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Abstract 

In this work, Black-Scholes differential equation for barrier/traditional option is solved 

using partial Taylor series expansion method. The developed solutions are in very good 

agreement with the closed-form solutions of the Black Scholes equation for the powered 

ML-payoff functions. Also, the analytical solutions of the new method in this present 

study give the same expressions as the solutions of projected differential equations and 

homotopy perturbation method as presented in the literature. Moreover, the reliability, 

speed, accuracy, and ease of application of the proposed method show its potential for 

wide areas of applications in science, financial mathematics, and engineering. 

1. Introduction 

In financial markets, option is taken as one of the best products among various 

derivatives. Option is a derivative of financial security that gives its owner the right to 

buy or sell a specified amount of a particular asset at a fixed price, called the exercise 

(strike) price, on or before a specified date (maturity date) [1]. An option can be an 

American option or a European option. An America option is an option which can be 

exercised at any time until expiration or maturity date while a European option is an 

option which can be exercised only at a fixed expiration or maturity date [2]. The 

European option can be of two types, namely, call option and put option. These two 

options are the basis for a wide range of option strategies that are designed for hedging, 

income, or speculation. Call options give or allow the buyer or the holder the right, but 

not the obligation, to buy the underlying asset such as stock, bond, or commodity at a 



Gbeminiyi M. Sobamowo 

http://www.earthlinepublishers.com 

440

stated (strike) price within a specific timeframe in the contract.  Put options give or allow 

the buyer or the holder the right, but not the obligation, to sell the underlying asset at a 

stated (strike) price within a specific timeframe in the contract. 

Option pricing has been efficiently modeled by the well-known Black-Scholes 

second-order partial differential equation [3]. The Black-Scholes model can be used for 

European or American option pricing [4-6]. In order to achieve this, there have been 

several attempts to produce analytical solutions to the second-order partial differential 

equation [6]. However, the coefficients of the Black-Scholes can depend on the time and 

the asset price. Consequently, the analytical solution of the generalized Black-Scholes 

model is not a straight-forward task. Therefore, over the years, various numerical 

methods have been presented to solve the option pricing problems [7-20]. In the 

computational adventures for the numerical solutions for the Black–Scholes model, 

different numerical schemes have been developed [21-24]. The limitations of the 

numerical schemes have led to the development of various approximate analytical and 

hybrid methods [25-34] which provide series solutions. However, the series solutions 

provide a non-smooth analytical solution at a single point, i.e., when the exercise or strike 

price is equal to the stock price [34]. Consequently, the quest for relatively simple 

method with high level of accuracy continues. 

Taylor series expansion method (TSEM) has been used to expand trigonometric, 

hyperbolic, rational, fractional, special functions, etc, into series forms. Such series 

expressions have been helpful in differentiating and integrating difficult functions. 

Moreover, the method has been used to develop approximate analytical solutions to 

differential equations [35-50]. However, the classical Taylor series expansion method is 

not frequently applied especially to partial differential equations. This is because it 

requires more function evaluations than well-known classical algorithms and the over-

elaborate tasks of calculations of the higher-order derivatives involve in finding 

approximate solutions of differential equations. Such limitations are addressed in the 

proposed new Taylor series expansion method called partial Taylor series expansion 

method (PTSEM). Therefore, in this work, a new Taylor series expansion method called 

partial Taylor series expansion method is introduced and used to solve Black-Scholes 

differential equation for barrier option. An analytical solution for the model of European 

options for barrier option is presented using the PSTEM. Also, the partly series solution 

method is used to develop non-series solutions for the call and put options pricing. The 

results of the solutions of the analytical method are compared with the results of the exact 
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analytical solutions. Moreover, numerical examples are presented to illustrate the 

effectiveness, speed, high level of accuracy and reliability and ease of applications when 

compared to other analytical methods are established. 

2. The Black-Scholes Model 

The Black-Scholes model is a mathematical model for the dynamics of a financial 

market, and it is used for the valuation of financial options. The Black-Scholes second-

order partial differential equation is given as [3, 4 and 5] 

��
�� + 1

2 ��	� ���
�	� + 
	 ��

�	 − 
� = 0,                                           (1) 

where  

� is the value of the option which explicitly depends on the current asset price and 

time.  

	 is the current price of the underlying asset 


 is the interest rate (risk-free rate) 

� is time to maturity or expiration 

� is volatility of the underlying asset. 

The required value �(	, �) will provide us with the information on how much should be 

paid now, at time �, to hold that option if the current asset price is 	.  

The above Black-Scholes Model is based on the following assumptions [3]: 

i. The stock price � follows the Geometric Brownian Motion with constant drift 

µ and volatility �.  

ii. The short selling of securities with full use of proceeds is permitted  

iii. There are no transactions costs or taxes. All securities are perfectly divisible. 

iv. There are no dividends during the life of the option. 

v. There are no riskless arbitrage opportunities. 

vi. Security trading is continuous. 

vii. The risk-free rate of interest, 
, is constant and the same for all maturities. 
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2.1. Black-Scholes model for pricing barrier option   

The focus of the present study is on the barrier options. Such options are only weekly 

path-dependent (options which payoffs at exercise or expiry depend, in some non-trivial 

way, on the past history of the underlying asset price as well as its price at exercise or 

expiry) and satisfy the Black-Scholes equation [53-61]. The options are commonly 

applied in risk management by retail investors, banks, and businesses [60].  

The Black-Scholes equation and boundary conditions for a barrier or the traditional 

option with an additional constraint involving �, the option value �(	, �) are, as 

described in. 

��
�� + 1

2 ��	� ���
�	� + 
	 ��

�	 − 
� = 0,    	 > �                        (2) 

� = 0,    	 ≤ � 

with terminal condition 

�(	, �) = ���(	(�) − �, 0).                                           (3) 

If 	 reaches �, the option is invalid, i.e., �(�, �)  =  0. 
Therefore, the additional condition 

�(�, �) = 0,                                                     (4) 

�� and 
are the exercise (strike) price and the expiry, respectively. ���(	 − �, 0) 

indicates the large value between 	 − � and 0. 

Calls or puts barrier options are categorized as: up-and-in, down-and-in, up-and-out, 

down-and-out depending on the time when 	 = � is reached in respect to the expiry [57-

58]. However, the focus of this study is down-and-out option that is constructed with only 

one asset.  

The above partial differential equation with variable coefficient as presented in               

Eq. (2) can be transformed to partial differential equation with constant coefficient using 

the following variable transformations: 

	 = �� ,    � = � − !
"
� �� ,     � = #(�, �).                                    (5) 

Applying Eq. (5) in Eqs. (2), (3) and (4), we have    
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�#
�! = ��#

��� + (% − 1) �#
�� − %#,                                           (6) 

where 

% = 2

��                                                                     (7) 

with initial condition 

#(�, 0) = ���(�� − �, 0).                                                    (8) 

and boundary condition 

#(0, !) = 0.                                                                 (9) 

3. Analytical Solutions Black-Scholes Model using Partial Taylor Series Method 

Indisputably, the Black-Scholes model can easily be solved numerically. However, in 

the analysis of the transient problems, we made recourse to symbolic solutions of the 

problems. Such symbolic solution will provide better physical insights into the 

importance of model parameters than the numerical methods. In the generation of the 

analytical solutions to differential equations, the partial Taylor series expansion method is 

used to solve Black-Scholes classical and generalized differential equations. An 

analytical solution for the model of European option is presented with the aid of the 

method. 

3.1. The basic principle of partial Taylor series expansion methods 

The basic principle of the partial Taylor series method for solving partial differential 

equation is as follows: 

Given an ordinary differential equation 

*+�, ,, , ′, ,″, . . . , ,-. = 0.                                                (10) 

From the /01-order Taylor series of a smooth function about the point � = �, the series 

solution of the differential equation is given by  

,(�) = ,(�) + (� − �),′(�) + 1
2! (� − �)�,″(�) 

+ 1
3! (� − �)3,‴(�)+. . . + 1

/! (� − �)-,-(�) + 4(�)              (11) 
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4(�) represents the remainder. With the aid of Eq. (11), each term in the differential 

equation in Eq. (10) can be found to solve the differential equation. 

The Taylor series expansion for two independent variables about the point � = � and 

, = 5 is given as  

*(�, ,) = *(�, 5) + (� − �)* (�, 5) + (, − 5)*6(�, 5) 

+ 1
2! 7(� − �)�*  (�, 5) + 2(� − �)(, − 5)* 6(�, 5) + (, − 5)�*66(�, 5)8 

+ 1
3! 7(� − �)3*   (�, 5) + 3(� − �)�(, − 5)*  6(�, 5)

+ 3(� − �)(, − 5)�* 66(�, 5) + (, − 5)3*666(�, 5)8 
+ 1

4! 7(� − �)9*    (�, 5) + 4(� − �)3(, − 5)*   6(�, 5)
+ 6(� − �)�(, − 5)�*  66(�, 5)&
+ 4(� − �)(, − 5)3* 666(�, 5) + (, − 5)9*6666(�, 5)8 

+ ⋯ + 4(�, !). (12) 

However, the partial Taylor series expansion for two independent variables about a point 

where , = 5 but varying points of x x=  is given as  

*(�, ,) = *(�, 5) + (, − 5)*6(�, 5) + 1
2! (, − 5)�*66(�, 5) + 1

3! (, − 5)3*666(�, 5) 

+ 1
4! (, − 5)9*6666(�, 5) + ⋯ + 1

5! (, − 5)9*66666(�, 5) 

+ ⋯ + 1
/! (, − 5)-*66666...6(�, 5) + 4(�, 5).                                                   (13) 

In the partial Taylor series expansion method, the expansion is carried out with respect to 

a specific variable of the partial differential equation. Such an approach of partial 

expansion of a several variable function with respect to a specific variable make the 

application of Taylor series method to be much simpler than the standard Taylor series 

method for several variables. 

3.2. Application of partial Taylor series expansion method to Black-Scholes models 

Given that the classical Black-Scholes model as 

#<(�, !) = #  (�, !) + (= − 1)# (�, !) − =#(�, !).                          (14) 
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In solving the above problem by the partial Taylor series expansion method, From the 

/01-order partial Taylor series expansion of a smooth function about the point ! = !>, the 

seriessolution of the differential equation is given by  

#(�, !) ≃ #(�, !@) + (! − !@)#<(�, !@) + 1
2! (! − !@)�#<<(�, !@) 

+ 1
3! (! − !@)3#<<<(�, !@)  + 1

4! (! − !@)9#<<<<(�, !@) 

+ 1
5! (! − !@)A#<<<<<(�, !@) + ⋯ + 1

/! (! − !@)-#<<<<<...<(�, !@).       (15) 

From the /01-order partial Taylor series of a smooth function about the point ! = 0, the 

series solution of the differential equation is given by 

3.2.1. Partial Taylor series expansion method to Black-Scholes model for pricing 

barrier option 

Given that that the  

#(�, 0) = ���(�� − �, 0). 
Therefore,  

# (�, 0) = ���(�� , 0), #  (�, 0) = ���(�� , 0), #   (�, 0) = ���(�� , 0), 
#    (�, 0) = ���(�� , 0), #     (�, 0) = ���(�� , 0), #      (0,0) = ���(�� , 0)   (16) 

# <(�, 0) = #  <(�, 0) = # <<(�, 0) = #   <(�, 0) = #  <<(�, 0) = # <<<(�, 0) = 0, 
#    <(�, 0) = #   <<(�, 0) = #  <<<(�, 0) = # <<<<(�, 0) = ⋯ = 0. 

From the governing Eq. (6), one has 

#<(�, 0) = #  (�, 0) + (% − 1)# (�, 0) − %#(�, 0).                             (17) 

On substituting Eq. (16) into Eq. (17), this gives 

#<(�, 0) = ���(�� , 0) + (% − 1)���(�� , 0) − %���(�� − �, 0).          (18) 

Therefore 

#<(�, 0) = %B���(�� , 0) − ���(�� − �, 0)C.                               (19) 

Now, differentiating Eq. (11) with respect to “!”, we have 

#<<(�, !) = #  <(�, !) + (% − 1)# <(�, !) − %#<(�, !)                          (20) 
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and  

#<<(�, 0) = #  <(�, 0) + (% − 1)# <(�, 0) − %#<(�, 0).                       (21) 

Again, substitute Eq. (16) into Eq. (22), this produces 

#<<(�, 0) = −%�B���(�� , 0) − ���(�� − �, 0)C.                           (22) 

Now, differentiating Eq. (20) with respect to “!”, we have 

#<<<(�, !) = #  <<(�, !) + (% − 1)# <<(�, !) − %#<<(�, !)                     (23) 

and  

#<<<(�, 0) = #  <<(�, 0) + (% − 1)# <<(�, 0) − %#<<(�, 0).                   (24) 

After the substitution of the corresponding terms in Eq. (16) into Eq. (22), one arrives at 

#<<<(�, 0) = %3B���(�� , 0) − ���(�� − �, 0)C                              (25) 

similarly 

#<<<<(�, 0) = −%9B���(�� , 0) − ���(�� − �, 0)C                         (26) 

#<<<<<(�, 0) = %AB���(�� , 0) − ���(�� − �, 0)C                          (27) 

⋮ 
⋮ 

#<<<<<...<(�, 0) = (−1)-E"%-B���(�� , 0) − ���(�� − �, 0)C.              (28) 

On substituting Eqs. (8), (19), (22), (25), (26), (27) and (28) into Eq. (13), we have 

#(�, !) ≃ ���(�� − �, 0) + %B���(�� , 0) − ���(�� − �, 0)C! 

− %�
2! B���(�� , 0) − ���(�� − �, 0)C!� 

+ %3
3! B���(�� , 0) − ���(�� − �, 0)C!3 

− %9
4! B���(�� , 0) − ���(�� − �, 0)C!9 

+ ⋯ + (−1)-E" %-
/! B���(�� , 0) − ���(�� − �, 0)C!-            (29) 
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which gives,  

#(�, !) ≃ ���(�� − �, 0) + %!���(�� , 0) − %!���(�� − �, 0) 

− 1
2! (%!)����(�� , 0) + 1

2! (%!)�(�� − �, 0) 

+ 1
3! (%!)3���(�� , 0) − 1

3! (%!)3(�� − �, 0) − 1
4! (%!)9���(�� , 0) 

+ 1
4! (%!)9(�� − �, 0) 

+ ⋯ + (−1)-E" F 1
/! (%!)-���(�� , 0) − 1

/! (%!)-(�� − �, 0)G.               (30) 

We can write that 

#(�, !) ≃ ���(�� − �, 0) 

+ H(−1)-E" F 1
/! (%!)-���(�� , 0) − 1

/! (%�)-���(�� − �, 0)G
I

-J"
   (31) 

i.e. 

#(�, !) = ���(�� − �, 0) 

+ H (−1)-E"(%!)-
/! B���(�� , 0) − ���(�� − �, 0)C.                    

∞

-J"
(32) 

Recall that 

	 = �� ,    � = � − <
K
LML,    #(�, !) = �(�, �),     % = �N

ML . 
Therefore,  

�(	, �) = ���(	 − �, 0) 

+ H (−1)-E"B
(� − �)C-
/! B���(	, 0) − ���(	 − �, 0)C.

∞

-J"
                   (33) 

Furthermore, we can the collect like terms in Eq. (30) to have 

#(�, !) ≃ %!���(�� , 0) − 1
2! (%!)����(�� , 0) 1

3! (%!)3���(�� , 0) 
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− 1
4! (%!)9(�� , 0) + (−1)-E" F 1

/! (%!)-���(�� , 0)G 

+ ⋯ + ���(�� − �, 0) − %!���(�� − �, 0) 

+ 1
2! (%!)����(�� − �, 0) − 1

3! (%!)3���(�� − �, 0) 

+ 1
4! (%!)9���(�� − �, 0) ⋯ − (−1)-E" 1

/! (%!)-���(�� − �, 0)         (34) 

which can also be expressed as 

#(�, !) ≃ O1 − %! + 1
2! (%!)� − 1

3! (%!)3 + 1
4! (%!)9 − ⋯ − (−1)-E" F 1

/! (%!)-GP ���(�� − �, 0) 

+ O%! − 1
2! (%!)� + 1

3! (%!)3 − 1
4! (%!)9 + ⋯ + (−1)-E" F 1

/! (%!)-GP ���(�� , 0)   (35) 

and then 

#(�, !) = O1 − %! + 1
2! (%!)� − 1

3! (%!)3 + 1
4! (%!)9 − ⋯ P ���( �� − �, 0) 

+ O%! − 1
2! (%!)� + 1

3! (%!)3 − 1
4! (%!)9 + ⋯ P ���( �� , 0).           (36) 

Recall that by series expansion,  

�QR< = 1 − %! + 1
2! (%!)� − 1

3! (%!)3 + 1
4! (%!)9 − ⋯                            (37) 

1 − �QR< = %! − 1
2! (%!)� + 1

3! (%!)3 − 1
4! (%!)9 + ⋯                           (38) 

Therefore, the above Eq. (39) can be expressed as,  

#(�, !) = ���(�� − S, 0)�QR< + ���(�� , 0)+1 − �QR<..                  (39) 

Recall that  

	 = �� ,  � = � − <
K
LML, #(�, �) = �(�, �),  % = �N

ML ,   ! = "
� ��(� − �) → %! = 
(� − �). 

Therefore, Eq. (39) becomes 

�(�, �) = ���(	 − �, 0)�QN(UQ0) + ���(	, 0)+1 − �QN(UQ0)..               (40) 
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Again, if we go back to Eq. (36), we have 

#(�, !) = O1 − %! + 1
2! (%!)� − 1

3! (%!)3 + 1
4! (%!)9 − ⋯ P (�� − �) 

+ O%! − 1
2! (%!)� + 1

3! (%!)3 − 1
4! (%!)9 + ⋯ P (�� )                  (41) 

which can be expressed as  

#(�, !) = O1 − %! + 1
2! (%!)� − 1

3! (%!)3 + 1
4! (%!)9 − ⋯ P (�� ) 

− O1 − %! + 1
2! (%!)� − 1

3! (%!)3 + 1
4! (%!)9 − ⋯ P � 

+ O%! − 1
2! (%!)� + 1

3! (%!)3 − 1
4! (%!)9 + ⋯ P (�� ).              (42) 

Then 

#(�, !) = �� − � O1 − %! + 1
2! (%!)� − 1

3! (%!)3 + 1
4! (%!)9 − ⋯ P .          (43) 

The above Eq. (43) can be written as  

#(�, !) = 	 − � O1 − 
(� − �) + 1
2! 
�(� − �)� − 1

3! 
3(� − �)3 + 1
4! 
9(� − �)9 − ⋯ P. 

 (44) 

Alternatively, we have 

#(�, !) = 	 + � O−1 + 
(� − �) − 1
2! 
�(� − �)� + 1

3! 
3(� − �)3 − 1
4! 
9(� − �)9 + ⋯ P. 

(45)  

Eq. (45) is the extended form of the solution that was arrived at by Dehghan and 

Pourghanbar [57] using homotopy perturbation method. 

In non-series solution, Eq. (41) can be easily expressed as  

#(�, !) = (�� − �)�QR< + �� +1 − �QR<.                            (46) 

which reduces to 

#(�, !) = �� − ��QR< .                                               (47) 
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Recall that  

	 = �� ,    #(�, �) = �(�, �),    %! = 
(� − �). 
Therefore, we arrived at  

�(	, �) = 	 − ��QN(UQ0).                                                 (48) 

The accuracy of the solutions can be tested when the results is verified with the results of 

the analytical solution which is obtained by Fourier transformation. The analytical 

solution is given as 

�(	, �) = 	V(W") − ��QN(UQ0)V(W�),                                       (49) 

where 

W" =
X/ YZ

[\ + "
� ��(� − �) ] N

K
LML + 1^

�√� − � ,       W� =
X/ YZ

[\ + "
� ��(� − �) ] N

K
LML − 1^

�√� − � ,   (50) 

V(`) = 1
√2a b �QK

LZLc
Q∞

W	. 
� −  � is the time remaining till expiration as at time �; V(`) is the cumulative normal 

density function. 

Numerical Example and Parametric Studies 

In the parametric study, the valuation of barrier option is considered. The stock price 

is given 	 =  (11, 13, 15, 17, 19) the exercise/strike price of � =  10, the risk-neutral 

interest rate is 0.05 per year, and the volatility is 0.05 per year. Therefore, we have the 

following: 	 =  (11, 13, 15, 17, 19)), S = 10, � =  0.25, 
 =  0.05, � =  0.05. 
Table 1: Comparison of the results when � = 10, � = 9, � =  0.25, 
 =  0.05, � =
 0.05, � = 0. 
Stock Price Exact Solution [57] VIM [57] HPM [57] PTSEM (Present study) 

11 1.12422244 1.12422199 1.12421875 1.12422199 

13 3.12422199 3.12422199 3.12421875       3.12422199 

15 5.12422199 5.12422199 5.12421875       5.12422199 

17 7.12422199 7.12422199 7.12421875       7.12422199 

19 9.12422199 9.12422199 9.12421875 9.12422199 
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Table 2: Comparison of the results when � = 10, � = 9, � = 0.50, 
 = 0.05, � =
 0.05, � = 0. 
Stock Price     Exact Solution [57]  VIM [57]        HPM [57]         PTSEM (Present study)                        

11 1.24693225 1.24690087 1.24687500  1.24690087 

13 3.24690087  3.24690087  3.24687500  3.24690087  

15 5.24690087 5.24690087  5.24687500  5.24690087 

17 7.24690087 7.24690087  7.24687500  7.24690087 

19 9.24690087 9.24690087  9.24687499  9.24690087 

Tables 1 and 2 show the comparison of results of the partial Taylor series expansion 

method (PTSEM) and that of the existing methods in literature [57]. While the results of 

the homotopy perturbation method are not in perfect agreements with the results of the 

exact analytical solution, it could be seen that the results are of the present method are in 

excellent agreements with the results of the exact analytical solutions and variational 

iteration method. However, the results of the partial Taylor series expansion method are 

obtained with less computations and converge faster than that of the exact solutions. This 

attests to the efficiency and accuracy of the method of partial Taylor series expansion.  

4. Conclusion 

In this study, a new method called method of partial Taylor series expansion has been 

successfully applied to solve Black-Scholes equations for pricing of barrier options. It 

was found that the results are of the method of partial Taylor series expansion are in 

excellent agreements with the results of the exact analytical solutions and variational 

iteration method. In fact, the new method displayed high level of simplicity and low cost 

of computation. Therefore, it could be stated that the PTSEM is very efficient, reliable, 

and fast and very easy in application. It is hoped that this method will be widely applied 

in science, financial mathematics, and engineering. 
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