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Abstract

For a given ring [ and a locally finite pre-ordered set (X, <), consider (X, fR) to be

the incidence algebra of X over []. Motivated by a Xiao’s result which states that every

Jordan derivation of (X, fR) is a derivation in the case [ is 2-torsion free, one proves
that each generalized Jordan derivation of I(X, $R) is a generalized derivation provided

O is 2-torsion free, getting as a consequence the above mentioned result.

1. Introduction

For a given ring [J, recall that a linear map d from [J into itself is called a derivation
if d(ab) = d(a)b +ad(b) for all a, bOR; and a Jordan derivation if d(a?)=
d(a)a + ad(a) for each a [0 fR. More generally [5], if there is a derivation T:R - R
such that d(ab) = d(a)b + at(b) for all a, b %R, then d is called a generalized

derivation and T is the relating derivation; analogously, if there is a Jordan derivation
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T:R - R such that d(a?)=d(a)a +at(a) for all aOR, then d is called a

generalized Jordan derivation and T is the relating Jordan derivation. The structures of
derivations, Jordan derivations, generalized derivations and generalized Jordan
derivations were systematically studied. It is obvious that every generalized derivation is
a generalized Jordan derivation and every derivation is a Jordan derivation. But the
converse is in general not true. Herstein [4] showed that every Jordan derivation from a
2-torsion free prime ring into itself is a derivation. BreSar [2] proved that Herstein’s
result is true for 2-torsion free semiprime rings. Jing and Lu, motivated by the concept of
generalized derivation, introduce this concept of generalized Jordan derivation in [5].

Let us now recall the notion of incidence algebra [7], [12], which we deal in this
paper. Let (X, <) be a locally finite pre-ordered set. This means < is a reflexive and
transitive binary relation on the set X, and for any x < y in X there are only finitely

many elements z satisfying x < z < y. The incidence algebra I(X, R) of X over [ is

defined as the set
I(X,R)={f: XxX - R|f(x, y)=0if x £ y}
with algebraic operation given by
(f +8)(x y) = fx. y) + g(x. ¥).
(f) (x. y) = of (x. ),

(f)(x y) = D flx ez v)
x<z<y
for all f, gOI(X,R), rOR and x, y, z[0X. The product fg is usually called
convolution in function theory. It would be helpful to point out that the full matrix
algebra M, (%) and the upper (or lower) triangular matrix algebras 7, (2R) are special
examples of incidence algebras. The identity element & of (X, R) is given by

3(x, y) =98,, for x<y, where &,, 0{0,1} is the Kronecker delta. For given

x,yOX with x<y, let e, be defined by e, (u,v)=1 if (u, v)=(x, y), and

xy
ey (u, v) =0 otherwise. Then e,.e,, =8y,e,, by the definition of convolution.

Moreover, the set B :={e,,|x < y} forms an O-linear basis of I(X, :%). Note that
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incidence algebras allow infinite summation, and hence the [1-linear map here means a

map preserving in finite sum and scalar multiplication.

Incidence algebras were first considered by Ward [15] as generalized algebras of
arithmetic functions. Rota and Stanley developed incidence algebras as the fundamental
structures of enumerative combinatorial theory and allied areas of arithmetic function
theory (see [11]). Motivated by the results of Stanley [13], automorphisms and other
algebraic mappings of incidence algebras have been extensively studied (see [1], [3], [6],
[71, [8], [9], [10], [11] and the references therein). Baclawski [1] studied the

automorphisms and derivations of incidence algebras I(X, 2R) when X is a locally finite
partially ordered set. More specifically, he proved that every derivation of I(X, RR) with

X alocally finite partially ordered set can be decomposed as a sum of an inner derivation
and a transitive induced derivation. Koppinen [7] has extended these results to the

incidence algebras I(X, SR) with X a locally finite pre-ordered set. Xiao [14] proved
that every Jordan derivation of I(X, 9R) is a derivation provided that [J is 2-torsion free.

Motivated by Xiao’s result our main objective is to prove that every generalized Jordan

derivation of (X, R) is a generalized derivation provided that 0 is 2-torsion free.

2. Results

We first collect some background material to prove our main result. Throughout this

section, [J denotes a 2-torsion free ring. Let = : I(X, R) - I(X, R) be a generalized

Jordan derivation and T: I(X, R) - I(X, R) the relating Jordan derivation.
Lemma 2.1. For all a, b, c O I(X, R), the following statements hold:
(1) =(ab + ba) = Z(a)b + at(b) + =(b)a + b1(a),
(2) =(aba) = =(a)ba + at(b)a + abt(a),
(3) =(abc + cha) = Z(a)bc + at(b)c + abt(c) + =(c)ba + c1(b)a + cb1(a).
Proof. See [5]. O

According to Lemma 2.1, Z=(aba) = =(a)ba + at(b)a + abt(a). In the case

ab = ba =0, we obtain at(b)a = 0. Furthermore, it follows that
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Z(e) = Z(e)e + et(e), (1)
for any idempotent e JI(X, $R). In particular, since (1), etT(a)e =0, for any
aOI(X,R) satisfying ea=ae=0, and Z(a)e+ at(e)+=(e)a + et(a) = 0.
Multiplying by e on the right yields

Z(a)e + at(e) = 0 = =(e)a + e1(a), 2)
for any idempotent e satisfying ea = ae = 0.
Now assume that the set B :={e,, |x < y} forms an O-linear basis of (X, R). Itis

a consequence of (1) that

Z(e;i) = =(eii)eii + eiit(e;;) and et )e;; =0, 3)
for all i and k <i < j. From Lemma 2.1 and the fact that =(e;) = =(e;e;; + ¢;i¢;;) for
all 1 <i < j < n, we obtain

=(e;j) = =(e;i) ey + eitley;) + =(eyi) ey + e;t(ey;) “4)
whenever i < j. Furthermore (2) implies that

Z(exj) e + exi=(e;;) = =(eii)ey; + e;t(ey;) =0 5)

for all k, j # i. Define a O-linear map ¢ from (X, fR) into itself by letting
@le;) = Z(e;i)e; +eitley). i< . (6)
According to (3), @(e;;) = =(e;;). Xiao proved the following result.

Lemma 2.2 (Lemma 3.2 [14]). Let T: I(X, R) - I(X, R) be a Jordan derivation.
Then

— ii ij Vi ij
tey) = D Clieg + Clley + D Chey + Cllej
x0L; yUR;

for all e;; U1 B, where the coefficients Cfgy are subject to the following relations
cjf.{ +C=0ifj<k

ii ik _ ik e
Cl-jJ-+C]J.k— K. if i<, j<k.
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Lemma 2.3. ¢ is a generalized derivation.

Proof. Let us consider d(e;)= )’ Cffl-exj + Cgeij + ZC]J:Jy'eiy for all e; O B,

xI:JLi yDRJ

where the coefficients C ;{y are subject to the following relations
ij kk _ e .
Cﬁc +Cy =0, if j<sk

cl+cii=cf, ifi<j js<k
By [14, Theorem 2.2] d is a derivation. First we check that
Wejen) = Peyj) e + ejid(ey) (7

for all e, ey U B. We split the argument into two cases.

Case 1: j#k. Since @ejey) =0, it suffices to prove that @le;)ey +

eijd(ekl) = 0. By (6) we get
@ej)en +ejd(e) = ((ey;) ey + e;itle;))en +ejd(ey)
= ¢;iT(ejj ) e +ejd(ey)-
If i # k, then
e (e ) ey + eyd(ey) = e;t(e;) ey + ejd(ex ey

= e;i (e ) en + ejd (e ) ens
= ¢€;;0eyy
=0,

by Lemma 2.2 and T(el-j)ekk = T(eijekk) - eijr(ekk). Finally, if i = k, then

e;ite)ey +e;d(ey) = etle;;)ey + ed(ee;)

= e;iT(e) ey +ejd(e;)ey
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= (e;t(ey;) + ejid(e)ey
= (T(eij) - T(eii)eij
— ey )e; — etle;) + ezd(e;;))ey

= ¢;i(d(e;) — (e;;))ey = 0.

Case 2: j = k. We must prove that
@le;) = @leg)ej +ejd(ey).
Assume i < j <[. As aconsequence of (6),
Weyj)ej +ejd(e;) = (Zlei)ey + etle;))ej +ejd(e)
= @ley) —e;i(tley) — ey ) ey —ejd(er))
= Qe ) —eii(etle;) + ey ) ey + e ytle;) — ezd(e )
= @lejy) — e (tlejr) —dlejr)) = dey ).
If i = j <[, then
Weii) ey +ejd(ey) = =(eii) ey + eitley) + eid(eir) = ejit(er)
= Z(e;i)eir + eiitler) = Pley)-
If i < j =1 then
@ej)ej; +ejdle;) = (Z(ei)ey; + etle))ey; +ejd(e ;)
= E(e”)ej +e;7(e j) +e; T(eij)ejj
= e;T(e;) + ¢;d(e ;).

:Cje

Since el-l-T(el-j)ejj ij Jiv

eitT( Z ij iy

y[IR
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and

ejd(ej) C]]e,] M chy €y
yUR;

it follows that e;T(e;)e;; — e;T(e;) +e;d(e;) =0. Hence @le;)e;; +e;d(e;) =
Z(eji)ej +eytle;) =@ley). I i=j=1 by (3) we obtain @e;)==(e;)

_(eu)en + ezzT( ) q(eu)en + eud( zz) Thus, for all €jj> €kl U B, we get q(eijekl) =

@e;;) e + ejd(e). Finally, linearity of ¢ yields @ab) = @a)b +ad(b) for all

a, b 0 I(X, R), which proves that ¢ is a generalized derivation. O
We are now in a position to prove the main result of this paper.

Theorem 2.1. Let [1 be a 2-torsion free commutative ring with identity. Then any
generalized Jordan derivation of the incidence algebra 1(X,R) is a generalized
derivation.

Proof. Put W ==-¢, then W(e;)==(e;) — ®le;) and W(e;) = =(e;) — @ley;)
=0 for all ¢; OB. Since W is a generalized Jordan derivation, W(eij) =
W(eje ;i +ejie) = Wley)ey +Wle)e; = Wley)ej;. According to (4) and (6), if

i < j we have
W(ey) = Z(e)es + etleir)
= (@ley) + Wley)ei +e;(e;;)
= gley )i + eytle;) + Wley)eq
= @leje) + Wley)es

= Wley)eii-

Thus  W(e;) = W(e;)e; =0. Therefore W ==-¢=0 and = is a generalized

derivation.
As a consequence of our Theorem we have the following result.

Corollary 2.1 (Theorem 3.3 [14]). Let U be a 2-torsion free commutative ring with
identity. Then every Jordan derivation of the incidence algebra 1(X, fR) is a derivation.
Earthline J. Math. Sci. Vol. 2 No. 2 (2019), 483-490
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