. Li and A. P. Wang, Two new subclasses of bi-univalent functions, Int. Math. Forum 7(2) (2012), 1495-1504.
[16] N. Magesh and J. Yamini, Fekete-Szego problem and second Hankel determinant for a class of bi-univalent functions, Tbilisi Math. J. 11(1) (2018), 141-157.
https://doi.org/10.32513/tbilisi/1524276036
[17] T. G. Shaba and A. K. Wanas, Initial coefficient estimates for a certain subclasses of m fold symmetric bi-univalent functions involving ϕ-pseudo-starlike functions defined by Mittag-Leffler function, Konuralp Journal of Mathematics 10(1) (2022), 59-68.
[18] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and biunivalent functions, J. Egyptian Math. Soc. 23 (2015), 242-246.
https://doi.org/10.1016/j.joems.2014.04.002
[19] H. M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27(5) (2013), 831-842.
https://doi.org/10.2298/FIL1305831S
[20] H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), 1839-1845.
https://doi.org/10.2298/FIL1508839S
[21] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed. 36 (2016), 863-871. https://doi.org/10.1016/S0252-9602(16)30045-5
[22] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
https://doi.org/10.1016/j.aml.2010.05.009
[23] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J. 7(2) (2014), 1-10. https://doi.org/10.2478/tmj-2014-0011
[24] H. M. Srivastava and A. K. Wanas, Initial Maclaurin coefficient bounds for new subclassesof analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J. 59 (2019), 493-503.
[25] H. M. Srivastava, A. K. Wanas and G. Murugusundaramoorthy, Certain family of biunivalent functions associated with Pascal distribution series based on Horadam polynomials, Surveys Math. Appl. 16 (2021), 193-205.
[26] S. R. Swamy and L-I. Cotîrlă, On τ-Pseudo- v-convex κ-fold symmetric bi-univalent function family, Symmetry 14(10) (2022), 1972. https://doi.org/10.3390/sym14101972
[27] S. R. Swamy, B. A. Frasin and I. Aldawish, Fekete-Szegö functional problem for a special family of m-fold symmetric bi-univalent functions, Mathematics 10 (2022), 1165. https://doi.org/10.3390/math10071165
[28] H. Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal. 10 (2016), 1063-1092. https://doi.org/10.7153/jmi-10-85
[29] A. K. Wanas and H. Tang, Initial coefficient estimates for a classes of m-fold symmetric bi-univalent functions involving Mittag-Leffler function, Mathematica Moravica 24(2) (2020), 51-61. https://doi.org/10.5937/MatMor2002051K

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.

