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Abstract 

This paper presents a new generalized bounded distribution called the Kumaraswamy 

unit-Gompertz (KUG) distribution. Some of the Mathematical properties which include; 

the density function, cumulative distribution function, survival and hazard rate functions, 

quantile, mode, median, moment, moment generating function, Renyi entropy and 

distribution of order statistics are derived. We employ the maximum likelihood 

estimation method to estimate the unknown parameters of the proposed KUG 

distribution. A Monte Carlo simulation study is carried out to investigate the performance 

of the maximum likelihood estimates of the unknown parameters of the proposed 

distribution. Two real datasets are used to illustrate the applicability of the proposed 

KUG distribution in lifetime data analysis. 

1. Introduction 

Kumaraswamy [10] introduced the Kumaraswamy distribution defined on a unit 

interval [0,1] with the cumulative distribution function (cdf) given by 

  ���	 = 1 − �1 − ��	
 ,     0 < � < 1, �, � > 0,    (1) 

and probability density function defined as 

���	 = �������1 − ��	
,     0 < � < 1, �, � > 0.    (2) 

This distribution has found its application in many natural phenomena whose outcomes 

have lower and upper bounds such as hydrological data (daily rainfall, daily stream flow). 
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Jones [9] gave a comprehensive background of the Kumaraswamy distribution, and more 

importantly, pointed out some advantages of the Kumaraswamy distribution over the beta 

distribution. Although, the two distributions are defined on a unit interval [0,1], the 

Kumaraswamy distribution has an explicit expression for the cumulative distribution 

function and the quantile function does not involve special functions. 

Suppose ���	 denotes the base line cumulative distribution function of a random 

variable �. Cordeiro and de Castro [3] introduced a generalized form of the distribution 

called the Kumaraswamy-G distribution with cumulative distribution function defined by  

  ���	 = 1 − �1 − [���	]�	
 ,     0 < � < 1,  �, � > 0,     (3) 

and probability density function given by 

���	 = �����	�1 − [���	]�	
��[���	]���,   0 < � < 1,  �, � > 0.        (4) 

Several generalizations of the Kumaraswamy distribution can be found in the works of 

Cordeiro et al. [4], who introduced the Kumaraswamy Weibull distribution, Paranaba et 

al. [15] introduced the Kumaraswamy Burr distribution, Bourguignon et al. [1] studied 

the Kumaraswamy Pareto distribution, Oluyede et al. [12] proposed the Kumaraswamy 

Power Lindley distribution, Salem and Hagag [18] developed the Kumaraswamy Lindley 

distribution. Recently, Mazucheli et al. [11] proposed the unit-Gompertz distribution with 

bounded support using a similar approach considered in Grassia [8] for the unit-Gamma 

distribution. 

The probability density function of the unit-Gompertz distribution is defined by 

���	 = ��������	��� !"#��$,     0 < � < 1,  �, � > 0,    (5) 

and the cumulative distribution function is given by 

  ���	 = ��� !"#��$,     0 < � < 1,  �, � > 0.            (6) 

In this paper, motivated by the flexibility of the generalized distribution in terms of 

exhibiting an increasing, decreasing and bathtub shapes hazard rate property, we 

introduced a new generalized bounded distribution called the Kumaraswamy unit-

Gompertz (KUG) distribution. The remaining sections of this paper are organized as 

follows: Section 2 presents the Mathematical properties of the Kumaraswamy unit-

Gompertz distribution. In Section 3, the parameter estimation of the KUG distribution 

using the maximum likelihood method and a Monte Carlo simulation study to investigate 

the performance of the maximum likelihood estimators of the KUG distribution are 



The Kumaraswamy Unit-Gompertz Distribution and its Application: … 

Earthline J. Math. Sci. Vol. 11 No. 1 (2023), 1-22 

3 

derived. Section 4 presents an application of the KUG distribution to two real datasets 

and the concluding remark is presented in Section 5. 

2. Mathematical Properties of the Kumaraswamy Unit-Gompertz Distribution 

2.1. Density, cumulative distribution, survival and hazard functions of the KUG 

distribution 

The probability density function and the cumulative distribution function of the 

proposed KUG distribution are obtained by substituting the density and the cumulative 

distribution functions of the unit-Gompertz distribution defined in (5) and (6) into the 

method of generalization defined in (3) and (4). Thus, we have 

���	 = ��%���
��	��& !"'��$ (1 − ��&�!"'��	)��� ,   0 < � < 1, �, �, % > 0, (7) 

and 

  ���	 = 1 − *1 − ��&�!"'��	+� ,    0 < � < 1,  �, �, % > 0,  % = ��.      (8) 

The density function of the KUG distribution defined in (7) can be represented in series 

using the binomial expansion given by 

�1 − �	,�� = - ./ − 10 1 �−1	2,��
234 �2 ,                                               �9	 

(1 − ��&�!"'��	)��� = - .� − 16 1∞

734 �−1	7��&�!"'��	7, 
��&�!"'��	�7��	 ≈ ��&!"'�7��	�&�7��	, 

using the exponential series expansion, we have that 

��&!"'�7��	 = - �−1	9[%�6 + 1	]9��
9;!
∞

934 , 
thus, the series representation of the density function of the KUG distribution is given by 

���	 = ��% - - .� − 16 1∞

934
∞

734 �−1	7�9 [%�6 + 1	]9;! �&�7��	��
�9��	��.            �10	 
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The mode of the KUG distribution is obtained by taking the n

density function and minimizing the function with respect to the random variable

=/����		 = =/���%	 −
>>� ?=/����		@ =

The mode � = �4 is the root of the equation 

the unique critical point at which the density function is maximized. 

The graphical representation of the KUG distribution for varying value of the 

parameters are shown in Figure 1.

Figure 1: Probability 

Clearly, Figure 1 indicates that the density function of the KUG distribution 

accommodates a decreasing (reversed

and bathtub shapes. 

The mathematical expressions for the survival and hazard rate functions of the KUG 

distribution are respectively given by
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The mode of the KUG distribution is obtained by taking the natural logarithm of the 

density function and minimizing the function with respect to the random variable

− �� + 1	=/��	 − % ��
 − 1$ + �� − 1	=/ (1 −
	@ = �%���
��	 − 1 + �� − �%�� − 1	�����
	�& ��

1 − �& ��!"'$
is the root of the equation 

AA! ?=/����		@ = 0 which implies that 

the unique critical point at which the density function is maximized.  

resentation of the KUG distribution for varying value of the 

parameters are shown in Figure 1. 

Probability density function of the KUG distribution

Clearly, Figure 1 indicates that the density function of the KUG distribution 

creasing (reversed-J), increasing, right-skewed unimodal, symmetric 

The mathematical expressions for the survival and hazard rate functions of the KUG 

distribution are respectively given by 

 B��	 = 1 − ���	 = *1 − ��&�!"'��	+�,   
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atural logarithm of the 

density function and minimizing the function with respect to the random variable � as, 

��&�!"'��	), 
 �!"'$

$ . 
which implies that �4 is 

resentation of the KUG distribution for varying value of the 

 

of the KUG distribution. 

Clearly, Figure 1 indicates that the density function of the KUG distribution 

skewed unimodal, symmetric 

The mathematical expressions for the survival and hazard rate functions of the KUG 

          (11) 
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ℎ��	 = ���B��
= ��%C

The graphical plots of the hazard rate function of the KUG distribution is shown in 

Figure 2. 

Figure 2:

Figure 2 shows that the KU

bathtub shapes hazard rate properties.

2.2. The quantile function of the 

Given the cumulative distribution function 

of the KUG distribution can be obtained as

The DEℎ quantile function is obtained by solving 
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�	�	 = ��%���
��	��& !"'��$ (1 − ��&�!"'��	)��
F1 − ��&�!"'��	G�

��%���
��	��& !"'��$
C1 − ��& !"'��$H .                                                   

The graphical plots of the hazard rate function of the KUG distribution is shown in 

Figure 2: Hazard rate function of the KUG distribution. 

Figure 2 shows that the KUG distribution exhibits an increasing, bathtub and inverted 

bathtub shapes hazard rate properties. 

quantile function of the KUG distribution   

Given the cumulative distribution function ���	 defined in (8), the quantile function 

of the KUG distribution can be obtained as IJ�D	 = ����D	. 

quantile function is obtained by solving ���	 = D, i.e., 

5 

) ��
, 

                    �12	 

The graphical plots of the hazard rate function of the KUG distribution is shown in 

 

G distribution exhibits an increasing, bathtub and inverted 

(8), the quantile function 
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.1 − ��&�!"'��	1� = 1 − D, 
��&�!"'��	 = 1 − �1 − D	L#, 

��
 − 1 = − =M� *1 − �1 − D	L#+% , 

� = N1 − =M� *1 − �1 − D	L#+% O
�L' ,   0 < � < 1.                           �13	 

The median of the KUG distribution is obtained by substituting D = 0.5 into (13) which 

yields, 

R�>6S/ = T1 − =M� 1 − �√0.5$% V�L' .                                      �14	 

Some numerical computation of quantiles from the KUG distribution for different values 

of the parameters are given in Table 1. 

Table 1: Some quantiles from the KUG distribution �� =  2	. 
P X = Y, Z = Y X = [, Z = Y X = \, Z = ] X = ^, Z = ^ 

0.1 0.7966 0.8501 0.9470 0.5503 

0.2 0.8444 0.8880 0.9620 0.6191 

0.3 0.8767 0.9126 0.9712 0.6736 

0.4 0.9020 0.9314 0.9779 0.7224 

0.5 0.9232 0.9468 0.9831 0.7685 

0.6 0.9417 0.9600 0.9875 0.8136 

0.7 0.9582 0.9715 0.9912 0.8585 

0.8 0.9732 0.9820 0.9945 0.9042 

0.9 0.9871 0.9913 0.9974 0.9511 



The Kumaraswamy Unit-Gompertz Distribution and its Application: … 

Earthline J. Math. Sci. Vol. 11 No. 1 (2023), 1-22 

7 

Table 1 reveals that for varying values of the parameters of the KUG distribution, the 

random samples fall within the unit interval which conforms with the support of the 

random variable � following the KUG distribution. 

2.3. The _`a moments and moment generating function of the KUG distribution 

Let X be a continuous random variable with probability density function ���	, then 

the bEℎ moment about the origin of X is defined by, 

cd′ = e��d	 = f �d���	>�.∞

�∞                                              �15	 

Substituting the series representation of the density function of the KUG distribution into 

(15), the bEℎ moment of the KUG distribution is obtained as      

cd′ = ��% - - .� − 16 1∞

934
∞

734 �−1	7�9 [%�6 + 1	]9;! �&�7��	 f �d�
�9��	���
4 >�        �16	 

evaluating the integral part of (16) yields, 

cd′ = ��% - - .� − 16 1∞

934
∞

734 �−1	7�9 [%�6 + 1	]9�&�7��	;! [b − ��; + 1	] ,   b = 1,2,3,4.          �17	 

The first four bEℎ moment of the KUG distribution in terms of infinite series are obtained 

from (17) as; 

c�′ = ��% - - .� − 16 1∞

934
∞

734 �−1	7�9 [%�6 + 1	]9�&�7��	;! [1 − ��; + 1	] , 
ci′ = ��% - - .� − 16 1∞

934
∞

734 �−1	7�9 [%�6 + 1	]9�&�7��	;! [2 − ��; + 1	] , 
cj′ = ��% - - .� − 16 1∞

934
∞

734 �−1	7�9 [%�6 + 1	]9�&�7��	;! [3 − ��; + 1	] , 
ck′ = ��% - - .� − 16 1∞

934
∞

734 �−1	7�9 [%�6 + 1	]9�&�7��	;! [4 − ��; + 1	] . 
The variance, coefficients of skewness and kurtosis of the KUG distribution can be 

derived by substituting the values of the bEℎ moments into the expressions below; 
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lSb6S/m��ni	 =  ci′ − ci$, 
o0�p/�BB�o2	 = cj′ − 3ci′ c + 2cj

 ci′ − ci$j/i , 
rDbsMB6B�rt	 = ck′ − 4cj′ c + 6ci′ ci − 3ck

 ci′ − ci$i . 
The moment generating function of a continuous random variable � with density function ���	, is defined by 

RJ�s	 = e[�E!] = f �E! � ��	>�,                                    �18	∞

�∞  

thus, the moment generating function of the KUG distribution is defined by 

RJ�s	 = ��% - - - .� − 16 1∞

234
∞

934
∞

734 �−1	7�9 [%�6 + 1	]9s2�&�7��	;! 0! [s − ��; + 1	] . 
Numerical computation of the theoretical moments of the KUG distribution for selected 

values of the parameters are shown in Table 2. 

Table 2: Theoretical moments of the KUG distribution for selected value of the 

parameters. 

X v Z w^′  wY′  w[′  w]′  xY yz {| 

1 1 1 0.5963 0.4037 0.2982 0.2339 0.0481 0.0074 1.9908 

2 0.7227 0.5547 0.4453 0.3698 0.0324 -0.4149 2.3363 

4 0.8254 0.6985 0.6031 0.5293 0.0172 -0.8246 3.119 

2 1 0.7579 0.5963 0.4843 0.4037 0.0219 -0.2508 1.6263 

2 0.8427 0.7227 0.6290 0.5547 0.0126 -0.8360 5.5408 

4 0.9054 0.8254 0.7572 0.6985 0.0057 -0.8126 -0.4874 

2 1 1 0.4700 0.2526 0.1510 0.0981 0.0317 0.4394 2.6128 

2 0.6199 0.4109 0.2876 0.2103 0.0266 -0.0289 2.2005 

4 0.7525 0.5828 0.4625 0.3747 0.0165 -0.4507 2.6499 
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2 1 0.6730 0.4700 0.3395 0.2526 0.0171 0.0950 1.6817 

2 0.7801 0.6199 0.5009 0.4109 0.0113 -0.3187 2.6127 

4 0.8641 0.7525 0.6601 0.5828 0.0058 -0.4816 -3.0588 

From Table 2, we observed that the KUG distribution exhibits a right-skewed 

(o2 > 0), left-skewed �o2 < 0	 and approximately symmetric �o2 ≈ 0	 shapes. Also, 

considering the peak of the distribution, the KUG distribution can be leptokurtic �rt >3	, platykurtic �rt < 3	 and mesokurtic �rt ≈ 3	. The negative kurtosis belongs to the 

platykurtic class of distribution with a broad shoulder. This means that the peak of the 

density function of the KUG distribution is comparatively lower than that of the Normal 

distribution. See Peter (2014) for more detail on negative kurtosis. 

2.4. The Renyi entropy of the KUG distribution 

An entropy of a random variable � is a measure of variation of uncertainty associated 

with the random variable �. Renyi [17] defined the Renyi entropy of � with density 

function ���	, as 

}~��	 = 11 − � =/ �f ����	>�� ,     � > 0,  � ≠ 1.                     �19	 

By substituting the density function of the KUG distribution defined in (7) into (19), we 

obtain   

}~��	 = 11 − � =/ f ���%���
��	��& !"'��$ (1 − ��& !"'��$)����� >�,      �20	 

using the binomial expansion defined in (9), we obtain 

(1 − ��&�!"'��	)���� = - .�� − �6 1∞

734 �−1	7���&�!"'��	7� , 
��&��7��	�!"'��	 ≈ ��&��7��	!"'�&��7��	, 

using the exponential series representation, we have 

��&��7��	!"' = -�−1	2 [%��6 + 1	]2��
20!
∞

234 , 
So that (20) now becomes 

}~��	 = 11 − � =/ ����%	� - - .�� − �6 1∞

234
∞

734
�−1	�7�2[%��6 + 1	]20! �&��7��	 f ��
���2	��>��

4 � ,   �21	 
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evaluating the integral part of (21) gives 

}~��	 = 11 − � =/ ����%	� - - .�� − �6 1∞

234
∞

734
�−1	�7�2[%��6 + 1	]2�&��7��	0! [1 − ��� + 0	 − �] � .     �22	 

Some significant properties of the measure given in (19) is reported in Opone and 

Iwerumor [13] as; 

(i) The Renyi entropy can be negative; 

(ii) For any �� < �i, ��� ≤ ��L  and equality holds if and only if X is a uniform 

random variable. 

Numerical computation of the Renyi entropy of the KUG Distribution for varying 

values of parameter �
 
is shown in Table 3. 

Table 3: Numerical computation of the Renyi entropy of the KUGD �% = 1	. 
� �� X = Y, v = �. Y  X = ^, v = �. Y  X = Y, v = [  X = \, v = ]  

1 0.01 -0.0113 -0.0022 -0.3851 -0.5451 

2 0.03 -0.0339 -0.0065 -0.5399 -0.7255 

3 0.5 -0.4994 -0.1176 -1.0527 -1.3556 

4 0.8 -0.7384 -0.1964 -1.1358 -1.4644 

5 2 -1.3424 -0.5348 -1.2797 -1.6479 

6 4 -1.7433 -0.9432 -1.3675 -1.7541 

7 6 -1.9120 -1.1476 -1.4094 -1.8029 

8 8 -2.0046 -1.2614 -1.4349 -1.8320 

Table 3 clearly conform with the conditions that for any two successive values of 

parameters �7 , Say (�� and �i), the Renyi entropy ��� Say (��L  and ���), must satisfies �� < �i, ��� ≤ ��L  as stated in Opone and Iwerumor [13]. 

2.5. The distribution of order statistics of the KUG distribution 

Suppose that ��:, < �i:, < ⋯ < �,:, is the order statistics of a random sample 

generated from KUG distribution, then the probability density function of the 0Eℎ order 

statistics, say � = �,:, is given by 
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ℎ2��	 = /!�/ − 0	! �0 − 1	! [���	]2��[1 − ���	],�2���	,                           �23	 

substituting the cumulative distribution function and the density function of KUG 

distribution defined in (8) and (7) into (23), we have 

 ℎ2��	 = ,!�,�2	!�2��	! �1 − *1 − ��& !"'��$+��2�� �1 − �1 − *1 − ��& !"'��$+���,�2
 

    × ��%���
��	��& !"'��$ (1 − ��&�!"'��	)���.                          (24) 

Using the binomial series expansion defined in (9), we have 

�1 − �1 − *1 − ��& !"'��$+���,�2 = (1 − ��& !"'��$)��,�2	
 

= - .��/ − 0	6 1∞

734 �−1	7��& !"'��$7 

�1 − *1 − ��& !"'��$+��2�� = - �0 − 1; �∞

934 �−1	9 (1 − ��& !"'��$)�9
 

*1 − ��& !"'��$+��9��	�� = - .��; + 1	 − 1� 1∞

�34 �−1	���& !"'��$� 

Using the exponential series expansion, 

��! = - �−1	,�,/!
∞

,34 , 
��& !"'��$[��7��] ≈ ��&[��7��]!"'�&[��7��], 

so that 

��&[��7��]!"' = - [−%�� + 6 + 1	]���
��!
∞

�34 , 
hence, (24) now becomes 

ℎ2��	 = /! ��%�/ − 0	! �0 − 1	! - - - - .��/ − 0	6 1∞

�34
∞

�34
∞

934
∞

734 �0 − 1; � .��; + 1	 − 1� 1 
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    × ���	�����[�&���7��	]� ¡[����L]
�! ��
����	��.                               (25) 

The ¢Eℎ moment of the 0Eℎ order statistics from the KUG distribution is defined by 

e��2£	 = f �£
ℎ2��	>�                                         �26	�

4  

e��2£	 = /! ��%�/ − 0	! �0 − 1	! - - - - .��/ − 0	6 1∞

�34
∞

�34
∞

934
∞

734 �0 − 1; � .��; + 1	 − 1� 1 

× �−1	7�9��[−%�� + 6 + 1	]� �&[��7��]
�! f �£�
����	��>��

4 .      �27	 

Differentiating the integral part of (27) yields 

e��2£	 = /! ��%�/ − 0	! �0 − 1	! - - - - .��/ − 0	6 1∞

�34
∞

�34
∞

934
∞

734 �0 − 1; � .��; + 1	 − 1� 1 

    × �−1	7�9��[−%�� + 6 + 1	]�  ¡[����L]
�![£�
����	].                   (28) 

3. Parameter Estimation 

3.1. Maximum likelihood estimation 

In this subsection, we present the maximum likelihood estimates (MLEs) of the 

parameters of KUG distribution (�, �, %). Let ��, �i, �j. . . , �, be random samples from 

the KUG distribution with density function defined in (7), then the log-likelihood 

function is given by 

ℓ��, ¤	 = - =/[���	],,
73�                                                                                                              �29	 

= - =/,
73� ���%���
��	��&�!"'��	 (1 − ��&�!"'��	)���� ,      ¤ = �%, �, �	, 

= =/���%	 − �� + 1	 - =/�7 − % - �7�
 − 1$ + �� − 1	 - =/ .1 − ��& !�"'��$1,
73�

,
73�

,
73� .  �30	 

The estimates of the unknown parameters of the KUG distribution are obtained by 

differentiating the log-likelihood function with respect to the parameters of the 
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distribution and then equate the corresponding equation to zero. Thus, we have 

¥�ℓ, ¤	¥� = /� + - =/ *1 − ��&�!�"'��	+,
734 , 

¥�ℓ, ¤	¥� = /� − - =/,
73� ��7	 + % - =/,

73� ��7	�7�
 − �� − 1	 - ��&�!�"'��	�7�
%=/��7	
1 − ��&�!�"'��	

,
73� , 

¥�ℓ, ¤	¥% = /% − - .�7�
 − 11,
73� + �� − 1	 - −��&�!�"'��	 + �7�
��&�!�"'��	

1 − ��&�!�"'��	
,

73� . 
The maximum likelihood estimates ¤¦  of the parameters ¤ are obtained by solving the 

system of non-linear equation 
§ℓ�!,¨	§¨ = 0. This equation can be solved using a numerical 

method known as New Raphson iterative scheme given by 

¤¦ = ¤2 − ©���¤2	ª�¤2	,     ¤¦ =  �«, �¬, %¦$­ . 
Where ª�¤2	 is the score function and ©�¤2	 is the Hessian matrix which is the second 

partial derivative of the log-likelihood function. The “bbmle” package in R statistical 

software program is used to evaluate the maximum likelihood estimates of the parameters 

of the KUG distribution. 

3.2. Interval estimate 

The asymptotic confidence intervals (CIs) for the parameters of KUG��, �, %	 

distribution are obtained according to the asymptotic distribution of the maximum 

likelihood estimates of the parameters. Suppose ¤¦ =  �«, �¬ , %¦$ be MLE of ¤, then the 

estimators are approximately bi-variate normal with mean��, �, %	 and the Fisher 

information matrix is given by ®�¤2	 =  −e ©�¤2	$.       (31) 

The approximate (1-δ)100 CIs for the parameters �, � and % are respectively given by 

�« ± °±�²³Sb �«$, �¬ ± °±�²³Sb �¬$ and   %¦ ± °±�´³Sb�%¦	 

where ³Sb �«$, ³Sb �¬$ and ³Sb�%¦	 are the variance of �,  � and % which are given by the 

diagonal elements of the variance-covariance matrix ®���¤2	 and °µ i¶  is the upper (· 2¶ ) 

percentile of the standard normal distribution.  
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3.3. Simulation Study 

In this subsection, we investigate the asymptotic behaviour of the maximum 

likelihood estimate of the parameters of the Kumaraswamy unit-Gompertz distribution 

(KUGD) through a simulation study. A Monte Carlo simulation study is repeated 10,000 

times for different sample sizes n = 30, 50, 100, 200 and parameter values �� = 0.5, � =0.1, % = 0.3	, �� = 0.5, � = 0.1, % = 0.5	, �� = 0.5, � = 0.5, % = 0.3	, �� = 0.5, � =0.5, % = 0.5	, �� = 0.8, � = 0.1, % = 0.3	, �� = 0.8, � = 0.1, % = 0.5	, �� = 0.8, � =0.5, % = 0.3	, �� = 0.8, � = 0.5, % = 0.5	. Three quantities which include the Bias, Root 

Mean Square Error (RMSE) and the Coverage Probability (CP) of the 95% Confidence 

Intervals (CIs) for the parameter estimates will be considered as Statistical measures for 

investigating the asymptotic behaviour of the maximum likelihood estimate of the 

parameters of the Kumaraswamy unit-Gompertz distribution. 

Table 4: Monte Carlo simulation results for Bias, RMSE and CP of parameter estimates 

of KUGD. 

� � % / ¸6SB��	 ¸6SB��	 ¸6SB�%	 �Roe��	 �Roe��	 �Roe�%	 ¹º��	 ¹º��	 ¹º�%	 

0.5 0.1 0.3 30 0.0384 0.0148 0.2307 0.2074 0.0557 0.7701 0.9571 0.9857 0.8486 

50 0.0142 0.0093 0.1170 0.1244 0.0415 0.5051 0.9543 0.9629 0.8543 

100 0.0069 0.0045 0.0605 0.0837 0.0270 0.2757 0.9571 0.9543 0.8886 

200 0.0060 0.0019 0.0225 0.0574 0.0184 0.1489 0.9543 0.9486 0.9029 

0.5 30 0.0095 0.0272 0.2283 0.1620 0.0744 0.9408 0.9400 0.9886 0.7886 

50 0.0166 0.0153 0.1602 0.1148 0.0502 0.7405 0.9571 0.9800 0.8057 

100 0.0082 0.0057 0.0957 0.0823 0.0320 0.4707 0.9629 0.9457 0.8629 

200 0.0039 0.0028 0.0435 0.0552 0.0214 0.2740 0.9571 0.9629 0.9143 

0.5 0.3 30 0.0428 0.0947 0.2210 0.1866 0.3132 0.8304 0.9714 0.9743 0.8314 

50 0.0209 0.0480 0.1508 0.1219 0.2155 0.7397 0.9657 0.9571 0.8343 

100 0.0148 0.0236 0.0580 0.0881 0.1369 0.2910 0.9486 0.9543 0.8657 

200 0.0049 0.0157 0.0162 0.0604 0.0920 0.1475 0.9400 0.9543 0.9057 

0.5 30 0.0276 0.1541 0.1932 0.1678 0.3521 1.1068 0.9600 0.9914 0.7914 

50 0.0171 0.0805 0.1997 0.1183 0.2568 0.9671 0.9686 0.9629 0.8114 

100 0.0021 0.0459 0.0537 0.0729 0.1627 0.4300 0.9600 0.9600 0.8600 

200 0.0009 0.0234 0.0215 0.0542 0.1085 0.2659 0.9657 0.9543 0.9086 
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0.8 0.1 0.3 30 0.1135 0.0125 0.2526 0.4125 0.0575 0.8160 0.9343 0.9914 0.8257 

50 0.0581 0.0080 0.1361 0.2749 0.0398 0.5081 0.9657 0.9743 0.8743 

100 0.0299 0.0035 0.0748 0.1841 0.0273 0.3042 0.9371 0.9286 0.8743 

200 0.0140 0.0019 0.0250 0.1160 0.0172 0.1552 0.9400 0.9600 0.9114 

0.5 30 0.0559 0.0169 0.2529 0.3226 0.0590 0.9389 0.9314 0.9971 0.8286 

50 0.0220 0.0094 0.1752 0.2219 0.0421 0.7406 0.9571 0.9743 0.8771 

100 0.0207 0.0056 0.0719 0.1650 0.0290 0.3865 0.9543 0.9657 0.8857 

200 0.0068 0.0030 0.0267 0.0987 0.0202 0.2214 0.9514 0.9514 0.9114 

0.5 0.3 30 0.1211 0.0513 0.2640 0.4609 0.2593 0.7932 0.9457 0.9857 0.8429 

50 0.0627 0.0332 0.1821 0.3020 0.2073 0.6058 0.9200 0.9486 0.8343 

100 0.0235 0.0161 0.0679 0.1825 0.1288 0.3300 0.9457 0.9657 0.8943 

200 0.0191 0.0041 0.0373 0.1256 0.0877 0.1775 0.9286 0.9514 0.9257 

0.5 30 0.0489 0.0900 0.2706 0.3360 0.3072 0.9779 0.9400 0.9943 0.8286 

50 0.0453 0.0496 0.2189 0.2425 0.2227 0.8356 0.9600 0.9771 0.8514 

100 0.0332 0.0280 0.0964 0.1752 0.1485 0.4840 0.9543 0.9543 0.8943 

200 0.0022 0.0195 0.0244 0.1023 0.1012 0.2290 0.9486 0.9657 0.8914 

Table 4 shows the Monte Carlo simulation results for Bias, RMSE and CP of 

parameter estimates of Kumaraswamy unit-Gompertz distribution. From the Table, we 

observe that the bias and the root mean square error of the parameter estimates decreases 

as the sample size n increases, which validates the consistency property of an estimator. 

Finally, the coverage probability of the 95% confidence interval of the parameter 

estimates are very close to the nominal level of 95%. 

4. Application of the KUG Distribution to Lifetime Datasets 

In this section, we apply the KUG distribution together with some existing lifetime 

distributions with bounded support to two real datasets. The parameter estimates of the 

distributions, Log-likelihood, Akaike Information Criterion (AIC), Crammer-von Mises 

test statistic �»∗	 and the Anderson Darling test statistic �½∗	 with their respective 

p-values will be employed as statistical tools for suitable model selection. These lifetime 

distributions with their density function include; 

1. Marshall-Olkin Extended Kumaraswamy Distribution (MOEKD) due to George 

and Thobias [6]; 

���	 = �S¸�¾���1 − �¾	¿��[1 − ��1 − �¾	¿]i , 
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2. Kumaraswamy Distribution due to Kumaraswamy [10]; 

���	 = S¸�¾���1 − �¾	¿��, 
3. Unit-Gompert Distribution due to Mazucheli et al. [11]; 

���	 = ��������	��� !"#��$. 
Dataset 1: The dataset consists of 48 rock samples from a petroleum reservoir 

reported in Cordeiro and Brito [2]. The dataset is defined on a unit interval which is 

positively (right) skewed with skewness value (o2 = 1.1330) and leptokurtic with kurtosis 

value (rt = 3.9404). The data set is shown in Table 5. 

Table 5:  Rock samples from a petroleum reservoir. 

0.0903296 0.2036540 0.2043140 0.2808870 0.1976530 0.3286410  

0.1486220 0.1623940 0.2627270 0.1794550 0.3266350 0.2300810  

0.1833120 0.1509440 0.2000710 0.1918020 0.1541920 0.4641250 

0.1170630 0.1481410 0.1448100 0.1330830 0.2760160 0.4204770 

0.1224170 0.2285950 0.1138520 0.2252140 0.1769690 0.2007440 

0.1670450 0.2316230 0.2910290 0.3412730 0.4387120 0.2626510 

0.1896510 0.1725670 0.2400770 0.3116460 0.1635860 0.1824530 

0.1641270 0.1534810 0.1618650 0.2760160 0.2538320 0.2004470 

Dataset 2: The second dataset represents 20 observations of the maximum flood 

level (in millions of cubic feet per second) for Susquehanna River at Harrisburg, 

Pennsylvania. 

The data set include; 0.26, 0.27, 0.30, 0.32, 0.32, 0.34, 0.38, 0.38, 0.39, 0.40, 0.41, 0.42, 

0.42, 0.42, 0.45, 0.48, 0.49, 0.61, 0.65, 0.74. 

The data set was first reported in Dumonceaux and Antle [5], and was recently used in 

Opone and Osemwenkhae [14] to illustrate the potentials of the transmuted Marshall-

Olkin extended Topp-Leone distribution in real life data fitting. The dataset is right 

skewed with skewness value (o2 =  0.9939) and leptokurtic with kurtosis value (rt =3.3053). 
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Table 6: Summary statistics for rock sample data set. 

Distributions 

 

Parameter 

Estimate 

Log-Lik AIC »∗ 

(p-value) 

½∗ 

(p-value) 

KUGD � = 3.1154 � = 1.6812 % = 0.1162 

58.3549 -110.7097 0.0294 

(0.9793) 

0.1917 

(0.9926) 

MOEKD � = 0.0214 S = 4.8120 ¸ = 48.3554 

57.7042 -109.4084 0.0462 

(0.9013) 

0.3262 

(0.9169) 

Unit Gompertz � = 0.0053 � = 2.9893 

56.6437 -109.2874 0.0433 

(0.9176) 

0.3572 

(0.8893) 

Kumaraswamy S = 2.7187 ¸ = 44.6604 

52.4915 -100.9831 0.2060 

(0.2566) 

1.2892 

(0.2358) 

 

Table 7: Summary statistics for flood level data set. 

Distributions 

 

Parameter 

Estimate 

Log-Lik AIC »∗ 

(p-value) 

½∗ 

(p-value) 

KUGD � = 1.5622 � = 3.1566 % = 0.0587 

16.5086 -27.0172 0.0463 

(0.9031) 

0.2701 

(0.9585) 

MOEKD � = 0.0153 S = 6.4543 ¸ = 5.4128 

15.9235 -25.8471 0.0410 

(0.9320) 

0.3133 

(0.9271) 

Unit Gompertz � = 0.0151 � = 4.1149 

16.3664 -28.7329 0.0532 

(0.8621) 

0.2934 

(0.9425) 

Kumaraswamy � = 3.3777 ¸ = 12.0057 

12.9733 -21.9465 0.1653 

(0.3482) 

0.9366 

(0.3911) 

Tables 6 and 7 respectively reveal the summary statistics for the rock samples from a 

petroleum reservoir and the maximum flood level datasets. The parameter estimates, log-

likelihood, Akaike Information Criterion �½®¹	, Crammer-von Mises test statistic �»∗	 
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and Anderson Darling test statistic �½∗	 with their respective p-values of the distributions 

were computed for each data sets. The Tables indicate that the proposed Kumaraswamy 

unit-Gompertz distribution, having the maximized log-likelihood value and the least 

value in terms of ½®¹, »∗ 
and ½∗ 

test statistics with the highest corresponding p-values, 

outperforms the Marshall-Olkin Kumaraswamy distribution, Kumaraswamy distribution 

and the unit-Gompertz distribution in analyzing the two real datasets under study. Further 

illustration of the flexibility of the proposed KUG distribution was investigated by 

considering the density fit and the Quantile-Quantile (Q-Q) plots of the distributions for 

the two datasets as shown in Figures 3 and 4 respectively. 
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rock samples dataset. 
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5. Concluding Remark 

In this paper, we introduced a new generalized bounded distribution called the 

Kumaraswamy unit-Gompertz distribution. The mathematical properties of the proposed 

KUG distribution which include; the density function, cumulative distribution function, 

survival function, hazard rate function, moments, mode, median, quantile function, Renyi 

entropy and the distribution of order statistics were obtained. Numerical computations of 

the quantiles, moments as well as the Renyi entropy of the KUG distribution were 

established and the method of maximum likelihood estimation was used in estimating the 

unknown parameters of the proposed KUG distribution. A Monte Carlo simulation study 

was carried out to investigate the asymptotic behaviour of the parameter estimates of the 

KUG distribution. Finally, two real bounded datasets were used to illustrate the 

applicability of the proposed KUG distribution in lifetime data analysis. 
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