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Abstract

q-Calculus Theory is rapidly growing in various directions. The goal of

this paper is to collect and underline recent results on αq-analogs of the

Cesáro matrix andemphasize various generalizations. One αq-analogs of the

Cesáro matrix of order one is the triangular matrix with nonzero entries

cαnk (q) = (αq)n−k

1+q+···+qn , 0 ≤ k ≤ n, where α, q ∈ (0, 1). The purpose of this

article examines various spectral decompositions of Cαq = (cαnk (q)) such as

the spectrum, the fine spectrum, the approximate point spectrum, the defect

spectrum, and the compression spectrum on the sequence space c.

1 Introduction

Spectral theory is a sub-branch of functional analysis and its applications. It

deals with the general properties of the inverse operator. The principal operator

also allows us to understand the relationship between spectrum and set point

spectrums. It consists of three discrete sets, the continuous spectrum and the

residual spectrum. Spectral theory also plays an important role in physics.

For example, in quantum mechanics The point spectrum of the Hamiltonian

transformations is the energy at the boundary state of the system. The continuous

and residual spectrum play a significant role in distribution theory.
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The studies on q-mathematics have many applications in branches such as

mathematics and engineering in recent years, and the history of studies on these

subjects are actually so old that they go back to the time of Euler. With q 6= 1,

the q-analogue of the integer n is given by the following expression:

[n]q =
1− qn

1− q
.

The transformation given by

sn (x) =
qnx0 + qn−1x1 + qn−2x2 + · · ·+ xn

1 + q + · · ·+ qn
(1.1)

is called the q-Cesàro mean and denoted by C (q). If we take q → 1− in (1.1),

the C1 Cesàro transformation given by

tn (x) =
x0 + x1 + x2 + · · ·+ xn

n+ 1
. (1.2)

In [9], Bekar studied the q-analogue of this Cesàro transformation given by

(1.2). Also [2], Aktuğ and Bekar compared q-Cesàro transform and q-statistical

convergence. In [17] , [21] and [36] , the spectrum and spectral decomposition of

the q-Cesàro transform on various spaces are given.

For 0 < α, q < 1, the transformation given by

zn (x) =
(αq)n x0 + (αq)n−1 x1 + (αq)n−2 x2 + · · ·+ xn

1 + q + · · ·+ qn
(1.3)

is called the genaralized αq-Cesàro mean Cαq or simply the Cαq mean. The matrix

of the Cαq method is given by

cαnk (q) =

{
(αq)n−k

1+q+···+qn , 0 < k ≤ n
0 , k > n.

In this case, α→ 1− in this matrix, the q-Cesàro matrix is obtained. The spectra

and spectral decompositions of the αq-Cesàro matrix over the c0 sequence space

are investigated in [34].

This study is about the spectrum and spectral decompositions of the αq-Cesàro

operator on Banach space c. Here c denotes the space of convergent sequences,

which is considered with the supremum norm. This study is expected to broaden

the applicability of q-calculus.
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2 Preliminaries and Notation

Let us give a brief information on the spectrum of a bounded linear operator

T : X → X, defined in an infinite dimensional X Banach space. Let Tλ = T − λI
for λ ∈ C. If there is an inverse operator T−1λ for λ ∈ C, then R (λ;T ) :=

Rλ (T ) := T−1λ is called the resolvent operator of T . If 1) Rλ (T ) exists, 2) Rλ (T )

is bounded, and 3) Rλ (T ) is defined on a dense set at X, then this λ is called a

regular value of T and ρ (T,X) denotes the set of all regular values of T . The set

σ (T,X) = C\ρ (T,X) is also called the spectrum of T . If we are working on a

particular Banach space X, we will write σ (T ) for short instead of σ (T,X).

The set in which Rλ (T ) does not exist is called the point spectrum or

discrete spectrum, and is denoted by σp (T ). Also, a number λ ∈ σp (T ) is

called the eigen-value of T . The set of λ ∈ σ (T ) elements, where Rλ(T )

exists and will provide 3) but not 2), that is, Rλ (T ) is unbounded, is called

the continuous spectrum and it is denoted by σc (T ). The set of λ ∈ σ (T )

elements such that Rλ (T ) exists (bounded or unbounded) and 3) cannot be

realized is called the residue spectrum of T and it is denoted by σr (T ). Thus

σ (T ) = σp (T ) ∪ σc (T ) ∪ σr (T ) and these sets are binary discrete. This creates

the natural spectral decomposition of the T ∈ B (X) operator [31].

Now let’s give the Goldberg decomposition of the σ (T ) spectrum. Let λ ∈
σ (T ). Then there are three possibilities for R (Tλ), the range of Tλ = T − λI:

I) Tλ is surjective, II) R (Tλ) = X, but R (Tλ) 6= X, III) R (Tλ) 6= X; and three

possibilities for Rλ = T−1λ : 1) Tλ is injective and Rλ is bounded, 2) Tλ is injective

and Rλ is unbounded, and 3) Tλ is not injective.

There are nine different states for a λ ∈ C: I1, I2, I3, II1, II2, II3, III1, III2,

III3. If Tλ ∈ I1 or Tλ ∈ II1 then it is λ ∈ ρ (T ). From the closed graph theorem,

there is no λ so that Tλ ∈ I2, so I2 = ∅. Therefore, we get a decomposition of the

spectrum as

σ (T ) = I3σ (T ) ∪ II2σ (T ) ∪ II3σ (T )

∪ III1σ (T ) ∪ III2σ (T ) ∪ III3σ (T ) .

This is called the Goldberg decomposition of the spectrum.
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We can summarize these two decompositions of the spectrum in with the Table

below [24].

Table 1. Goldberg’s and fine decomposition of the spectrum

1 2 3

Rλ exists Rλ exists Rλ

and is bounded and is unbounded does not exists

I R (Tλ) = X λ ∈ ρ (T ) – λ ∈ σp (T )

II R (Tλ) = X λ ∈ ρ (T ) λ ∈ σc (T ) λ ∈ σp (T )

III R (Tλ) 6= X λ ∈ σr (T ) λ ∈ σr (T ) λ ∈ σp (T )

The fine spectrum of some bounded linear operators over various spaces has

been specified by many authors ([1], [12], [18], [19], [20], [22], [23], [25]-[28], [30],

[32], [33], [35], [37]-[41]).

Let X be Banach space on a field K and T ∈ B (X). If (xn) ⊂ X is a sequence

such that ‖Txn‖ → 0 while n → ∞ and ‖xn‖ = 1, then (xn) is called a Weyl

sequence for T .

The set

σap (T,X) := {λ ∈ K : there is a Weyl sequence for λI − T} (2.1)

is called as the approximate point spectrum of T . Moreover, the subspectrum

σδ (T,X) := {λ ∈ K : λI − T is not surjective} , (2.2)

is called defect spectrum of T .

The two subspectra (2.1) and (2.2) form a (not necessarily disjoint) subdivision

σ (T ) = σap (T ) ∪ σδ (T ) (2.3)
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of the spectrum. There is another subspectrum,

σco (T,X) :=
{
λ ∈ K : R (λI − T ) 6= X

}
(2.4)

which is often called compression spectrum.

These three sets make up the non-discrete spectrum of the spectrum. (2.4)

gives rise to another (not necessarily disjoint) decomposition

σ (T ) = σap (T ) ∪ σco (T ) (2.5)

of the spectrum. Clearly, σp (T ) ⊆ σap (T ) and σco (T ) ⊆ σδ (T ). Moreover, we

note that

σr (T ) = σco (T ) \σp (T ) (2.6)

and

σc (T ) = σ (T ) \[σp (T ) ∪ σco (T )]. (2.7)

Sometimes it is useful to relate the spectrum of a bounded linear operator to that

of its adjoint.

Proposition 2.1. [4, Proposition 1.3] The spectra and subspectra of an operator

T ∈ B(X) and its adjoint T ∗ ∈ B(X∗) are related by the following relations:

(a) σ (T ∗) = σ (T ).

(b) σc (T ∗) ⊆ σap (T ).

(c) σap (T ∗) = σδ (T ).

(d) σδ (T ∗) = σap (T ).

(e) σp (T ∗) = σco (T ).

(f) σco (T ∗) ⊇ σp (T ).

(g) σ (T ) = σap (T ) ∪ σp (T ∗) = σp (T ) ∪ σap (T ∗).

We can write the above definition as follows (Table 1)

In order to obtain this non-discrete decomposition for a finite linear operator

T , the following template created in the articles [5]-[7], [10] and [11] is used,

considering the proposition and Theorems in [4].
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Table 2. Non-discrete decomposition of the spectrum

(1) (2) (3)

Rλ exists Rλ exists Rλ

and is bounded and is unbounded does not exists

(I) R (Tλ) = X λ ∈ ρ (T ) – λ ∈ σap (T )

R (Tλ) 6= X

(II) R (Tλ) = X λ ∈ ρ (T ) λ ∈ σap (T ) λ ∈ σap (T )

λ ∈ σδ (T ) λ ∈ σδ (T )

(III) R (Tλ) 6= X λ ∈ σδ (T ) λ ∈ σap (T ) λ ∈ σap (T )

λ ∈ σδ (T ) λ ∈ σδ (T )

λ ∈ σco (T ) λ ∈ σco (T ) λ ∈ σco (T )

Various divisions of the spectrum are possible. The non-discrete spectrum

(Apporoximate point spectrum, defect spectrum and compression spectrum) can

be found in the book entitled ”Nonlinear Spectral Theory”;, published by J. Appell

et al. Using this Table 2, separation of an operator for the first time in the

literature was handled in 2011 by Kh. Amirov and Nuh Durna, Mustafa Yıldırım

[3]. After, using this separation, the non-discrete spectrum of some bounded linear

operators on various spaces has been studied by various authors ([3], [8], [13]-[16]).

3 Boundedness and Various Spectral Decompositions

of Cα
q

In this section, we will show that Cαq is a bounded linear operator on c, and then

examine its various spectral decompositions.

In order for the αq- Cesàro operator matrix given by Cαq = (cαnk (q)) to be in

B (c), it must be shown that the conditions of the Kojima-Schur Theorem given

in [29, p.166] are met.
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Lemma 3.1. Let 0 < q < 1, 0 < α < 1. Then Cαq ∈ B (c) and
∥∥Cαq ∥∥ = 1.

Proof. i) Since α < 1, the following inequality is obtained∥∥Cαq ∥∥ = supn
∞∑
k=0

|cαnk| = supn

{
1

1+q+···+qn
n∑
k=0

(αq)n−k
}

≤ supn
n∑
k=0

1+q+···+qn
1+q+···+qn

= 1

(3.1)

On the other hand, the following inequality is valid;

∥∥Cαq ∥∥ = sup
x 6=θ

∥∥Cαq (x)
∥∥
c

‖x‖c

= sup
x6=θ

∥∥∥(x0, αq
1+qx0 + 1

1+qx1, · · ·
)∥∥∥

c

‖x‖c
x=e0
≥
∥∥∥(1, αq

1+q ,
α2q2

1+q+q2
, · · ·

)∥∥∥
c

= sup
(

1, αq
1+q ,

α2q2

1+q+q2
, · · ·

)
= 1.

(3.2)

From 3.1 and 3.2,
∥∥Cαq ∥∥ = 1 is obtained.

ii) For each k

lim
n→∞

∞∑
k=p

cnk = lim
n→∞

n∑
k=p

(αq)n−k

1+q+···+qn

= lim
n→∞

1
1+q+···+qn

n∑
k=p

(αq)n−k

= limn→∞

1−(αq)n−p+1

1−αq
1−qn+1

1−q

=

 1−q
1−αq

(
1
αq

)p
, p > 1

1−q
1−αq , 0 < p < 1.

Thus, i) and ii) satisfy the conditions of the Kojima-Schur Theorem in [29,

p.166]. This proves the Lemma.

It should be noted that if 0 < q < 1 and 0 < α < 1, there is always m ∈ N0

such that α < qm. There is also α < q0 = 1.
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Theorem 3.2. Let 0 < q < 1 and 0 < α ≤ 1. Then, if α < qm, then

σp
(
Cαq , c

)
=


1

1∑
k=0

qk
,

1
2∑

k=0

qk
, . . . ,

1
m∑
k=0

qk
: α < qm

 ∪ {1}
and if α = 1, then σp

(
Cαq , c

)
= {1}.

Proof. Let Cαq x = λx. In this case, the following equations exist;

x0 = λx0
1

1∑
k=0

qk
(αqx0 + x1) = λx1

1
2∑

k=0

qk

(
(αq)2 x0 + αqx1 + x2

)
= λx2

...
1

n∑
k=0

qk

(
(αq)n x0 + (αq)n−1 x1 + · · ·+ αqxn−1 + xn

)
= λxn

...

(3.3)

If x0 6= 0, then λ = 1 is obtained from the first line of equation (3.3). If we put

λ = 1 in other equations, we get xn = αnx0, n = 1, 2, . . .. Thus, since 0 < α ≤ 1,

the eigenvector corresponding to λ = 1 is x = (αn) ∈ c.
Same way, let xm be the first nonzero term of the sequence (xn). Thus, from

the mth row of the equation (3.3)λ− 1
m∑
k=0

qk

xm = 0

is found. Hence, we have

λ =
1

m∑
k=0

qk
, (3.4)
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since xm 6= 0. Since x1 = x2 = x3 = · · · = xm−1 = 0, from the equations after the

(m+1)th line of system, we get

xm+n =

αnqn
(

m∑
k=0

qk
)(

m+1∑
k=0

qk
)
· · ·
(
m+n−1∑
k=0

qk
)

(qm+1)n
(

1∑
k=0

qk
)
· · ·
(
n−1∑
k=0

qk
) xm, n = 1, 2, 3, . . . ;

that is,

xn =

(
αq

qm+1

)n−m (
m∑
k=0

qk
)(

m+1∑
k=0

qk
)
· · ·
(
n−1∑
k=0

qk
)

(
1∑

k=0

qk
)(

2∑
k=0

qk
)
· · ·
(
n−m−1∑
k=0

qk
)xm for n > m. (3.5)

Since qm > qn,

lim
n→∞

xm+n

xm+n−1
= lim

n→∞

α

qm

[
1 + qn

1− qm

1− qn

]
=

α

qm

is obtained. Therefore, for α < qm, we have limn→∞ xm+n = 0, that

is, the eigenvector corresponding to λ = 1
m∑

k=0
qk

for α < qm is x =

(0, 0, . . . , 0, xm, xm+1, . . . , xm+n, . . .) ∈ c. Also, for α = λ = 1, Cα1 (q)x = λx

with x = (1, 1, 1, . . .) ∈ c. So the point spectrum is obtained as follows;

σp
(
Cαq , c

)
=

 1
1∑

k=0

qk
, 1

2∑
k=0

qk
, . . . , 1

m∑
k=0

qk
: α < qm

 ∪ {1}.

The following Lemma will be very useful for calculating the adjoint of operator

Cαq :

Lemma 3.3. [42, p.267] If T : c→ c is a linear transformation and T ∗ : `1 → `1,

T ∗g = g ◦ T , g ∈ c∗ ∼= `1, then T and T ∗ have matrix representations, also

Earthline J. Math. Sci. Vol. 11 No. 1 (2023), 145-172



154 Merve Esra Türkay

T ∗ : `1 → `1 is given by

T ∗ = A∗ =

(
χ (limA) (ϑn)∞n=0

(ak)
∞
k=0 At

)

=



χ (limA) ϑ0 ϑ1 ϑ2 · · ·
a0 a00 a10 a20 · · ·
a1 a01 a11 a21 · · ·
a2 a02 a12 a22 · · ·
...

...
...

...
. . .


,

where
ak = lim

n
ank

χ (A) = limAe−
∞∑
k=0

limAek = limn
∑
k

ank −
∑
k

limn ank

ϑn = χ (Pn ◦ T ) = (Pn ◦ T ) e−
∑
k

ank,

ank = Pn (T (ek)) = (T (ek))n .

If 0 < α < 1, 0 < q < 1, then one can get the following result from the above

Lemma for αq−Cesàro matrix.

Making use of the relations given above Lemma 3.3, we easily arrive at the

following Lemma:

Lemma 3.4. The adjoint of C1 (q) on c is given by

(
Cαq
)∗

=


1−q
1−αq 0 0 · · ·

0

0
...

(
Cαq
)t

 . (3.6)

Proof. Since 0 < α < 1, 0 < q < 1, we get

ck = lim
n
cnk = lim

n→∞

(αq)n−k (1− q)
1− qn+1

= (αq)−k (1− q) lim
n→∞

(αq)n

1− qn+1
= 0

and
n∑
k=0

cnk = (1−q)
1−qn+1

n∑
k=0

(αq)n−k = (1−q)
1−qn+1

n∑
k=0

(αq)k = (1−q)
1−qn+1

1−(αq)n+1

(1−αq) .

http://www.earthlinepublishers.com
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Thus, χ
(
Cαq
)

can be calculated as follows;

χ
(
Cαq
)

= limn
∑

k cnk −
∑

k limn cnk

= limn
(1−q)
1−qn+1

1−(αq)n+1

(1−αq) − 0 = 1−q
1−αq .

To calculate ϑn, the following expression is required;

(
Pn ◦ Cαq

)
e =

{
n∑
k=0

cnkxk

}
x=e

=

n∑
k=0

cnk =
(1− q)

1− qn+1

1− (αq)n+1

(1− αq)
. (3.7)

From (3.7), we have

ϑn =
(
Pn ◦ Cαq

)
e−

n∑
k=0

cnk =
(1− q)

1− qn+1

1− (αq)n+1

(1− αq)
− (1− q)

1− qn+1

1− (αq)n+1

(1− αq)
= 0

Hence, by Lemma 3.3, desired is obtained.

Theorem 3.5. If 0 < q < 1 and 0 < α < 1, then

σp
([
Cαq
]∗
, (c)∗ ' `1

)
=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ < 1− q
1− α2q2

αq

}
∪

1, 1
1∑

k=0
qk
, . . . , 1

m∑
k=0

qk
: α < qm

 .

Proof. Let x 6= 0 and (Cα1 )∗ (q)x = λx. Since the matrix (Cα1 )∗ (q) is given by

the equation (3.6), the following system of equations is obtained

Earthline J. Math. Sci. Vol. 11 No. 1 (2023), 145-172
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1−q
1−αqx0 = λx0

x1 +
(αq)
1∑

k=0

qk
x2 +

(αq)2

2∑
k=0

qk
x3 +

(αq)3

3∑
k=0

qk
x4 + · · · = λx1

1
1∑

k=0

qk
x2 +

(αq)
2∑

k=0

qk
x3 +

(αq)2

3∑
k=0

qk
x4 + · · · = λx2

1
2∑

k=0

qk
x3 +

(αq)
3∑

k=0

qk
x4 + · · · = λx3

... .

Hence

xn =
x1

(αqλ)n

n∏
k=1

λ− 1
k−1∑
v=0

qv

 , n = 2, 3, . . . .

where x1 6= 0.

Let’s assume that

λ ∈

1,
1

1∑
k=0

qk
,

1
2∑

k=0

qk
, . . . ,

1
n∑
k=0

qk
, . . .

 .

If λ = 1, then (Cα1 )∗ (q)x = x for x = (x0, x1, 0, . . .) ∈ `1 and x 6= θ. So we

get that 1 ∈ σp
(
(Cα1 )∗ (q) , `1

)
.

If λ =
1

1 + q
, then (Cα1 )∗ (q)x =

1

1 + q
x for x =

(
x0, x1,−x1

α , 0, 0, . . .
)
∈ `1

and x 6= θ. Hence, we get that
1

1 + q
∈ σp

(
(Cα1 )∗ (q) , `1

)
.

If λ =
1

1 + q + q2
, then (Cα1 )∗ (q)x =

1

1 + q + q2
x for x =
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(
x0, x1,− (1+q)

α x1,
q
α2x1, 0, 0, . . .

)
∈ `1 and x 6= θ. So we get that

1

1 + q + q2
∈

σp
(
(Cα1 )∗ (q) , `1

)
.

Similarly, we obtain
1

n∑
k=0

qk


∞

n=0

⊂ σp
(
(Cα1 )∗ (q) , (c)∗ ' `1

)
.

Let us now assume that λ /∈


1

n∑
k=0

qk


∞

n=0

. If

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣
1

αqλ

λ− 1
n∑
v=0

qv


∣∣∣∣∣∣∣∣

= lim
n→∞

∣∣∣∣ 1

αqλ

(
λ− 1− q

1− qn+1

)∣∣∣∣
=

∣∣∣∣ 1

αqλ

(
λ− 1− q

limn→∞ (1− qn+1)

)∣∣∣∣ < 1,

(3.8)

the series
∑
|xn| is convergent and hence (xn) ∈ `1. For this,∣∣∣∣ 1

αqλ
(λ− (1− q))

∣∣∣∣ < 1⇔
∣∣∣∣1− 1− q

λ

∣∣∣∣ < αq

λ=u+iv⇔
∣∣∣∣1− 1− q

u2 + v2
u+

1− q
u2 + v2

vi

∣∣∣∣ < αq

⇔
∣∣∣∣λ− (1− q)

(1− α2q2)

∣∣∣∣ < (1− q)αq
1− αq

.

(3.9)

is realized. (3.9) shows us, if

∣∣∣∣λ− (1− q)
(1− α2q2)

∣∣∣∣ < (1− q)αq
1− αq

, then (xn) ∈ `1. Also,

since
1

m+1∑
k=0

qk
,

1
m+2∑
k=0

qk
, . . . ∈

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ < 1− q
1− α2q2

αq

}

for α > qm, m = 0, 1, 2, . . ., the desired result is obtained.
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We know that c is a Banach space, σ
([
Cαq
]∗
, `1
)

= σ
(
Cαq , c

)
and σp

(
Cαq , c

)
⊂

σ
(
Cαq , c

)
are valid. Let’s determine the spectrum of Cαq using these.

An infinite matrix defined as

4a,b =



a0 0 0 0 . . .

b0 a1 0 0 . . .

0 b1 a2 0
. . .

0 0 b2 a3
. . .

...
...

...
. . .

. . .


is called a lower triangular double band matrix with a variable sequence, where

(ak) and (bk) are two nonzero sequences of real numbers with

lim
n→∞

an = a and lim
n→∞

bn = b 6= 0. (3.10)

This matrix defines a 4a,b : c→ c operator with

4a,bx = 4a,b(xk) = (akxk + bk−1xk−1)
∞
k=0 with x−1 = b−1 = 0 (3.11)

Corollary 3.6. The matrix operator 4a,b is bounded on c and ‖4a,b‖B(c) =

sup (|ak|+ |bk−1|).

The matrix 4a,b satisfies the conditions of the Kojima-Schur Theorem, so it

can be easily seen that it is 4a,b ∈ B (c) and it can also be seen that ‖4a,b‖B(c) =

sup (|ak|+ |bk−1|) as in [19].

Theorem 3.7.

σ (4a,b, c) = {λ ∈ C : |λ− a| ≤ |b|} ∪ {ak : k ∈ N, |ak − a| > |b|} ∪ {1} .

The proof of the theorem can be given by the same method as [19, Theorem

2.1].

Let 0 < α < 1 and 0 < q < 1. The generalized αq-Cesàro matrix Cαq : c → c
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has an inverse and this inverse matrix is given by:

[
Cαq
]−1

=



A0 0 0 0 . . .

B0 A1 0 0 . . .

0 B1 A2 0
. . .

0 0 B2 A3
. . .

...
...

...
. . .

. . .


,

where

An =
n∑
k=0

qk and Bn = −αqan for all n ∈ N0. (3.12)

Therefore,

lim
n→∞

An = lim
n→∞

(
1 + q + q2 + · · ·+ qn

)
= lim

n→∞

1− qn+1

1− q
=

1

1− q
= a,

lim
n→∞

Bn = lim
n→∞

−αq
(
1 + q + q2 + · · ·+ qn

)
= − αq

1− q
= b

(3.13)

is obtained from (3.12).

It is clear that the operators
[
Cαq
]−1

and Cαq are bijective. If we take 4a,b =[
Cαq
]−1

in Theorem 3.7, it is easily seen that the inverse operator
[
Cαq
]−1

is

bounded on the sequence space c. If we take 4a,b =
[
Cαq
]−1

in Corollary 3.6, it

is an obvious result that it will be 0 6∈ σ(4a,b, c).

Theorem 3.8. If 0 < q < 1 and 0 < α < 1, then

σ
(
Cαq , c

)
=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ ≤ 1− q
1− α2q2

αq

}
∪

 1
1∑

k=0
qk
, . . . , 1

m∑
k=0

qk
: α < qm

 ∪ {1} .

Proof. From Theorem 3.5, the following scope is obtained:

σp
([
Cαq
]∗
, `1
)

=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ < 1− q
1− α2q2

αq

}
∪
{

1

1 + q
, . . . ,

1

1 + q + · · ·+ qm
: α < qm

}
∪ {1}

⊂ σ
([
Cαq
]∗
, `1
)

= σ
(
Cαq , c

)
.
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If closure is taken from both sides,{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ ≤ 1− q
1− α2q2

αq

}
∪
{

1,
1

1 + q
,

1

1 + q + q2
, . . .

}
⊂ σ

(
Cαq , c

)
is obtained since the spectrum is closed and 1 − q ∈{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ ≤ 1− q
1− α2q2

αq

}
. Also, taking λ = 1

m∑
k=0

qk
and α = qm

turns the inequality

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ ≤ 1− q
1− α2q2

αq into equality.it should be

noted that when α = qm for a m ∈ N, λ = 1
m∑

k=0
qk

is the point at the right end of

the circle and on the x-axis.

From the explanation above the
[
Cαq
]−1

is invertible and bounded on c. From

Theorem 3.7, it is known that

σ
([
Cαq
]−1

, c
)

= σ (4a,b, c)

= {λ ∈ C : |λ− a| ≤ |b|}
∪ {ak : k ∈ N, |ak − a| > |b|} ∪ {1}

(3.14)

With a = 1
1−q , b = − αq

1−q , am =
∑m

k=0 q
k, the 1st set forming the union on the

second side of equation (3.7) is equal to{
λ ∈ C :

∣∣∣∣λ− 1

1− q

∣∣∣∣ ≤ αq

1− q

}
and the 2nd set is equal to

{ak : k ∈ N, |ak − a| > |b|} = {a0,a1,. . . ,am : α < qm} .

Since

µ =
1

λ
= x+ iy ⇔ λ =

1

µ
=

1

x+ iy
=

x

x2 + y2
− i y

x2 + y2
= u+ iv,

http://www.earthlinepublishers.com
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we have ∣∣∣∣λ− 1

1− q

∣∣∣∣ ≤ αq

1− q
⇔
∣∣∣∣ 1µ − 1

1− q

∣∣∣∣ ≤ αq

1− q
⇔ (u− (1− q))2 + v2 ≤ (αq)2

(
u2 + v2

)
⇔
∣∣∣∣µ− 1− q

1− α2q2

∣∣∣∣ ≤ αq 1− q
1− α2q2

.

Therefore, the following expressions can be written from the spectral maping

Theorem;

σ
(
Cαq , c

)
=
{

1
λ ∈ C : λ ∈ σ

([
Cαq
]−1

, c
)}

=
{
1
λ ∈ C : |λ− a| ≤ |b|

}
∪
{

1
am

: m ∈ N, |am − a| > |b|
}
∪ {1}

=

{
1
λ ∈ C :

∣∣∣∣λ− 1

1− q

∣∣∣∣ ≤ αq

1− q

}
∪
{

1
am

: m ∈ N, α < qm
}
∪ {1}

=
{
λ ∈ C :

∣∣∣λ− 1−q
1−(αq)2

∣∣∣ ≤ 1−q
1−(αq)2αq

}
∪

 1
0∑

k=0

qk
, 1

1∑
k=0

qk
, . . . , 1

m∑
k=0

qk
: α < qm

 ∪ {1} .

Remark 3.9. In Theorem 3.8, since

 1
1∑

k=0
qk
, 1

2∑
k=0

qk
, . . . , 1

m∑
k=0

qk
: α < qm

 ⊂{
λ ∈ C :

∣∣∣λ− 1
1+q

∣∣∣ ≤ q
1+q

}
as α→ 1−, we get

σ (C1 (q) , c) =
{
λ ∈ C :

∣∣∣λ− 1−q
1−q2

∣∣∣ ≤ 1−q
1−αq2 q

}
∪

 1
1∑

k=0
qk
, 1

2∑
k=0

qk
, . . . , 1

m∑
k=0

qk
: α < qm

 ∪ {1}
=
{
λ ∈ C :

∣∣∣λ− 1
1+q

∣∣∣ ≤ q
1+q

}
.

This shows that [17, Theorem 2.6] is still valid when as α→ 1−.

Theorem 3.10. If 0 < q < 1 and 0 < α < 1, then

σr
(
Cαq , c

)
=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ < 1− q
1− α2q2

αq

}
∪ {1} .
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Proof. We know from Theorem 3.2 and 3.5 that

σp
(
Cαq , c

)
=

{
1

1 + q
, . . . ,

1

1 + q + · · ·+ qm
: α < qm

}
∪ {1} ,

σp
([
Cαq
]∗
, (c)∗ ' `1

)
=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ < 1− q
1− α2q2

αq

}
∪

 1
1∑

k=0
qk
, . . . , 1

m∑
k=0

qk
: α < qm

 ∪ {1} .

Therefore we get

σr
(
Cαq , c

)
=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ < 1− q
1− α2q2

αq

}
∪ {1} ,

because σr
(
Cαq , c

)
= σp

(
C∗1 (q) , `1

)
\σp

(
Cαq , c

)
.

Theorem 3.11. If 0 < q < 1 and 0 < α < 1 and α = qm, then

σc
(
Cαq , c

)
=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ =
1− q

1− α2q2
αq

}
\
{

1, 1
1+q , . . . ,

1
1+q+···+qm : α < qm

}
and if α 6= qm, then

σc
(
Cαq , c

)
=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ =
1− q

1− α2q2
αq

}
.

Proof. Since

σc
(
Cαq , c

)
= σ (C1 (q) , c) \

{{
σp (C1 (q) , c) ∪ σr

(
Cαq , c

)}}
,

the result can be seen immediately from Theorems 3.2, 3.8, 3.10 and Table 2.

Now let’s do the Goldberg classification for the spectrum of operator Cαq .

Lemma 3.12. [24, p.60]A linear operator T has a bounded inverse if and only if

T ∗ is onto.
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Theorem 3.13. If 0 < q < 1 and 0 < α < 1, then

III2σ
(
Cαq , c

)
=


1

m+1∑
k=0

qk
,

1
m+2∑
k=0

qk
, . . .


where α < qm.

Proof. Let α < qm. Hence 1∑m+1
k=0 qk

, 1∑m+2
k=0 qk

, . . . ∈{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ < 1− q
1− α2q2

αq

}
. Therefore

{
1∑m+1

k=0 qk
, 1∑m+2

k=0 qk
, . . .

}
⊆

σr
(
Cαq , c

)
= III1σ

(
Cαq , c

)
∪ III2σ

(
Cαq , c

)
from Theorem 3.10. Is it{

1∑m+1
k=0 qk

, 1∑m+2
k=0 qk

, . . .

}
⊂ III2σ

(
Cαq , c

)
? It is sufficient to show that

operator
(
Cαq − λI

)∗
from Lemma 3.12 is surjective. If

(
Cαq − λI

)∗
x = y, then

we get

(1− λ)x0 = y0

(1− λ)x1 +
αq
1∑

k=0

qk
x2 +

(αq)2

2∑
k=0

qk
x3 +

(αq)3

3∑
k=0

qk
x4 + · · · = y1

 1
1∑

k=0

qk
− λ

x2 +
(αq)
2∑

k=0

qk
x3 +

(αq)2

3∑
k=0

qk
x4 + · · · = y2

...

(3.15)

Thus we get

xn =
x0

(αqλ)n−1

n−1∏
i=0

λ− 1
i∑

k=0
qk

+
y0

(λqα)n−1

n−1∏
i=1

λ− 1
i∑

k=0
qk


+
n−1∑
i=1

1

λ
i∑

k=0

qk

yi

(qα)n−i

n−1∏
v=i+1

λ− 1
v∑

k=0
qk

− 1

λ
yn+1.

(3.16)
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from (3.15). Since λ ∈

 1
m+1∑
k=0

qk
, 1

m+2∑
k=0

qk
, . . . , 1

n∑
k=0

qk

 ve (yn) ∈ `1, we have x =

(xn) ∈ `1 where xn = − 1
λyn. Hence the operator

(
Cαq − λI

)∗
is surjective. For

these λ’s, the Cαq − λI operator has bounded inverse. 1∑s
k=0 q

k ∈ III2σ
(
Cαq , c

)
for s > m.

Let us now assume that λ /∈
{

1∑m+1
k=0 qk

, 1∑m+2
k=0 qk

, . . .

}
. Since 1∑0

k=0 q
k
, 1∑1

k=0 q
k
,

. . . , 1∑m
k=0 q

k /∈ III from Table 2, it is λ 6= 1∑n
k=0 q

k for each n ∈ N. From here,

since y ∈ `1 is in equation (3.16), ”sequence of (xn) is convergent if and only if∏∞
v=0

(
λ− 1∑v

k=0 q
k

)
must be convergent. Thus, the limit of the general term of

the sequence in the infinite product must be 1. From here, we get λ = 2− q since

lim
v→∞

λ− 1
v∑
k=0

qk

 = lim
v→∞

λ− 1− q
1− qv+1

= λ− (1− q) = 1.

Therefore, since the infinite product for λ 6= 2 − q will be divergent, it is x /∈ `1.
Thus, while

λ /∈


1

m+1∑
k=0

qk
,

1
m+2∑
k=0

qk
, . . .

 ∪ {2− q} , (3.17)

the
(
Cαq − αI

)∗
operator is not surjective. From here (3.17) for λ’s, operator

Cαq − λI has no bounded inverse. So
1

m+1∑
k=0

qk
,

1
m+2∑
k=0

qk
, . . .

 ⊆ III2σ
(
Cαq , c

)
⊆


1

m+1∑
k=0

qk
,

1
m+2∑
k=0

qk
, . . .

 ∪ {2− q}
is valid. If we take λ = 2− q, the first component of (xn) in (3.16) becomes

x0
(αq (2− q))n

n−1∏
v=0

λ− 1
v∑
k=0

qk

 . (3.18)
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Since 0 < α < 1 and q < 1, 0 < αq (2− q) < 1 is valid. Hence
1

(αq (2− q))n
→∞.

Thus, even if the infinite product in (3.18) is finite, x /∈ c is. From here, x /∈ `1 is

obtained. Thus, if λ = 2− q, operator
(
Cαq − λI

)∗
is not surjective; i.e, operator

Cαq − λI from Lemma 3.12 does not have bounded inverse. As a result,

III2σ
(
Cαq , c

)
=


1

m+1∑
k=0

qk
,

1
m+2∑
k=0

qk
, . . .


is obtained.

Corollary 3.14. Let 0 < q < 1 and 0 < α < 1. Then

III1σ
(
Cαq , c

)
=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ < 1− q
1− α2q2

αq

}
\


1

m+1∑
k=0

qk
,

1
m+2∑
k=0

qk
, . . .


where α < qm.

Proof. Since σr(C
α
q , c) = III1σ

(
Cαq , c

)
∪III2σ

(
Cαq , c

)
, the proof from Theorem

3.10 and Theorem 3.13 is clear.

The following Corollary is immediately seen from Theorem 3.11.

Corollary 3.15. Let 0 < q < 1 and 0 < α < 1. If α = qm, then

II2σ
(
Cαq , c

)
=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ =
1− q

1− α2q2
αq

}
\


1

m∑
k=0

qk


and if α 6= qm, then

II2σ
(
Cαq , c

)
=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ =
1− q

1− α2q2
αq

}
.

Earthline J. Math. Sci. Vol. 11 No. 1 (2023), 145-172



166 Merve Esra Türkay

Let us give the following Lemma, which we will use in the proof of the next

Theorem.

Lemma 3.16. [24, Theorem II 3.7] A linear operator T has a dense range if and

only if the adjoint operator T ∗ is one to one.

Theorem 3.17. Let 0 < q < 1 and 0 < α < 1. Then

III3σ
(
Cαq , c

)
=


1

1∑
k=0

qk
,

1
2∑

k=0

qk
, . . . ,

1
m∑
k=0

qk

 ∪ {1}
where α < qm.

Proof. We know from Table 2 and Theorem 3.2 that

σp
(
Cαq , c

)
= I3σ

(
Cαq , c

)
∪ II3σ

(
Cαq , c

)
∪ III3σ

(
Cαq , c

)
=

 1
1∑

k=0
qk
, 1

2∑
k=0

qk
, . . . , 1

m∑
k=0

qk

 ∪ {1}
for α < qm. Let

(
Cαq − I

)∗
x = θ and x0 = 1. Thus, we have

x1 = 1
λαq

λ− 1
0∑

k=0

qk


x2 = 1

(λαq)2

λ− 1
0∑

k=0
qk

λ− 1
1∑

k=0
qk


...

xm = 1
(λαq)m

m∏
k=0

λ− 1
k∑

k=0

qk

 .

From these equations the following facts are obtained. Since x0 = (1, 0, 0, . . .) 6=
θ and x0 ∈ Ker

(
Cαq − I

)
, the

(
Cαq − I

)∗
operator is not one-to-one. So

it is 1 ∈ III3σ
(
Cαq , c

)
. Since x1 =

(
1, 1+qαq

(
1

1+q − 1
)
, 0, 0, . . .

)
6= θ and
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x1 ∈ Ker
(
Cαq − 1

1+q I
)

, the
(
Cαq − 1

1+q I
)∗

operator is not one-to-one. So it

is 1
1+q ∈ III3σ

(
Cαq , c

)
. Continuing this way, since

xm =

1, 1+q+···+q
m

αq

 1
m∑

k=0
qk
− 1

 , (1+q+···+q
m)2

(αq)2

 1
m∑

k=0
qk
− 1

 1
m∑

k=0
qk
− 1

1∑
k=0

qk

 ,

. . . , (1+q+···+q
m)2

(αq)2

m∏
k=0

 1
m∑

k=0
qk
− 1

k∑
k=0

qk

 , 0, . . .


6= θ,

and xm ∈ Ker
(
Cαq − 1

1+q I
)

, the
(
Cαq − 1∑m

k=0 q
k I
)∗

operator is not one-to-one.

So it is 1∑m
k=0 q

k ∈ III3σ
(
Cαq , c

)
. Consequently, we have

III3σ
(
Cαq , c

)
=

1,
1

1∑
k=0

qk
,

1
2∑

k=0

qk
, . . . ,

1
m∑
k=0

qk


for α < qm.

Corollary 3.18. Let 0 < q < 1 and 0 < α < 1. I3σ
(
Cαq , c

)
= II3σ

(
Cαq , c

)
= ∅.

Proof. The proof is clear from Table 2, Theorem 3.2 and Theorem 3.17.

Now, let’s determine the defect spectrum, the approximate point spectrum,

the compression spectrum of the operator Cαq .

Theorem 3.19. Let 0 < q < 1 and 0 < α < 1. The following expressions are

hold;

(a)

σap
(
Cαq , c

)
=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ =
(1− q)αq
1− α2q2

}
∪
{

1, 1
1+q ,

1
1+q+q2

, . . .
}
, for α < qm.
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(b)

σδ
(
Cαq , c

)
=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ ≤ (1− q)αq
1− α2q2

}
∪

1, 1
1∑

k=0
qk
, . . . , 1

m∑
k=0

qk

 , for α < qm.

(c)

σco
(
Cαq , c

)
=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ < (1− q)αq
1− α2q2

}
∪

 1
0∑

k=0
qk
, 1

1∑
k=0

qk
, . . . , 1

m∑
k=0

qk

 , for α < qm.

Proof. (a) The desired result is obtained by using Table 2, Theorem 3.8, Corollary

3.14 and the expression σap
(
Cαq , c

)
= σ

(
Cαq , c

)
\III1σ

(
Cαq , c

)
.

(b) The desired result is obtained by using Theorem 3.13, Table 2, Theorem

3.8, Corollary 3.18 and the expression σδ
(
Cαq , c

)
= σ

(
Cαq , c

)
\I3σ

(
Cαq , c

)
.

(c) The desired result is obtained by using Theorem 3.13, Table 2,

Theorem 3.17, Corollary 3.14 and the expression σco
(
Cαq , c

)
= III1σ

(
Cαq , c

)
∪

III2σ
(
Cαq , c

)
∪ III3σ

(
Cαq , c

)
.

Corollary 3.20. Let 0 < q < 1 and 0 < α < 1.

(a)

σap
([
Cαq
]∗
, `1
)

=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ ≤ (1− q)αq
1− α2q2

}
∪

1, 1
1∑

k=0

qk
, . . . , 1

m∑
k=0

qk

 for α < qm,

(b)

σδ
(
Cα∗1 (q) , `1

)
=

{
λ ∈ C :

∣∣∣∣λ− 1− q
1− α2q2

∣∣∣∣ =
(1− q)αq
1− α2q2

}
∪
{

1, 1
1+q ,

1
1+q+q2

, . . .
}

for α < qm.

Proof. The expressions σap(
[
Cαq
]∗
, `1) = σδ(C

α
q , c) and σδ(

[
Cαq
]∗
, `1) =

σap(C
α
q , c) are known from [4]. Thus, the desired result is obtained from Theorem

3.19.
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